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UNITARY EQUIVALENCE TO A COMPLEX

SYMMETRIC MATRIX: A MODULUS CRITERION

STEPHAN RAMON GARCIA, DANIEL E. POORE AND MADELINE K. WYSE

(Communicated by N.-C. Wong)

Abstract. We develop a procedure for determining whether a square complex matrix is unitarily
equivalent to a complex symmetric (i.e., self-transpose) matrix. We compare our approach to
several existing methods [1, 19, 20] and present a number of examples.

1. Introduction

Following [19], we say that a matrix T ∈Mn(C) is UECSM if it is unitarily equiva-
lent to a complex symmetric (i.e., self-transpose) matrix. Here we use the term unitarily
equivalent in the sense of operator theory: we say that two matrices A and B are unitar-
ily equivalent if A = UBU∗ for some unitary matrix U . In contrast, the term unitarily
similar is frequently used in the matrix-theory literature.

Since every n×n complex matrix is similar to a complex symmetric matrix [15,
Thm. 4.4.9] (see also [7, Ex. 4] and [6, Thm. 2.3]), it is often difficult to tell whether
or not a given matrix is UECSM. For instance, exactly one of the following matrices is
UECSM: ⎛

⎜⎜⎝
5 1 1 3
1 1 1 −1
1 −3 5 −1
−1 −1 −1 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

5 −1 3 3
1 3 −1 −1
1 −1 3 −1
−1 1 −3 1

⎞
⎟⎟⎠ . (1)

In particular, there are no readily apparent features which suggest that either of these
matrices possesses more “symmetry” than the other (see Section 4).

Our primary motivation stems from the emerging theory of complex symmetric
operators on Hilbert space [2, 3, 5, 6, 7, 8, 10, 12, 17, 21, 22]. To be more specific,
a bounded operator T on a separable complex Hilbert space H is called a complex
symmetric operator if T =CT ∗C for some conjugation C (a conjugate-linear, isometric
involution) on H . The terminology stems from the fact that the preceding condition
is equivalent to insisting that T has a complex symmetric matrix representation with
respect to some orthonormal basis [6, Sect. 2.4-2.5]. Thus the problem of determining
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whether a given matrix is UECSM is equivalent to determining whether that matrix
represents a complex symmetric operator with respect to some orthonormal basis. In
other words, T is UECSM if and only if T belongs to the unitary orbit of the complex
symmetric matrices in Mn(C) .

Although ad-hoc methods sometimes suffice for specific examples (e.g., [7, Ex. 5,7],
[10, Ex. 1, Thm. 4], [20, Ex. 3]), the first general approach was due to Vermeer, who
proved that T is UECSM if and only if T = STtS∗ for some symmetric unitary matrix
S [20, Thm. 3]. Although highly effective in many situations, this procedure (which
we denote VTest) does not quite fit our needs since it is basis-dependent and does not
immediately adapt to the abstract Hilbert space setting.

Another approach is due to J. Tener [19] who developed a procedure (UECSMTest)
based upon the diagonalization of the selfadjoint components A and B in the Cartesian
decomposition T = A+ iB . More recently, L. Balayan and the first author developed
another procedure (StrongAngleTest) based upon a careful analysis of the eigen-
structure of T itself [1].

In this note, we pursue a different approach, based upon the diagonalization of
T ∗T and TT ∗ . Before discussing our main result, we require a few definitions. Recall
that the singular values of a matrix T ∈ Mn(C) are defined to be the eigenvalues of the
positive semidefinite matrix |T |=√

T ∗T , the so-called modulus of T . We also remark
that T ∗T and TT ∗ share the same eigenvalues [14, Pr. 101].

THEOREM 1. If T ∈ Mn(C) has distinct singular values,

(1) u1,u2, . . . ,un are unit eigenvectors of T ∗T corresponding to the eigenvalues
λ1,λ2, . . . ,λn , respectively,

(2) v1,v2, . . . ,vn are unit eigenvectors of TT ∗ corresponding to the eigenvalues λ1,
λ2, . . . ,λn , respectively,

then T is UECSM if and only if

|〈ui,v j〉| = |〈u j,vi〉|, (2)

〈ui,v j〉〈u j,vk〉〈uk,vi〉 = 〈ui,vk〉〈uk,v j〉〈u j,vi〉, (3)

holds for 1 � i � j � k � n.

The procedure suggested by the preceding theorem can easily be implemented in
Mathematica (we refer to this procedure as ModulusTest). We should also remark
that T.Y. Tam has recently obtained another proof of Theorem1 and several other related
results based upon the singular value decomposition of T [18].

Although the eigenvectors of T ∗T and TT ∗ are determined only up to unimodular
(i.e., unit modulus) constant factors, it is easy to see that (2) and (3) do not depend upon
these constants. In particular, Theorem 1 is basis-independent and can in principle be
applied to operators on Hilbert space (see Section 5). Moreover, as a byproduct of our
method we are able to construct the symmetric unitary matrix S of Vermeer’s condition
based upon the data required by Theorem 1.
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The structure of this paper is as follows. The proof of Theorem 1 is the subject
of Section 2. Section 3 contains a number of instructive examples. In Section 4 we
compare ModulusTest to the procedures UECSMTest [19], StrongAngleTest [1],
and VTest [20, Thm. 3]. In Section 5 we discuss applications of our results to compact
operators. As an illustration, we reveal a “hidden symmetry” of the Volterra integration
operator.

EXAMPLE 1. Before we proceed, we list several matrices which are UECSM
and their corresponding complex symmetric matrices. These matrices were tested by
ModulusTest and the unitary equivalences exhibited using the procedures outlined in
Section 3. In particular, we have selected relatively simple matrices which enjoy no
apparent “symmetry” whatsoever. The symbol ∼= denotes unitary equivalence.

⎛
⎝5 2 2

7 0 0
7 0 0

⎞
⎠∼=

⎛
⎜⎝

1
2

(
5−√

187
) −5i

√
561+5

√
187

1658 −i
√

3350
829 − 125

√
187

1658

−5i
√

561+5
√

187
1658

1
829

(
1870+293

√
187
) 9

829

√
1
2

(
173723+7075

√
187
)

−i
√

3350
829 − 125

√
187

1658
9

829

√
1
2

(
173723+7075

√
187
)

81
−5+3

√
187

⎞
⎟⎠ ,

⎛
⎝9 8 9

0 7 0
0 0 7

⎞
⎠∼=

⎛
⎜⎝ 8−

√
149
2

9
2 i
√

16837+64
√

149
13093 i

√
133672
13093 − 1296

√
149

13093

9
2 i
√

16837+64
√

149
13093

207440+9477
√

149
26186

18
√

3978002+82324
√

149
13093

i
√

133672
13093 − 1296

√
149

13093
18
√

3978002+82324
√

149
13093

92675+1808
√

149
13093

⎞
⎟⎠ .
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2. Proof of Theorem 1

2.1. Preliminary lemmas

Recall that a conjugation C on Cn is a conjugate-linear involution (i.e., C2 = I )
which is also isometric (i.e., 〈Cx,Cy〉 = 〈y,x〉 for all x,y ∈ Cn ). It is easy to see that
each conjugation C on C

n is of the form C = SJ where S is a complex symmetric
unitary matrix and J is the canonical conjugation

J(z1,z2, . . . ,zn) = (z1,z2, . . . ,zn) (4)

on Cn . The relevance of conjugations to our endeavor lies in the following lemma.

LEMMA 1. T ∈ Mn(C) is UECSM if and only if there exists a conjugation C on
Cn such that T = CT ∗C.

Proof. Suppose that T = CT ∗C for some conjugation C on C
n . By [7, Lem. 1]

there exists an orthonormal basis e1,e2, . . . ,en such that Cei = ei for i = 1,2, . . . ,n .
Let Q = (e1|e2| · · · |en) be the unitary matrix whose columns are these basis vectors.
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The matrix M = Q∗TQ is complex symmetric since the i j th entry [M]i j of M satisfies
[M]i j = 〈Te j,ei〉 = 〈CT ∗Cej,ei〉 = 〈ei,T ∗e j〉 = 〈Tei,e j〉 = [M] ji. �

Our next result shows that, under the hypotheses of Theorem 1, T is UECSM if
and only if there is a conjugation intertwining T ∗T and TT ∗ .

LEMMA 2. If C is a conjugation on C
n and T ∈ Mn(C) has distinct singular

values, then
T = CT ∗C ⇔ T ∗T = C(TT ∗)C. (5)

Proof. The (⇒) implication of (5) follows immediately, regardless of any hy-
potheses on the singular values of T . The implication (⇐) is considerably more in-

volved. Suppose that T ∗T =CTT ∗C . Write T =U(T ∗T )
1
2 where U is unitary and ob-

serve that TT ∗ =UT ∗TU∗ whence UT ∗T = TT ∗U . It follows that UT ∗T =CT ∗TCU
which implies that

CU(T ∗T ) = (T ∗T )CU. (6)

Let e1,e2, . . . ,en denote unit eigenvectors of T ∗T corresponding to the (necessarily
non-negative) eigenvalues λ1,λ2, . . . ,λn of T ∗T .

In light of (6), we see that T ∗Tei = λiei if and only if (T ∗T )(CUei) = λi(CUei) .
In other words, the conjugate-linear operator CU maps each eigenspace of T ∗T into
itself. Since CU is isometric and since the eigenspaces of T ∗T are one-dimensional, it
follows that CUei = ζ 2

i ei for some unimodular constants ζ1,ζ2, . . . ,ζn . Using the fact
that C is conjugate-linear we find that the unit vectors wi = ζiei satisfy CUwi = wi and
T ∗Twi = λiwi .

We claim that the conjugate-linear operator K = CU is a conjugation on Cn . In-
deed, since U is unitary and C is a conjugation it is clear that K is isometric. Moreover,
since K2wi = CUCUwi = CUwi = wi for i = 1,2, . . . ,n it follows that K2 = I whence
K is a conjugation. By (6) it follows that K(T ∗T )K = T ∗T whence K|T |K = |T | (since
|T | = p(T ∗T ) for some polynomial p(x) ∈ R[x]).

Putting this all together, we find that T = CK|T | where K is a conjugation that
commutes with |T | . In particular, the unitary matrix U factors as U = CK and sat-
isfies U∗ = KC . We therefore conclude that T = CK|T | = C|T |K = C(|T |KC)C =
C(|T |U∗)C = CT ∗C . �

We remark that the implication (⇐) of Lemma 2 is false if one drops the hypothe-
sis that the singular values of T are distinct. For instance, let T be unitary matrix which
is not complex symmetric (i.e., T �= JT ∗J where J denotes the canonical conjugation
(4) on Cn ). In this case, T ∗T = I = TT ∗ (i.e., all of the singular vales of T are 1) and
hence the condition on the right-hand side of (5) obviously holds. On the other hand,
T �= JT ∗J by hypothesis.

From here on, we maintain the notation and conventions of Theorem 1, namely
that u1,u2, . . . ,un are unit eigenvectors of T ∗T and v1,v2, . . . ,vn are unit eigenvectors
of TT ∗ corresponding to the eigenvalues λ1,λ2, . . . ,λn , respectively.
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LEMMA 3. If C is a conjugation on C
n and T ∈ Mn(C) has distinct singular

values, then T ∗T = CTT ∗C if and only if Cui = αivi for some unimodular constants
α1,α2, . . . ,αn .

Proof. For the forward implication, observe that λiui = T ∗Tui =CTT ∗Cui whence
TT ∗(Cui) = λi(Cui) . Since the eigenspaces of TT ∗ are one-dimensional and C is iso-
metric, it follows that Cui = αivi for some unimodular constants α1,α2, . . . ,αn .

On the other hand, suppose that there exist unimodular constants α1,α2, . . . ,αn

such that Cui = αivi for i = 1,2, . . . ,n . Since C is a conjugation, it follows that Cvi =
αiui for i = 1,2, . . . ,n . It follows that CTT ∗Cui =CTT ∗αivi = αiCTT ∗vi = αiλiCvi =
αiαiλiui = λiui for i = 1,2, . . . ,n . Since the linear operators CTT ∗C and T ∗T agree
on the orthonormal basis u1,u2, . . . ,un , we conclude that T ∗T = CTT ∗C . �

LEMMA 4. There exists a conjugation C and unimodular constants α1,α2, . . . ,αn

such that Cui = αivi for i = 1,2, . . . ,n if and only if

〈ui,v j〉 = α jαi〈u j,vi〉 (7)

holds for 1 � i, j � n.

Proof. For the forward implication, simply note that if Cui =αivi for i = 1,2, . . . ,n ,
then (7) follows immediately from the fact that C is isometric and conjugate-linear.
Conversely, suppose that (7) holds for 1 � i, j � n . We claim that the definition
Cui = αivi for 1 � i � n extends by conjugate-linearity to a conjugation on all of Cn .
Since u1,u2, . . . ,un and v1,v2, . . . ,vn are orthonormal bases of Cn and since the con-
stants α1,α2, . . . ,αn are unimodular, it follows that C is isometric. It therefore suffices
to prove that C2 = I . To this end, we need only show that Cvi = αiui for 1 � i � n .
This follows from a straightforward computation:

Cvi = C

(
n

∑
j=1

〈vi,u j〉u j

)
=

n

∑
j=1

〈u j,vi〉Cuj =
n

∑
j=1

〈u j,vi〉α jv j

=
n

∑
j=1

αiα j〈ui,v j〉α jv j = αi

n

∑
j=1

〈ui,v j〉v j = αiui.

Thus C is a conjugation on Cn , as desired. �
We can interpret the condition (7) in terms of matrices. Let U = (u1|u2| · · · |un)

and V = (v1|v2| · · · |vn) denote the n× n unitary matrices whose columns are the or-
thonormal bases u1,u2, . . . ,un and v1,v2, . . . ,vn , respectively. Now observe that (7) is
equivalent to asserting that

(V ∗U)t = A∗(V ∗U)A (8)

holds where A = diag(α1,α2, . . . ,αn) denotes the diagonal unitary matrix having the
unimodular constants α1,α2, . . . ,αn along the main diagonal.

Putting Lemmas 2, 3, and 4 together, we obtain the following important lemma.
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LEMMA 5. There exist unimodular constants α1,α2, . . . ,αn such that (7) holds if
and only if T is UECSM.

With these preliminaries in hand, we are now ready to complete the proof of The-
orem 1.

2.2. Proof of the implication (⇒)

Suppose that T is UECSM. By Lemma 5, there exist unimodular constants α1,α2,
. . . ,αn so that (7) holds for 1 � i, j � n . The desired conditions (2) and (3) from the
statement of Theorem 1 then follow immediately.

2.3. Proof of the implication (⇐)

The proof that conditions (2) and (3) are sufficient for T to be UECSM is some-
what more complicated. Fortunately, the proof of [1, Thm. 2] goes through with minor
notational changes and we refer the reader there for the details. We sketch the main
idea below.

Suppose that 〈u j,vi〉 �= 0 for 1 � i, j � n (the proof of [1, Thm. 2] explains how
to get around this restriction) and observe that (2) ensures that the constants

βi j =
〈ui,v j〉
〈u j,vi〉

are unimodular. The condition (3) then implies that βi jβ jk = βik , from which it follows
that the unimodular constants αi = β1i satisfy (7). We therefore conclude that T is
UECSM by Lemma 5. �

3. Examples and computations

Before considering several examples, let us first remark that Theorem 1 is con-
structive. Maintaining the notation and conventions established in the proof of Theorem
1, define the unitary matrices U , V , and A as in (8). Let s1,s2, . . . ,sn denote the stan-
dard basis of Cn and let J denote the canonical conjugation (4) on Cn . In particular,
observe that Jsi = si for i = 1,2, . . . ,n . The proof of Theorem 1 tells us that if T satis-
fies (2) and (3) (e.g., “T passes ModulusTest”), then there exist unimodular constants
α1,α2, . . . ,αn such that Cui = αivi for i = 1,2, . . . ,n . Letting A = diag(α1,α2, . . . ,αn)
we see that

VAUtJui = VAJU∗ui = VAJsi

= VAsi = αiV si

= αivi.

Thus the conjugate-linear operators C and (VAUt)J agree on the orthonormal basis
u1,u2, . . . ,un whence they agree on all of Cn . Although it is not immediately obvious,
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the unitary matrix S = VAUt is complex symmetric. Indeed, the condition S = St is
equivalent to (8).

Once the conjugation C = SJ has been obtained it is a simple matter of finding an
orthonormal basis with respect to which T has a complex symmetric matrix represen-
tation (see Lemma 1). To find such a basis, observe that since S =CJ is a C -symmetric
unitary operator, each of its eigenspaces are fixed by C [6, Lem. 8.3]. Let us also note
that T = CT ∗C = SJT∗SJ = STtS so that T = STtS∗ . In other words, the matrix S
constructed above is the symmetric unitary matrix whose existence is guaranteed by
Vermeer’s criterion [20, Thm. 3].

EXAMPLE 2. Although at this point many different proofs of the fact that every
2×2 matrix is UECSM exist (see [1, Cor. 3], [3, Cor. 3.3], [7, Ex. 6], [9], [10, Cor. 1],
[16, p. 477], [19, Cor. 3]), for the sake of illustration we give yet another.

By Schur’s Theorem on unitary triangularization, we need only consider upper
triangular 2× 2 matrices. If T is such a matrix and has repeated eigenvalues, then
upon subtracting a multiple of the identity we may assume that

T =
(

0 a
0 0

)
. (9)

A routine computation now shows that T = UAU∗ where

A =
(

a
2

ia
2

ia
2 − a

2

)
, U =

(
1√
2

−i√
2

1√
2

i√
2

)
.

Thus it suffices to consider the case where T has distinct eigenvalues. Upon subtracting
a multiple of the identity and then scaling, we may assume that

T =
(

1 a
0 0

)
. (10)

Moreover, we may also assume that a � 0 since this may be obtained by conjugating
T by an appropriate diagonal unitary matrix. Thus we have

T ∗T =
(

1 a
a a2

)
, TT ∗ =

(
1+a2 0

0 0

)
.

The eigenvalues of T ∗T and TT ∗ are λ1 = 1+a2 and λ2 = 0 and corresponding unit
eigenvectors are

u1 =

⎛
⎝ 1√

1+a2

a√
1+a2

⎞
⎠ , u2 =

⎛
⎝ −a√

1+a2

1√
1+a2

⎞
⎠ , v1 =

(
1
0

)
, v2 =

(
0
1

)
.

Let us first consider the condition (2) of the procedure ModulusTest. For i = j it holds
trivially and for i �= j we have

|〈u1,v2〉| = a√
1+a2

= |〈u2,v1〉|.



280 S. R. GARCIA, D. E. POORE AND M. K. WYSE

Now let us consider the second condition (3). Since n = 2, at least two of i, j,k must
be equal whence (3) holds trivially. By Theorem 1, it follows that T is UECSM.

Let us now explicitly construct a complex symmetric matrix which T is unitarily
equivalent to. Since the equation

a√
1+a2

= 〈u1,v2〉 = α1α2〈u2,v1〉 = α1α2
−a√
1+a2

is satisfied by α = 1 and α2 = −1, we let

S =
(

1 0
0 1

)
︸ ︷︷ ︸

V

(
1 0
0 −1

)
︸ ︷︷ ︸

A

⎛
⎝ 1√

1+a2

a√
1+a2

−a√
1+a2

1√
1+a2

⎞
⎠

︸ ︷︷ ︸
Ut

=

⎛
⎝ 1√

1+a2

a√
1+a2

a√
1+a2

− 1√
1+a2

⎞
⎠

and note that the conjugation C = SJ satisfies T =CT ∗C . An orthonormal basis e1,e2

of C2 whose elements are fixed by C is given by

e1 =

⎛
⎜⎝

1−
√

1+a2√
2+2a2−2

√
1+a2

a√
2+2a2−2

√
1+a2

⎞
⎟⎠ e2 =

⎛
⎜⎝

−ia√
2+2a2−2

√
1+a2

i(1−
√

1+a2)√
2+2a2−2

√
1+a2

⎞
⎟⎠ .

Note that these are certain normalized eigenvectors of S , corresponding to the eigenval-
ues 1 and −1, respectively, whose phases are selected so that Ce1 = SJe1 = Se1 = e1

and Ce2 = SJe2 = S(−e2) =−Se2 = e2 . Letting Q = (e1|e2) denote the unitary matrix
whose columns are e1 and e2 , we find that

Q∗TQ =
( 1

2 (1−√
1+a2) ia

2
ia
2

1
2 (1+

√
1+a2)

)
.

As predicted by Lemma 1, this matrix is complex symmetric.

The following simple example was first considered, using ad-hoc methods, in [10,
Ex. 1]. Note that the procedure StrongAngleTest of [1] cannot be applied to this
matrix due to the repeated eigenvalue 0.

EXAMPLE 3. Suppose that ab �= 0 and |a| �= |b| . In this case, the singular values
of

T =

⎛
⎝0 a 0

0 0 b
0 0 0

⎞
⎠

are distinct. Normalized eigenvectors u1,u2,u3 of T ∗T and v1,v2,v3 of TT ∗ corre-
sponding to the eigenvalues 0, |a|2, |b|2 , respectively are given by

u1 = v3 =

⎛
⎝1

0
0

⎞
⎠ , u2 = v1 =

⎛
⎝0

1
0

⎞
⎠ , u3 = v2 =

⎛
⎝0

0
1

⎞
⎠ .
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Since 〈u1,v2〉 = 0 and 〈u2,v1〉 = 1, condition (2) fails from which we conclude that
T is not UECSM. On the other hand, if either a = 0 or b = 0, then T is the direct
sum of a 1× 1 with a 2× 2 matrix whence T is UECSM by Example 2. Moreover,
if |a| = |b| , then T is unitarily equivalent to a Toeplitz matrix and thus UECSM by [6,
Sect. 2.2].

EXAMPLE 4. We claim that the lower-triangular matrix

T =

⎛
⎝0 0 0

1 2 0
1 0 2

⎞
⎠

is UECSM. Normalized eigenvectors u1,u2,u3 of T ∗T and v1,v2,v3 of TT ∗ corre-
sponding to the eigenvalues λ1 = 0, λ2 = 4, and λ3 = 6 are given by

u1 =

⎛
⎜⎝

1√
3

1√
3

1√
3

⎞
⎟⎠ , u2 =

⎛
⎜⎝ 0
− 1√

2
1√
2

⎞
⎟⎠ , u3 =

⎛
⎜⎝
− 4√

6
1√
6

1√
6

⎞
⎟⎠ ,

and

v1 =

⎛
⎜⎝ 0

1√
2

1√
2

⎞
⎟⎠ , v2 =

⎛
⎜⎝ 0
− 1√

2
1√
2

⎞
⎟⎠ , v3 =

⎛
⎝1

0
0

⎞
⎠ ,

respectively. Since

〈u1,v2〉 = 〈u2,v1〉 = 0,

〈u2,v3〉 = 〈u3,v2〉 = 0,

〈u3,v1〉 = 〈u1,v3〉 = 1√
3
,

conditions (2) and (3) are obviously satisfied. By Theorem 1, we conclude that T
is UECSM. Let us now construct a complex symmetric matrix which T is unitarily
equivalent to.

By inspection, we find that α1 = α2 = α3 = 1 is a solution to (7). Maintaining the
notation established at the beginning of this section, we observe that the matrix

S =

⎛
⎜⎝ 0 0 1

1√
2
− 1√

2
0

1√
2

1√
2

0

⎞
⎟⎠

︸ ︷︷ ︸
V

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

︸ ︷︷ ︸
A

⎛
⎜⎝

1√
3

1√
3

1√
3

0 − 1√
2

1√
2

− 4√
6

1√
6

1√
6

⎞
⎟⎠

︸ ︷︷ ︸
Ut

=

⎛
⎜⎝
− 4√

6
1√
6

1√
6

1√
6

1
2 + 1√

6
− 1

2 + 1√
6

1√
6

− 1
2 + 1√

6
1
2 + 1√

6

⎞
⎟⎠
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is symmetric and unitary (i.e., S is the matrix from Vermeer’s criterion). We then find
an orthonormal basis e1,e2,e3 whose elements are fixed by the conjugation C = SJ .
Following Lemma 1, we encode one such example as the columns of the unitary matrix

Q =

⎛
⎜⎜⎜⎜⎜⎝

−i
√

1
2 + 1√

6
1
5

√
11−4

√
6 1√

2(9+
√

6)

i

2
√

3+
√

6
0 1

2

√
3+
√

2
3

i

2
√

3+
√

6

1
5

(√
2+2

√
3
)
− 1

10

√
19−23

√
2
3

⎞
⎟⎟⎟⎟⎟⎠

and note that Q∗TQ is complex symmetric:

⎛
⎜⎜⎜⎝

1−
√

3
2 − 1

5 i
√

9−√
6 − 1

5 i
√

7
2 +

√
6

− 1
5 i
√

9−√
6 1

25

(
26+11

√
6
)

1
25

√
123−47

√
6

− 1
5 i
√

7
2 +

√
6 1

25

√
123−47

√
6 1

50

(
98+3

√
6
)

⎞
⎟⎟⎟⎠ .

Independent confirmation that T is UECSM is obtained from VTest or simply by not-
ing that T −2I has rank one (every rank-one matrix is UECSM by [10, Cor. 5]).

4. Comparison with other methods

With the addition of ModulusTest there are now four general procedures for de-
termining whether a matrix T is UECSM. Each has its own restrictions:

1. ModulusTest (this article) requires that T has distinct singular values,

2. StrongAngleTest [1] requires that T has distinct eigenvalues,

3. UECSMTest [19] requires that the selfadjoint matrices A,B in the Cartesian de-
composition T = A+ iB (where A = A∗ , B = B∗ ) both have distinct eigenvalues.
However, this restriction can be removed in the 3×3 case.

4. VTest [20, Thm. 3] has no theoretical restrictions. On the other hand, this ap-
proach requires one to solve nonlinear equations in several complex variables and
their conjugates.

Table 1 provides a number of examples indicating that ModulusTest is not sub-
sumed by either StrongAngleTest or UECSMTest. At this point we should also re-
mark that the two matrices (1) from the introduction are unitarily equivalent to constant
multiples of the corresponding matrices in Table 1. In particular, the first matrix in (1)
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T σ(T ∗T ) σ(T ) σ(A) σ(B) UECSM?⎛
⎜⎜⎝

1 0 1 0
0 1 0 0
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠ 0,2, 3±√

5
2 0,1,1,1 1

2 , 3
2 , 1±√

2
2 − 1

2 ,− 1
2 , 1

2
1
2 YES

⎛
⎜⎜⎝

1 0 1 0
0 1 0 0
0 0 1 0
0 0 1 0

⎞
⎟⎟⎠ 0,1,2±√

2 0,1,1,1 distinct 0,0,±
√

2
2 NO

Table 1: Matrices which satisfy the hypotheses of ModulusTest but not those of UECSMTest or
StrongAngleTest (the notation σ(·) denotes the spectrum of a matrix). Whether or not these
matrices are UECSM can be determined by ModulusTest. In the second row, the eigenvalues of
A are distinct but cannot be displayed exactly in the confines of the table.

is unitarily equivalent to⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2
17

(
23+16

√
2
)

4
17

√
50−31

√
2 −2i

√
1
17

(
5+2

√
2
)

−i
√

48
17 − 8

√
2

17

4
17

√
50−31

√
2 2

17

(
45+

√
2
)

−i
√

48
17 − 8

√
2

17 2i

√
1
17

(
5+2

√
2
)

−2i

√
1
17

(
5+2

√
2
)

−i
√

48
17 − 8

√
2

17 2 0

−i
√

48
17 − 8

√
2

17 2i

√
1
17

(
5+2

√
2
)

0 2−2
√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

One advantage that ModulusTest has over UECSMTest and StrongAngleTest is
due to the nonlinear nature of the map X �→X∗X on Mn(C) . First note that the property
of being UECSM is invariant under translation X �→ X + cI for c ∈ C . Next observe
that if T does not satisfy the hypotheses of UECSMTest or StrongAngleTest, then
neither does T + cI for any value of c . On the other hand, T + cI will often satisfy the
hypotheses of ModulusTest even if T itself does not.

T σ(T ∗T ) σ(T ) σ(A) σ(B) UECSM?⎛
⎜⎜⎝

1 0 0 0
0 0 2 0
0 0 0 2
0 0 0 0

⎞
⎟⎟⎠ 0,1,4,4 0,0,0,1 0,1,±√

2 0,0,±√
2 YES

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 0 0 2
0 0 0 0

⎞
⎟⎟⎠ 0,1,1,4 0,0,0,1 0,1,±

√
5

2 0,0,±
√

5
2 NO

Table 2: Matrices which cannot be tested by UECSMTest, StrongAngleTest, or ModulusTest.
However, ModulusTest does apply to T + I and hence ModulusTest can be used indirectly to
test the original matrix T .

Table 2 displays two matrices which do not satisfy the hypotheses of UECSMTest,
StrongAngleTest, or ModulusTest. Nevertheless, the translation trick described
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above renders these matrices indirectly susceptible to ModulusTest. For instance, the
first matrix in Table 2 is unitarily equivalent to⎛

⎜⎝
1 0 0 0
0 0 0 i

√
2

0 0 0
√

2
0 i

√
2
√

2 0

⎞
⎟⎠ .

Rather than grind through the computational details, we can use simple ad-hoc
means to independently confirm the results listed in Table 2. The first matrix in Table
2 is the direct sum of a 1× 1 matrix and a Toeplitz matrix and is therefore UECSM
by [6, Sect. 2.2]. On the other hand, the second matrix in Table 2 is not UECSM. To
see this requires a little additional work. First note that the lower right 3× 3 block is
not UECSM (see Example 3 or [10, Ex. 1]). We next use the fact that a matrix T is
UECSM if and only if the external direct sum 0⊕T is UECSM [11, Lem. 1].

5. Testing compact operators

Our final example indicates that the natural infinite-dimensional generalization of
ModulusTest can sometimes be used to detect hidden symmetries in Hilbert space op-
erators. For instance if T is compact, then T ∗T and TT ∗ are diagonalizable selfadjoint
operators having the same spectrum [13, Pr. 76] and hence the proofs of our results go
through mutatis mutandis.

EXAMPLE 5. We claim that the Volterra integration operator T : L2[0,1]→ L2[0,1] ,
defined by

[T f ](x) =
∫ x

0
f (y)dy,

is unitarily equivalent to a complex symmetric matrix acting on l2(Z) . Before explicitly
demonstrating this with ModulusTest, let us note that neither of the other procedures
previously available (StrongAngleTest [1], UECSMTest [19], or VTest [20, Thm. 3])
are capable of showing this.

1. The Volterra operator has no eigenvalues at all (indeed, it is quasinilpotent) and
hence no straightforward generalization of StrongAngleTest can possibly ap-
ply.

2. Since [T ∗ f ](x) =
∫ 1
x f (y)dy , we find that A = 1

2 (T + T ∗) equals 1
2 times the

orthogonal projection onto the one-dimensional subspace of L2[0,1] spanned by
the constant function 1. In particular, the operator A has the eigenvalue 0 with
infinite multiplicity whence no direct generalization of Tener’s UECSMTest can
possibly apply.

3. The Volterra operator does not come equipped with a convenient matrix repre-
sentation. Even after computing a matrix representation, an application of VTest
would require solving nonlinear equations (arising from the unitarity condition)
in infinitely many complex variables.
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On the other hand, the singular values of the Volterra operator are distinct and thus
ModulusTest applies. In fact, the eigenvalues of T ∗T and TT ∗ are

λn =
2

(2n+1)π
,

for n = 0,1,2, . . . and corresponding normalized eigenvectors are

un =
√

2cos[(n+ 1
2 )πx], vn =

√
2sin[(n+ 1

2)πx].

These computations are well-known [13, Pr. 188] and left to the reader (a different
derivation of these facts can be found in [8, Ex. 6]). An elementary computation now
reveals that

〈ui,v j〉 =

⎧⎪⎪⎨
⎪⎪⎩

(−1)i+ j(2i+1)− (2 j +1)
π(i− j + i2− j2)

if i �= j,

2
π(1+2i)

if i = j,

from which it is clear that

〈ui,v j〉 = (−1)i+ j〈u j,vi〉. (11)

Taking absolute values of the preceding, we see that (2) is satisfied. Moreover,

〈ui,v j〉〈u j,vk〉〈uk,vi〉 = (−1)2(i+ j+k)〈ui,vk〉〈uk,v j〉〈u j,vi〉
= 〈ui,vk〉〈uk,v j〉〈u j,vi〉,

whence (3) is satisfied. By Theorem 1, it follows that the Volterra operator T has a
complex symmetric matrix representation with respect to some orthonormal basis of
L2[0,1] . Let us exhibit this explicitly.

Looking at (11) we define αn = (−1)n and note that (7) is satisfied for all i and
j . We now wish to concretely identify the conjugation C on L2[0,1] which satisfies

C(cos[(n+ 1
2 )πx]︸ ︷︷ ︸

un

) = (−1)n︸ ︷︷ ︸
αn

sin[(n+ 1
2 )πx]︸ ︷︷ ︸

vn

for n = 0,1,2, . . . . Basic trigonometry tells us that

un(1− x) = cos[(n+ 1
2)π(1− x)]

= cos(n+ 1
2)π cos(n+ 1

2 )πx+ sin(n+ 1
2 )π sin(n+ 1

2)πx

= (−1)n sin[(n+ 1
2 )πx] = αnvn(x)

= [Cun](x)

whence [C f ](x) = f (1− x) for f ∈ L2[0,1] . In particular, it is readily verified that
T = CT ∗C (see also [6, Lem. 4.3], [7, Sect. 4.3]).

Now observe that C fixes each element of the orthonormal basis

en = exp[2π in(x− 1
2)], (n ∈ Z)
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of L2[0,1] and that the matrix for T with respect to this basis is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

...
...

...
· · · i

6π 0 0 i
6π 0 0 0 · · ·

· · · 0 i
4π 0 − i

4π 0 0 0 · · ·
· · · 0 0 i

2π
i

2π 0 0 0 · · ·
· · · i

6π − i
4π

i
2π

1
2 − i

2π
i

4π − i
6π · · ·

· · · 0 0 0 − i
2π − i

2π 0 0 · · ·
· · · 0 0 0 i

4π 0 − i
4π 0 · · ·

· · · 0 0 0 − i
6π 0 0 − i

6π · · ·
...

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Cartesian components A and B of the Volterra operator are clearly visible in the
preceding matrix representation.
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