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SPATIAL ISOMORPHISMS OF ALGEBRAS OF TRUNCATED

TOEPLITZ OPERATORS

STEPHAN RAMON GARCIA, WILLIAM T. ROSS, AND WARREN R. WOGEN

Abstract. We examine when two maximal abelian algebras in the truncated
Toeplitz operators are spatially isomorphic. This builds upon recent work of
N. Sedlock, who obtained a complete description of the maximal algebras of
truncated Toeplitz operators.

1. Introduction

Let H2 denote the Hardy space of the open unit disk D, H∞ denote the bounded
analytic functions on D, and L∞ := L∞(∂D), L2 := L2(∂D) denote the usual
Lebesgue spaces on the unit circle ∂D [14,20]. To each non-constant inner function
Θ we associate the model space [6, 23, 24]

KΘ := H2 ⊖ΘH2,

which is a reproducing kernel Hilbert space corresponding to the kernel

kλ(z) :=
1−Θ(λ)Θ(z)

1− λz
, z, λ ∈ D. (1.1)

We sometimes use the notation kΘλ when we need to emphasize the dependence on
the inner function Θ. The model space KΘ carries the natural conjugation

Cf := fzΘ, (1.2)

defined in terms of boundary functions [15–17] and a computation shows that

[Ckλ](z) =
Θ(z)−Θ(λ)

z − λ
. (1.3)

Since each kernel function (1.1) is bounded and since their span is dense in KΘ, it
follows that KΘ ∩H∞ is dense in KΘ. For each symbol ϕ in L2 the corresponding
truncated Toeplitz operator Aϕ is the densely defined operator on KΘ given by the
formula

Aϕf := PΘ(ϕf), f ∈ H∞ ∩ KΘ,

where PΘ is the orthogonal projection of L2 onto KΘ. When we wish to be specific
about the inner function Θ, we write AΘ

ϕ .
Interest in truncated Toeplitz operators has blossomed over the last few years

[1–4,7,18,28–30], sparked by a series of illuminating observations and open problems
provided by D. Sarason [27]. Although one can pursue the subject of unbounded
truncated Toeplitz operators much further [28,29], we focus here on those Aϕ which
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have a bounded extension to KΘ and we denote this set by TΘ. One can show that
TΘ is weakly closed [27, Thm. 4.2] and contains Aϕ whenever ϕ ∈ L∞. On the other
hand, every Aϕ ∈ TΘ can be represented by an unbounded symbol [27, Thm. 3.1].
In fact,

Aϕ1
= Aϕ2

⇔ ϕ1 − ϕ2 ∈ ΘH2 +ΘH2. (1.4)

Moreover, a recent preprint [2] has revealed that there are bounded truncated
Toeplitz operators Aϕ which cannot be represented by a bounded symbol.

For a given pair of inner functions Θ1 and Θ2, Cima and the current authors
recently obtained necessary and sufficient conditions for TΘ1

and TΘ2
to be spatially

isomorphic [4], meaning there exists a unitary operator U : KΘ1
→ KΘ2

such
that TΘ1

= U∗TΘ2
U . We denote this relationship by TΘ1

∼= TΘ2
. In this paper

we examine when certain algebras of truncated Toeplitz operators are spatially
isomorphic.

Although TΘ is not an algebra of operators (a simple counterexample can be
deduced from [27, Thm. 5.1]), it does contain certain algebras of interest. Two
examples are

{Aϕ : ϕ ∈ H∞}, (1.5)

the set of analytic truncated Toeplitz operators on KΘ and

{Aϕ : ϕ ∈ H∞}, (1.6)

the corresponding set of co-analytic truncated Toeplitz operators. Algebras of the
form (1.5) are of particular interest since a seminal result of D. Sarason [26] states
that (1.5) is precisely the commutant of the compressed shift Az on KΘ.

Recently, N. Sedlock [30] determined all of the maximal abelian algebras in TΘ.
These algebras BaΘ, where the parameter a belongs to the extended complex plane

Ĉ := C∪ {∞}, are described in detail in Section 2. The purpose of this paper is to
determine when two such Sedlock algebras are spatially isomorphic to each other.
In particular, we develop a precise condition describing when BaΘ

∼= Ba
′

Θ . For certain

inner functions Θ, there will be many a 6= a′ for which BaΘ
∼= Ba

′

Θ . For others, it

will be the case that BaΘ
∼= Ba

′

Θ if and only if a = a′.
We also address the question as to whether or not the notion of spatial isomor-

phism can be replaced by the weaker notion of isometric isomorphism. For example,
given a finite Blaschke product Θ with distinct zeros, we will show that the algebras
BaΘ and Ba

′

Θ are spatially isomorphic if and only if they are isometrically isomorphic.
As a consequence, we will show, for finite Blaschke products Θ1,Θ2, each with dis-
tinct zeros, that the corresponding quotient algebras H∞/Θ1H

∞ and H∞/Θ2H
∞

are isometrically isomorphic if and only if there is a unimodular constant ζ and a
disk automorphism ψ such that Θ1 = ζΘ2 ◦ ψ.

An important reason to consider the problem of spatial isomorphisms of Sedlock
algebras is that it gives us a useful tool to address the question: Which operators
are unitarily equivalent to analytic truncated Toeplitz operators (which turn out
to be the commutant of the compressed shift)? The authors in [19] examine this
question for matrices. Since the analytic truncated Toeplitz operators on some
model space KΘ are the Sedlock algebra B0

Θ, this naturally leads us to consider
spatial isomorphisms of Sedlock algebras. The results of this paper will show that
if an operator T is unitarily equivalent to an operator in some Sedlock algebra,
with the parameter a 6∈ ∂D, then T is unitarily equivalent to an analytic truncated
Toeplitz operator.
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2. Sedlock algebras

In [30] N. Sedlock examined the following subclasses of TΘ. For a ∈ C, define

BaΘ :=
{
Aϕ+aAzCϕ+c ∈ TΘ : ϕ ∈ KΘ, c ∈ C

}
.

The C appearing in the previous line is the conjugation in (1.2) on the model space
KΘ. Following Sedlock, one can extend the definition of BaΘ to a = ∞ by adopting
the convention that B∞

Θ denotes the set of co-analytic truncated Toeplitz operators
on KΘ from (1.6).

In light of the fact that the map ϕ 7→ ϕ+aAzCϕ is linear, it follows immediately
that each BaΘ is a linear subspace of TΘ. One of the main theorems of Sedlock’s
paper [30] is that each BaΘ is actually an abelian algebra. We therefore refer to the
algebras BaΘ as Sedlock algebras.

Sedlock also observed that

A ∈ BaΘ ⇔ A∗ ∈ B
1/a
Θ , (2.1)

whence the definition of B∞
Θ consistent with the fact that B0

Θ = {AΘ
ϕ : ϕ ∈ H∞}

consists of the analytic truncated Toeplitz operators. Indeed, we have (B0
Θ)

∗ = B∞
Θ .

Sedlock algebras can be described in several different, but equivalent, ways. For
each a ∈ D− = {|z| ≤ 1}, one can consider the following rank-one perturbation of
Az on KΘ:

SaΘ := Az +
a

1−Θ(0)a
k0 ⊗ Ck0. (2.2)

A result of Sarason shows that these rank-one perturbations of Az belong to TΘ [27].
In fact, for a ∈ ∂D one obtains the so-called Clark unitary operators [5, 8, 25].

Remark 2.3. Let us take a moment to briefly describe some facts about these
Clark operators SaΘ, a ∈ ∂D, since they will appear later on. See [5, 8, 25] for more
details. If a ∈ ∂D, then

ℜ

(
a+Θ

a−Θ

)

is a positive harmonic function on D and so, by the Herglotz theorem [14, p. 2],
there is a positive finite measure µa on ∂D with

ℜ

(
a+Θ(z)

a−Θ(z)

)
=

∫

∂D

1− |z|2

|ζ − z|2
dµa(ζ).

The family of measures {µa : a ∈ ∂D} obtained in this way are called the Clark
measures (sometimes called Aleksandrov-Clark measures) for Θ and they turn out
to be the spectral measures for SaΘ, i.e., S

a
Θ is unitarily equivalent to the multipli-

cation operator g 7→ ζg on L2(µa).
One can show that a carrier for µa is

Ea :=

{
ζ ∈ ∂D : lim

r→1−
Θ(rζ) = a

}
,

i.e., µa(∂D \ Ea) = 0. Since µa is carried by Eα, a set of Lebesgue measure zero,
it is singular with respect to Lebesgue measure. For example, if Θ is an n-fold
Blaschke product, then Ea is the set of n (distinct) points {ζ1, ζ2, . . . , ζn} ⊂ ∂D for
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which Θ(ζj) = a and µa is given by

µa =

n∑

j=1

1

|Θ′(ζj)|
δζj . (2.4)

If Θ is the atomic inner function

Θ(z) = e−
1+z
1−z ,

then, for each a ∈ ∂D, Ea is a countable set which clusters only at ζ = 1. Moreover

µa =
∑

Θ(ζ)=a

|ζ − 1|2

2
δζ .

The following observation, essentially due to Sedlock [30], provides yet another
description of BaΘ.

Lemma 2.5. For each a ∈ Ĉ we have

BaΘ = {Aψ ∈ TΘ : ψ = ϕ0(1 + aΘ) + c, ϕ0 ∈ KΘ, ϕ0(0) = 0, c ∈ C}. (2.6)

Proof. It is shown in [30] that

BaΘ = {Aψ ∈ TΘ : ψ = ϕ0 + aAzCϕ0 + ck0, ϕ0 ∈ KΘ, ϕ0(0) = 0, c ∈ C}.

Since the function ϕ0Θ belongs to KΘ (easily checked from the definition of KΘ) it
follows that

AzCϕ0 = PΘ(zzϕ0Θ) = PΘ(ϕ0Θ) = ϕ0Θ,

from which, using the fact that Ak0 = I, we get the desired conclusion. �

Sedlock algebras can also be described succinctly in terms of commutants. Recall
that for a collection A of bounded operators on a Hilbert space H, the commutant
A′ of A is defined to be the set of all bounded operators on H which commute with
every member of A.

Theorem 2.7 (Sedlock). For any inner function Θ we have the following.

(i) For a ∈ D−, BaΘ = {SaΘ}
′.

(ii) For a ∈ Ĉ \ D−, BaΘ = {(S
1/a
Θ )∗}′.

(iii) If a 6= a′, then BaΘ ∩ Ba
′

Θ = CI.

As a consequence of Theorem 2.7, one sees that BaΘ, being the commutant of
an operator, is weakly closed. Sedlock goes on to show that each BaΘ is a maximal
algebra in TΘ in the sense that every algebra in TΘ is contained in some Sedlock
algebra BaΘ. We should also point out that Sedlock algebras are maximal in another
natural sense. Recall that an algebraA ⊂ B(H) is calledmaximal abelian if A = A′.
Since every algebra in TΘ is abelian [30], it follows immediately from Theorem 2.7
that every Sedlock algebra is maximal abelian.

It turns out that every member of a Sedlock algebra BaΘ with a ∈ Ĉ \ ∂D can be
represented by a bounded symbol [30]. This is significant since there exists an inner
function Θ and an a ∈ ∂D such that BaΘ contains a truncated Toeplitz operator
which does not have a bounded symbol [2].

Part (i) of Theorem 2.7 asserts that the Sedlock algebra BaΘ, for a ∈ D−, is the
commutant of SaΘ. However, we can say a bit more. For a bounded operator A on a
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Hilbert space, we let W(A) denote the weak closure of {p(A) : p(z) a polynomial}.
In particular, observe that W(A) ⊆ {A}′.

Proposition 2.8. For any inner function Θ we have the following.

(i) If a ∈ D−, then BaΘ = W(SaΘ).

(ii) If a ∈ Ĉ \ D−, then BaΘ = W((S
1/a
Θ )∗).

The remainder of this section concerns Proposition 2.8 and its proof. We state
a number of preliminary observations which will be useful later on. Let us begin
by observing that if a ∈ ∂D, then SaΘ is a Clark unitary operator. It is well-known,
and discussed earlier in Remark 2.3, that all such operators are cyclic and possess
a singular spectral measure on ∂D which is carried by the set {Θ = a}. Since SaΘ
is cyclic, it follows from Fuglede’s Theorem and the Double Commutant Theorem
that {SaΘ}

′ is the von Neumann algebra W∗(SaΘ) generated by SaΘ [11]. Since SaΘ
is a singular unitary, an old result of J. Wermer says that W(SaΘ) = W∗(SaΘ) [31,
Thm. 6]. This establishes Proposition 2.8 when a ∈ ∂D.

Remark 2.9. From the previous paragraph and from Remark 2.3, we see that
when a ∈ ∂D, BaΘ is spatially isomorphic to L∞(µa), where we think of L∞(µa) as
the algebra of multiplication operators on L2(µa) with symbols from L∞(µa). This
was also observed by Sedlock [30].

To prove Proposition 2.8 in the special case when a = 0, we require the following
lemma which will itself prove useful later on.

Lemma 2.10. For any inner function Θ we have W(S0
Θ) = B0

Θ.

Proof. Since S0
Θ = Az, it suffices to show, by (2.1), that W(Az) = B∞

Θ . Since
the reverse inclusion ⊇ is clear, we focus on establishing that B∞

Θ ⊆ W(Az). For
g ∈ L∞, we let Tg denote the corresponding Toeplitz operator on H2 and recall
that

W(Tz) = {Tg : g ∈ H∞} = {Tz}
′.

In light of the Commutant Lifting Theorem [26], it follows that

B∞
Θ = {Az}

′ = {Tz}
′|KΘ = W(Tz)|KΘ.

We now claim that W(Tz)|KΘ is contained in W(Az). Indeed, if a sequence of
polynomials pn(Tz) in Tz converges weakly to Tg, then it follows that pn(Tz)|KΘ =
pn(Az) converges weakly to Ag. In particular, this demonstrates that B∞

Θ ⊆ W(Az)
and concludes the proof. �

To complete the proof of Proposition 2.8, we require some additional notation.
For a ∈ D we define

ba(z) :=
z − a

1− az
, (2.11)

Θa := ba ◦Θ.

Now recall that for each a ∈ D, the Crofoot transform

Ua : KΘ → KΘa , Uaf :=

√
1− |a|2

1− aΘ
f (2.12)
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is unitary [12] (see [27, Sect. 13] for a thorough discussion of Crofoot transforms
in the context of truncated Toeplitz operators). Furthermore, it has the property
that

UaS
a
ΘU

∗
a = S0

Θa , (2.13)

where SaΘ is the generalization of the Clark operator defined in (2.2). Using this
observation, we see that

BaΘ
∼= B0

Θa ∀a ∈ D. (2.14)

In particular, the proof of Proposition 2.8 for a ∈ D now follows from Lemma 2.10,

(2.13), and (2.14). The proof in the case a ∈ Ĉ\D− is settled by appealing to (2.1).

Remark 2.15. When a ∈ ∂D, the algebra BaΘ is generated by a single unitary
operator and is therefore an algebra of normal operators. The situation is quite

different for a ∈ Ĉ \ ∂D. In [4, Prop. 6.5] it is shown that if A belongs to B0
Θ and

A is normal, then A = cI. Using (2.14) one can see that the same is true for BaΘ
whenever a ∈ D. Although the same result still holds if a ∈ Ĉ \D−, to prove it one
needs Proposition 3.7 (see below) along with (2.14).

3. Basic spatial isomorphisms

3.1. The spatial isomorphisms Λa, Λψ, and Λ#. It turns out that every spa-
tial isomorphism between Sedlock algebras can be written as a product of certain
fundamental spatial isomorphisms, which were used in [4, Thm. 3.3] to determine
when TΘ1

∼= TΘ2
holds for two inner functions Θ1,Θ2. These spatial isomorphisms

are explicitly defined in terms of unitary operators between KΘ spaces.
The first basic building block is the Crofoot transform Ua : KΘ → KΘa which

we have already encountered in (2.12). Each Crofoot transform Ua implements the
following spatial isomorphism [4, Prop. 4.2]:

Λa : TΘ → TΘa , Λa(A) := UaAU
∗
a . (3.1)

The second class of spatial isomorphisms arises from composition with a disk
automorphism. To be more specific, for fixed disk automorphism ψ we set

Uψ : KΘ → KΘ◦ψ, Uψf :=
√
ψ′(f ◦ ψ).

A routine computation [4, Prop. 4.1] reveals that Uψ is unitary,

UψA
Θ
ϕU

∗
ψ = AΘ◦ψ

ϕ◦ψ , (3.2)

and

UψTΘU
∗
ψ = TΘ◦ψ.

In particular, this implies that the map

Λψ : TΘ → TΘ◦ψ, Λψ(A) := UψAU
∗
ψ (3.3)

is a spatial isomorphism.
Our last class of spatial isomorphism arises from the unitary operator (discussed

in [4])

U# : KΘ → KΘ# , [U#f ](z) := Cf(z),

where Θ#(z) := Θ(z) and C denotes the conjugation (1.2) on KΘ. In terms of
boundary functions on the unit circle ∂D, this can be written as

[U#f ](z) = zf(z)Θ#(z). (3.4)
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Although the preceding does not appear to represent the boundary values of a

function in KΘ# , note that f(z) = f#(z) whence U#f is simply the conjugate, in
the sense of (1.2), of the function f# in KΘ# . A computation in [4, Prop. 4.6] now
yields

U#A
Θ
ϕU

∗
# = AΘ#

ϕ#
(3.5)

and

U#TΘU
∗
# = TΘ# ,

giving us our final class of spatial isomorphisms

Λ# : TΘ → TΘ# , Λ#(A) := U#AU
∗
#. (3.6)

3.2. Images of Sedlock algebras. We now wish to discuss the images of the
Sedlock algebras BaΘ under the three basic spatial isomorphisms Λa, Λψ, and Λ#

defined above.
To this end, let us first note that the image of a maximal abelian algebra under

a spatial isomorphism is also a maximal abelian algebra. To be more specific,
suppose that H1 and H2 are Hilbert spaces, A1, A2 are linear subspaces of B(H1)
and B(H2) respectively, and that Λ : A1 → A2 is a spatial isomorphism, i.e., there
is a unitary U : H1 → H2 such that Λ(A) = UAU∗ for all A ∈ A1. If A is a
maximal abelian algebra in A1, then its image Λ(A) is maximal abelian algebra
in A2. In particular, any spatial isomorphism Λ induces a bijection between the
maximal abelian algebras in A1 and those in A2. In the setting of Sedlock algebras,
we conclude that if Λ : TΘ1

→ TΘ2
is a spatial isomorphism, then there is a bijection

g : Ĉ → Ĉ such that

Λ(BaΘ1
) = B

g(a)
Θ2

.

The following three propositions explicitly describe the bijection g for the basic
classes of spatial isomorphisms which we introduced above.

Proposition 3.7. For any inner function Θ and a ∈ Ĉ,

Λ#(B
a
Θ) = B

1/a

Θ# . (3.8)

Proof. From (3.5), the sharp operator U# satisfies U#A
Θ
ϕU

∗
# = AΘ#

ϕ#
, ϕ ∈ L2. Thus

for ϕ ∈ KΘ with ϕ(0) = 0 we have

Λ#

(
Aϕ(1+aΘ)+c

)
= A

(ϕ(1+aΘ)+c)#

= A
ϕ(z)(1+aΘ(z))+c

= Aϕ(z)Θ(z)(Θ(z)+a)+c

= A 1
aϕ(z)Θ(z)(1+ 1

aΘ
#)+c

.

Note that since ϕ(0) = 0, then ϕ(z)Θ# ∈ KΘ# . The result now follows from
(2.6). �

Proposition 3.9. For any inner function Θ, disk automorphism ψ, and a ∈ Ĉ we
have

Λψ(B
a
Θ) = BaΘ◦ψ.
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Proof. Suppose that A ∈ BaΘ. By (2.6)

A = Aϕ(1+aΘ)+c, ϕ ∈ KΘ, ϕ(0) = 0, c ∈ C.

By (3.2),

Λψ(A) = AΘ◦ψ

ϕ◦ψ(1+aΘ◦ψ)+c
.

To show this operator belongs to BaΘ◦ψ, we will use (2.6) and prove that there exists

an F ∈ KΘ◦ψ , F (0) = 0, and a d ∈ C so that

AΘ◦ψ

ϕ◦ψ(1+aΘ◦ψ)+c
= AΘ◦ψ

F (1+aΘ◦ψ)+d
. (3.10)

To do this, let us first observe that if PΘ◦ψ is the orthogonal projection of L2

onto KΘ◦ψ and P+ is the usual orthogonal projection of L2 onto H2, then

PΘ◦ψf = f −Θ ◦ ψP+(Θ ◦ ψf). (3.11)

Next we observe that by the conjugation C from (1.2) we know that zϕΘ ∈ KΘ ⊂

H2. This means that ϕΘ ∈ H2 and so

(ϕ ◦ ψ)Θ ◦ ψ ∈ H2. (3.12)

Let us compute PΘ◦ψ(ϕ ◦ ψ):

PΘ◦ψ(ϕ ◦ ψ) = ϕ ◦ ψ − (Θ ◦ ψ)P+(ϕ ◦ ψΘ ◦ ψ) (by (3.11))

= ϕ ◦ ψ − (Θ ◦ ψ)(ϕ ◦ ψ)(0)(Θ ◦ ψ)(0) (by (3.12))

= (ϕ ◦ ψ − (ϕ ◦ ψ)(0)) + (ϕ ◦ ψ)(0)(1 − (Θ ◦ ψ)(Θ ◦ ψ)(0))

= (ϕ ◦ ψ − (ϕ ◦ ψ)(0)) + (ϕ ◦ ψ)(0)kΘ◦ψ
0 .

Let

F = ϕ ◦ ψ − (ϕ ◦ ψ)(0)

and notice from the above calculation that

F ∈ KΘ◦ψ, F (0) = 0 (3.13)

and

PΘ◦ψ(ϕ ◦ ψ) = F + (ϕ ◦ ψ)(0)kΘ◦ψ
0 . (3.14)

A similar computation will show that

PΘ◦ψ((ϕ ◦ ψ)(Θ ◦ ψ)) = (Θ ◦ ψ)F . (3.15)

Since ϕ ◦ψ and (ϕ ◦ ψ)(Θ ◦ψ) ∈ H2 (see (3.12)) we know, from basic properties
of projections, that

ϕ ◦ ψ − PΘ◦ψ(ϕ ◦ ψ) ∈ (Θ ◦ ψ)H2 (3.16)

(ϕ ◦ ψ)(Θ ◦ ψ)− PΘ◦ψ((ϕ ◦ ψ)(Θ ◦ ψ)) ∈ (Θ ◦ ψ)H2. (3.17)

By (3.14) and (3.16), along with the identity Ak0 = I,

AΘ◦ψ
ϕ◦ψ = AΘ◦ψ

F+(ϕ◦ψ)(0)kΘ◦ψ
0

= AΘ◦ψ
F+(ϕ◦ψ)(0). (3.18)

By (3.15) and (3.17)

AΘ◦ψ

ϕ◦ψ(Θ◦ψ)
= AΘ◦ψ

(Θ◦ψ)F
.

Now take adjoints on both sides of the above equation to get

AΘ◦ψ

ϕ◦ψ(Θ◦ψ)
= AΘ◦ψ

F (Θ◦ψ)
. (3.19)
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Combine (3.18) and (3.19) to obtain

AΘ◦ψ

ϕ◦ψ+a(ϕ◦ψ)Θ◦ψ
= AΘ◦ψ

F+aF (Θ◦ψ)+(ϕ◦ψ)(0)
.

By (3.13) we have verified (3.10) and thus the proof is complete. �

Proposition 3.20. For any inner function Θ, c ∈ D, and a ∈ Ĉ, we have

Λc(B
a
Θ) = B

ℓc(a)
Θc

,

where

ℓc(a) :=





a− c

1− ca
if a 6=

1

c
,

∞ if a =
1

c
.

(3.21)

Proof. Let us first show that

Λc(S
a
Θ) = S

ℓc(a)
Θc

, a ∈ D
−, c ∈ D. (3.22)

To this end, we appeal to [27, Lemma 13.2] to obtain the identities

Uck
Θ
0 =

1− cΘ(0)√
1− |c|2

kΘc0 , Uc(CΘk
Θ
0 ) =

1− cΘ(0)√
1− |c|2

CΘck
Θc
0 ,

where kΘ0 and CΘk
Θ
0 are defined by (1.1) and (1.3), respectively 1. Therefore

Λc(k
Θ
0 ⊗ CΘk

Θ
0 ) =

(
1− cΘ(0)√

1− |c|2
kΘc0

)
⊗

(
1− cΘ(0)√

1− |c|2
CΘck

Θc
0

)

=
(1− cΘ(0))2

1− |c|2
kΘc0 ⊗ CΘck

Θc
0 .

Recall that [27, Lemma 13.3] asserts that Λc(S
c
Θ) = S0

Θc
. In light of the fact that

SaΘ = ScΘ +

(
a

1− aΘ(0)
−

c

1− cΘ(0)

)
kΘ0 ⊗ CΘk

Θ
0

= ScΘ +
a− c

(1 − aΘ(0))(1 − cΘ(0))
kΘ0 ⊗ CΘk

Θ
0 ,

we conclude that

Λc(S
a
Θ) = Λc

(
ScΘ +

a− c

(1 − aΘ(0))(1 − cΘ(0))
kΘ0 ⊗ CΘk

Θ
0

)

= S0
Θc +

a− c

(1 − aΘ(0))(1 − cΘ(0))

(1 − cΘ(0))2

1− |c|2
kΘc0 ⊗ CΘck

Θc
0

= S0
Θc +

(a− c)(1 − cΘ(0))

(1 − |c|2)(1− aΘ(0))
kΘc0 ⊗ CΘck

Θc
0 .

Recalling the definition (2.2), we see that it suffices to demonstrate that

(a− c)(1− cΘ(0))

(1− |c|2)(1 − aΘ(0))
=

ℓc(a)

1− ℓc(a)Θc(0)
.

1Note that we need a subscript Θ on C in order to distinguish the conjugation on KΘ from the
conjugation on KΘc .
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However, the right-hand side of the preceding can be written as

(a− c)(1 − cΘ(0))

(1− ca)(1 − cΘ(0))− (a− c)(Θ(0)− c)
=

(a− c)(1 − cΘ(0))

(1− |c|2)(1− aΘ(0))
.

This proves (3.22). Using Proposition 2.8, this also proves the proposition in the
case a ∈ D−.

Suppose that a ∈ Ĉ \ D− and recall from (2.1) that BaΘ = (B
1/a
Θ )∗. By (3.22), it

follows that
Λc(B

1/a
Θ ) = B

ℓc(1/a)
Θc

,

whence, by the definition of ℓc(a) from (3.21), we conclude that

Λc(B
a
Θ) = B

1/ℓc(
1
a )

Θc
= B

ℓc(a)
Θc

. �

3.3. Words of unitary operators. Composing any of the basic spatial isomor-
phisms Λa, Λψ, and Λ# introduced in Subsection 3.1 naturally leads one to consider
words in the corresponding unitary operators Ua, Uψ, and U# and their adjoints.
The following proposition lists many of the basic words that arise in our work.

Proposition 3.23. If Θ is an inner function, then

(i) UbUa = |1+ba|

1+ba
U a+b

1+ba

(ii) U∗
a = U−a

(iii) UϕUψ = Uψ◦ϕ

(iv) U∗
ϕ = Uϕ−1

(v) UψUb = UbUψ

(vi) U#Ua = UaU#

(vii) U#Uψ = Uψ#U#

Proof of (i) and (ii). To obtain (i), we employ the identity

1−

∣∣∣∣
a+ b

1 + ba

∣∣∣∣
2

=
(1− |a|2)(1− |b|2)

|1 + ba|2
,

from which it follows that

UbUaf = Ub

(√
1− |a|2

1− aΘ
f

)

=

√
1− |b|2

1− bΘa

√
1− |a|2

1− aΘ
f

=

√
1− |b|2

1− b( Θ−a
1−aΘ )

√
1− |a|2

1− aΘ
f

=

√
1− |a|2

√
1− |b|2

1− aΘ− bΘ+ ab
f

=

√
1− |b|2

√
1− |a|2

1 + ba
·

f

1− a+b
1+ba

Θ

=

√
1− |b|2

√
1− |a|2√

1−
∣∣∣ a+b
1+ba

∣∣∣
2

·

√
1−

∣∣∣ a+b
1+ba

∣∣∣
2

1 + ba
·

1

1− a+b
1+ba

Θ
f
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=
|1 + ba|

1 + ba
·

√
1−

∣∣∣ a+b
1+ba

∣∣∣
2

1− a+b
1+ba

Θ
f

=
|1 + ba|

1 + ba
U a+b

1+ba
f.

Statement (ii) follows immediately from (i) and the definition (2.12) of the Crofoot
transform Ua. �

Proof of (iii) and (iv). For (iii), simply note that

UϕUψf = Uϕ
√
ψ′(f ◦ ψ)

=
√
ϕ′
√
ψ′(ϕ)f(ψ(ϕ))

=
√
(ψ ◦ ϕ)′f ◦ (ψ ◦ ϕ)

= Uψ◦ϕf.

Statement (iv) is an immediate consequence of (iii). �

Proof of (v). This is a straightforward computation:

UψUbf = Uψ

(√
1− |b|2

1− bΘ
f

)

=
√
ψ′

√
1− |b|2

1− b(Θ ◦ ψ)
(f ◦ ψ)

= UbUψf. �

Proof of (vi). Regarding z as an element of the unit circle, we use (3.4) to obtain

U#Uaf = U#

(√
1− |a|2

1− aΘ
f

)

=

√
1− |a|2

1− aΘ(z)
zf(z)(Θa)

#

=

√
1− |a|2

1− aΘ(z)
zf(z)

Θ(z)− a

1− aΘ(z)

=

√
1− |a|2

1− aΘ(z)
zf(z)

Θ#(z)(1 − aΘ(z))

1− aΘ#(z)

=

√
1− |a|2

1− aΘ#
zf(z)Θ#

= UaU#f. �

Proof of (vii). We first note that for any disk automorphism

ψ(z) = ζ
z − c

1− cz
, (ζ ∈ ∂D, c ∈ D)

a simple computation shows that

√
ψ′(z)z =

√
(ψ#)′ψ(z), z ∈ ∂D. (3.24)



12 STEPHAN RAMON GARCIA, WILLIAM T. ROSS, AND W.R. WOGEN

Using (3.4) we conclude that

U#Uψf = U#

√
ψ′(f ◦ ψ)

=
√
ψ′(z)(f ◦ ψ)(z)z(Θ ◦ ψ)#

=
√
ψ′(z)(f ◦ ψ)(z)zΘ(ψ)

=
√
(ψ#)′ψ(z)f(ψ(z))zΘ(ψ) (by (3.24))

=
√
(ψ#)′ψ#(z)f(ψ#(z))Θ# ◦ ψ#

= Uψ#(zf(z)Θ#)

= Uψ#U#f. �

Maintaining the notation (3.1), (3.3), and (3.6) established in Subsection 3.1, we
see that Proposition 3.23 has the following immediate corollary.

Corollary 3.25.

(i) ΛbΛa = Λ a+b
1+ba

(ii) Λ−1
a = Λ−a

(iii) ΛϕΛψ = Λψ◦ϕ

(iv) Λ−1
ϕ = Λϕ−1

(v) ΛψΛb = ΛbΛψ.

(vi) Λ#Λa = ΛaΛ#

(vii) Λ#Λψ = Λψ#Λ#

Consequently, any finite word in the Λ spatial isomorphisms as above can be
written as Λ = ΛaΛψ or Λ = ΛaΛ#Λψ, where we allow a = 0 and ψ(z) = z.

3.4. Spatial isomorphisms of TΘ spaces. In [4], Cima and the authors showed
that for two inner functions Θ1 and Θ2 the corresponding spaces TΘ1

and TΘ2
of

truncated Toeplitz operators are spatially isomorphic, i.e., TΘ1
∼= TΘ2

, if and only
if either

Θ1 = ϕ ◦Θ2 ◦ ψ or Θ1 = ϕ ◦ (Θ2)
# ◦ ψ

for some disk automorphisms ϕ and ψ. Informally speaking, the ψ will come from
applying the Λψ spatial isomorphism (3.3), the Θ# from applying Λ# (3.6), and ϕ
from applying Λa (3.1). We make this more precise with the following theorem.

Theorem 3.26. If Λ : TΘ1
→ TΘ2

is a spatial isomorphism, then Λ = ΛaΛψ or
Λ = ΛaΛ#Λψ, where we allow a = 0 and ψ(z) = z.

Proof. The proof of [4, Thm. 3.3] shows that there exists an inner function Θ and
a finite sequence Λ1,Λ2, . . . ,Λn of spatial isomorphisms from among the families
Λψ, Λ#, and Λa so that

(Λ1 · · ·Λs)Λ(Λs+1 · · ·Λn)

is the identity on TΘ. Now apply Corollary 3.25. �

3.5. A density detail. In the next section we will need the following density
result. We would like to thank Roman Bessonov for pointing this out to us.

Proposition 3.27. For any inner function u, the set {Auϕ : ϕ ∈ L∞} is weakly
dense in Tu.
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Proof. In [1] they define the space

Xu :=




∑

fjgj : fj, gj ∈ Ku,
∑

j

‖fj‖‖gj‖ <∞





with norm defined as the infimum of
∑

‖fj‖‖gj‖ over all possible representations
of the element of the form

∑
fjgj. Notice, by the Cauchy-Schwarz inequality, that∑

fjgj converges in L1 and so Xu ⊂ L1. In the same paper they show that the
dual of Xu can be isometrically identified with Tu via the pairing

(∑
fjgj , A

)
:=
∑

〈Afj , gj〉.

They go on further to show that the ultra-weak topology on Tu, given by the above
pairing, coincides with the weak topology on Tu.

So to show that {Auϕ : ϕ ∈ L∞} is weakly dense in Tu, we just need to show that
the pre-annihilator of this set is zero. To this end, suppose F =

∑
fjgj ∈ Xu with

(F,Aϕ) = 0 for all ϕ ∈ L∞. Using the fact that ϕ is bounded and the sum defining
F converges in L1 we see that

(F,Auϕ) =
∑

〈Auϕfj, gj〉 =
∑∫

ϕfigjdm =

∫
ϕ
∑

fjgjdm =

∫
ϕFdm

for all ϕ ∈ L∞. Since F ∈ L1, we conclude that F = 0 almost everywhere and so
the pre-annihilator of {Auϕ : ϕ ∈ L∞} is zero. �

Remark 3.28. It can be the case, for example when u is a one-component inner
function [1], that {Auϕ : ϕ ∈ L∞} = Tu, i.e., every bounded truncated Toeplitz
operator onKu has a bounded symbol. It can also be the case that {Auϕ : ϕ ∈ L∞} is
a proper subset of Tu [2]. In either case, Proposition 3.27 shows that {Auϕ : ϕ ∈ L∞}
is weakly dense in Tu.

4. Spatial isomorphisms of Sedlock algebras

For a fixed inner function Θ and a, a′ ∈ Ĉ, when is BaΘ ≃ Ba
′

Θ ? When a, a′ ∈ ∂D
it is possible to give a complete answer. For a positive measure µ on ∂D, let
κ(µ) = (ǫ, n) where 0 ≤ n ≤ ∞ is the number of atoms of µ and ǫ is 0 if µ is purely
atomic and 1 if µ has a (non-zero) continuous part. An old theorem of Halmos and
von Neumann [11, 21] asserts that L∞(µ) ∼= L∞(ν) (considered as multiplication
operators on L2(µ), respectively L2(ν)) if and only if κ(µ) = κ(ν).

Theorem 4.1. If Θ is an inner function, a, a′ ∈ ∂D, and µa, µa′ denote the corre-
sponding Clark measures, then

BaΘ
∼= Ba

′

Θ ⇔ κ(µa) = κ(µa′).

Proof. From our discussion in Remark 2.15 we have the spatial isomorphisms BaΘ
∼=

L∞(µa) and Ba
′

Θ
∼= L∞(µa′). Applying the Halmos-von Neumann theorem referred

to above yields the result. �

Corollary 4.2. If Θ is a finite Blaschke product, then BaΘ
∼= Ba

′

Θ whenever a, a′ ∈
∂D.

Proof. Let n denote the number of zeros of Θ, counted according to their multiplic-
ity. If a, a′ ∈ ∂D, then, from (2.4), the Clark measures µa and µa′ are both discrete
and each consists precisely of n atoms (see also [5, p. 207]). �
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For a finite Blaschke product Θ, the preceding corollary indicates that the Sed-
lock algebras BaΘ for a ∈ ∂D are all mutually spatially isomorphic. In other words,
spatial isomorphism induces an equivalence relation upon these algebras which
yields precisely one equivalence class. It is somewhat surprising, however, to learn
that there exists an inner function Θ for which the Sedlock algebras BaΘ for a ∈ ∂D
form precisely two equivalence classes.

Corollary 4.3. There exists an inner function Θ such that

(i) BaΘ
∼= Ba

′

Θ for all a, a′ ∈ ∂D \ {1},

(ii) B1
Θ 6∼= BaΘ for all a ∈ ∂D \ {1}.

Proof. This is a simple consequence of Theorem 4.1 and the fact that there exists
an inner function Θ such that µ1 is discrete but µa is continuous singular for every
a ∈ ∂D \ {1} [13, 25]. �

Provided that a, a′ ∈ ∂D, Theorem 4.1 provides a complete characterization of
when two Sedlock algebras BaΘ and Ba

′

Θ are spatially isomorphic. In this setting,

a straightforward, measure-theoretic answer is to be expected since BaΘ and Ba
′

Θ

are both algebras of normal operators. On the other hand, if a, a′ ∈ D then the
situation turns out to be quite different.

Theorem 4.4. If Θ is an inner function and a, a′ ∈ D, then BaΘ
∼= Ba

′

Θ if and only
if there is a unimodular constant ζ and a disk automorphism ψ such that

Θ = b−a(ζba′) ◦Θ ◦ ψ,

where bc, for c ∈ D, denotes the disk automorphism (2.11).

Proof. (⇐) We first require the following two elementary identities:

ba ◦ bc =
(

1+ac
1+ac

)
b a+c

1+ac
, a, c ∈ D, (4.5)

ba(ζz) = ζbaζ(z), a ∈ D, ζ ∈ ∂D. (4.6)

If Θ = b−a(ζba′) ◦Θ ◦ ψ, then Θa = ζΘa′ ◦ ψ whence

KΘa = KζΘa′◦ψ = KΘa′◦ψ .

By Proposition 3.9 the unitary operator

Uψ : KΘa′ → KΘa′◦ψ = KΘa , Uf :=
√
ψ′(f ◦ ψ)

induces a spatial isomorphism between B0
Θa

and B0
Θa′

. In light of (2.14) we have

B0
Θa

∼= BaΘ and B0
Θa′

∼= Ba
′

Θ from which we conclude that BaΘ
∼= Ba

′

Θ .

(⇒) Conversely suppose that BaΘ
∼= Ba

′

Θ . Appealing to (2.14) once more we see
that B0

Θa
∼= B0

Θa′
. Thus there exists a unitary operator U : KΘa → KΘa′ such that

Λ(B0
Θa

) = B0
Θa′

, where Λ(A) = UAU∗. Taking conjugates and using the fact that

(B0
Θa

)∗ = B∞
Θa

we obtain Λ(B∞
Θa

) = B∞
Θa′

. In particular, this implies that

Λ(B0
Θa + B∞

Θa) = B0
Θa′

+ B∞
Θa′

. (4.7)

We now remark that for any inner function u, the weak closure of B0
u + B∞

u

contains {Auϕ : ϕ ∈ L∞}. Indeed, it is clear from the definitions of B0
u and B∞

u that

B0
u + B∞

u = {Auϕ : ϕ ∈ H∞ +H∞}.



SPATIAL ISOMORPHISMS OF ALGEBRAS OF TRUNCATED TOEPLITZ OPERATORS 15

By approximating ϕ ∈ L∞ weak-∗ by its Cesaro means [22, p. 20], we see that L∞

equals the weak-∗ closure of H∞ +H∞. Therefore the weak closure of B0
u + B∞

u

contains {Auϕ : ϕ ∈ L∞} which is dense in Tu (Proposition 3.27). Based upon the
discussion in the previous paragraph and (4.7), we conclude that

Λ(TΘa) = TΘa′ .

Theorem 3.26 now implies that Λ is a product of at most three spatial isomor-
phisms from the families Λa,Λ#,Λϕ such that no two are of the same type. Next
observe that

(i) From (3.2) we see that Λψ preserves analytic truncated Toeplitz operators,

(ii) From (3.5) we see that Λ# takes analytic truncated Toeplitz operators to
co-analytic ones,

(iii) The Crofoot transforms Λa preserve neither analytic nor co-analytic trun-
cated Toeplitz operators.

Since Λ(B0
Θa

) = B0
Θa′

, it follows that Λ = Λψ. Thus

B0
Θa′

= Λ(B0
Θa) = B0

ζΘa◦ψ.

Note that we must allow for the possibility of a unimodular constant ζ since the
corresponding Sedlock algebra does not change. Thus Θa′ = ζΘa◦ψ, as claimed. �

Using Theorem 4.4 along with (3.8) yields the following corollary.

Corollary 4.8. If Θ is an inner function and a, a′ ∈ Ĉ\D−, then BaΘ
∼= Ba

′

Θ if and
only if there is a unimodular constant ζ and a disk automorphism ψ such that

Θ# = b−1/a(ζb1/a′) ◦Θ
# ◦ ψ. (4.9)

If a ∈ D and a′ ∈ Ĉ \ D−, (4.9) is replaced by

Θ = b−a(ζb1/a′) ◦Θ
# ◦ ψ.

Remark 4.10. We have examined when BaΘ
∼= Ba

′

Θ in the case a, a′ ∈ ∂D (Theorem

4.1), the case a, a′ ∈ D (Theorem 4.4), the case a, a′ ∈ Ĉ \ D−, and the case

a ∈ D, a′ ∈ Ĉ \D− (Corollary 4.8). The reader might be wondering when BaΘ
∼= Ba

′

Θ

in the case where a ∈ ∂D, a′ ∈ Ĉ \ ∂D. Recall from Remark 2.15 that when a ∈ ∂D,

BaΘ is an algebra of normal operators while Ba
′

Θ , for a ∈ Ĉ \ ∂D, contains no normal
operators (other than scalar multiplies of the identity). So in this situation, BaΘ,

a ∈ ∂D, is never spatially isomorphic to Ba
′

Θ , a′ ∈ Ĉ \ ∂D.

Corollary 4.8 says that when a = 0 and a′ = ∞ we have B0
Θ
∼= B∞

Θ if and only if
Θ = ζΘ#(ψ). We now describe a situation when this occurs.

Corollary 4.11. Suppose Θ is a Blaschke product whose zeros all have the same
argument. Then B0

Θ
∼= B∞

Θ .

Proof. Since the zeros of Θ have the same argument, there is a unimodular v so
that the zeros of Θ(vz) are real. This means that the Blaschke products Θ(vz)
and Θ#(vz) have the same zeros and so Θ(vz) = ζΘ#(vz) for some unimodular ζ.
Thus Θ(z) = ζΘ#(v2z). The result now follows from Corollary 4.8. �
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4.1. Toeplitz matrices. For specific inner functions Θ, one can obtain more pre-
cise results. For instance, if Θ = zn we can prove the following.

Corollary 4.12. For a ∈ D and n ≥ 2, we have Bazn
∼= Ba

′

zn if and only if |a| = |a′|.

Proof. The implication (⇐) follows immediately from the identity

zn = b−a(ζbζa) ◦ z
n ◦ (ζ1/nz).

and Theorem 4.4. For the (⇒) implication, we start with the following two facts.

Fact 1: If ϕ and ψ are disk automorphisms which satisfy

ϕ ◦ zn = zn ◦ ψ, (4.13)

then ϕ and ψ are both rotations. To see this, observe that if ψ(c) = 0, then taking
the derivative of (4.13) and evaluating at c yields

0 = nψ(c)n−1ψ′(c) = ϕ′(cn)ncn−1

whence c = 0, implying that ψ is a rotation. Evaluating both sides of (4.13) at
c = 0 reveals that ϕ is also a rotation.

Fact 2: If a, c ∈ D and ba ◦ bc is a rotation, then a = −c. To see this use (4.5).

With these two facts in hand, we are ready to complete the proof. Suppose that
a, a′ ∈ D and BaΘ

∼= Ba
′

Θ . By Theorem 4.4 and Fact 1, there exist unimodular u,w
such that

B(z) = b−a ◦ wba′ ◦B(uz),

where B(z) = zn. Now use the fact that B(uz) = unB(z) along with (4.13) to see
that

B = b−a ◦ wu
nba′un ◦B = wunb−awun ◦ ba′un ◦B.

By Fact 1, the automorphism pre-composing B is a rotation. Fact 2 now implies
that awun = a′un and hence a′ = aw. In particular, this implies that |a| = |a′|. �

Corollary 4.14. Suppose that a, a′ ∈ C ∪ {∞}.

(i) If a, a′ ∈ D, then Bazn
∼= Ba

′

zn ⇔ |a| = |a′|.

(ii) If a, a′ ∈ Ĉ \ D−, then Bazn
∼= Ba

′

zn ⇔ |a| = |a′|.

(iii) If 0 < |a| < 1 and |a′| > 1, then Bazn
∼= Ba

′

zn ⇔ |aa′| = 1.

(iv) If a, a′ ∈ ∂D, then Bazn
∼= Ba

′

zn.

(v) B0
zn

∼= B∞
zn.

Proof. Use the previous several results along with (3.8). �

4.2. The atomic inner function. The opposite extreme to Corollary 4.12 occurs
with the singular atomic inner function.

Theorem 4.15. If Θ denotes the atomic inner function

Θ(z) = exp

(
−
1 + z

1− z

)
, (4.16)

then, for a, a′ ∈ D, we have BaΘ
∼= Ba

′

Θ ⇔ a = a′.
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Proof. We first note that if |ζ| = 1, then by (4.5) and (4.6) we get

b−a(ζba′)(z) =
ζ − aa′

1− aa′ζ




z − ( ζa
′−a

ζ−aa′
)

1− ( a
′−aζ

1−aa′ζ )z


 . (4.17)

If BaΘ
∼= Ba

′

Θ , then by Theorem 4.4 there exists a ζ ∈ ∂D and an automorphism ψ
such that

Θ = b−a(ζba′) ◦Θ ◦ ψ. (4.18)

We will first argue that a = ζa′. If this were not the case, then by (4.17) the map
b−a(ζba′) ◦ Θ ◦ ψ will have a zero in D (since Θ ◦ ψ maps D onto D \ {0}) which
cannot happen by (4.18) and because Θ has no zeros in D.

Having shown that a = ζa′, we now claim that ζ = 1. To do this we observe by
using (4.17) and (4.18) again that Θ = ζ(Θ ◦ ψ). Writing

ψ(z) = λ
z − a

1− az

we find
Θ(z)

Θ(ψ(z))
= exp

(
−
1 + z

1− z
+

1 + ψ(z)

1− ψ(z)

)
.

A little algebra reveals that

−
1 + z

1− z
+

1 + ψ(z)

1− ψ(z)
= 2

(
z2a+ z(λ− 1)− aλ

(z − 1)(z(λ+ a)− aλ− 1)

)
,

which is constant precisely when a = 0 and λ = 1. In other words, ψ(z) = z and
ζ = 1, from which we conclude that a = a′. �

Using Theorem 4.1, and Remarks 2.3 and 2.9 we get the following.

Corollary 4.19. If Θ is the atomic inner function (4.16), then BaΘ
∼= Ba

′

Θ whenever
a, a′ ∈ ∂D.

From the proof of Theorem 4.15 we see the following.

Corollary 4.20. If Θ is any singular inner function and a, a′ ∈ D, then BaΘ
∼=

Ba
′

Θ ⇒ |a| = |a′|.

This next group of results shows that when there is some sort of symmetry in the
inner function Θ, we can have spatially isomorphic Sedlock algebras. We will make
this more precise in Theorem 4.23 below. For now we begin with a few examples.

Proposition 4.21. Suppose that Θ is inner such that there is a u ∈ ∂D \ {1} with
Θ(uz) = vΘ(z) for some v ∈ ∂D \ {1}. Then for any a ∈ D, BaΘ

∼= BavΘ .

Proof. With ϕ(z) = vz and ψ(z) = uv, a simple computation shows that Θ =
ϕ ◦Θ ◦ ψ. Using (4.6) we see that ϕ(z) = b−a(vbav). Now use Theorem 4.4. �

Proposition 4.21 will be generalized in Lemma 4.24 below.

Example 4.22. (i) If Θ is any odd inner function, then BaΘ
∼= B−a

Θ for any
a ∈ D. One can see this by letting u = v = −1 in Proposition 4.21.
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(ii) Fix z0 ∈ D \ {0} and n ∈ N. Let

Θ(z) = zba1(z)ba2(z) · · · ban(z),

where a1, a2, . . . , an are the n-th roots of z0. If u is a primitive root of
unity one can check that

Θ(ukz) = ukΘ(z) (1 ≤ k ≤ n− 1)

and so for any a ∈ D we have BaΘ
∼= Bau

k

Θ .

(iii) Let Θ(z) = zSµ(z), where Sµ is the singular inner function with singular
measure µ = δ1+δ−1+δi+δ−i. A computation shows that Sµ(iz) = Sµ(z)
and so Θ(iz) = iΘ(z). This with u = v = i in Proposition 4.21 we see
that BaΘ

∼= B−ia
Θ for any a ∈ D. One can continue this as follows: If u is a

primitive nth root of unity and µ has unit point masses at uk, k = 1, . . . , n,
then Sµ(u

kz) = Sµ(z). From here we have Θ(uz) = uΘ(z). Then for each

a ∈ D, BaΘ
∼= Bu

k

Θ for k = 1, 2, . . . , n.

We have seen examples where BaΘ
∼= Ba

′

Θ with a 6= a′ and some examples where

BaΘ
∼= Ba

′

Θ implies a = a′. What are conditions on Θ so that BaΘ
∼= Ba

′

Θ always
implies a = a′?

Theorem 4.23. For an inner function Θ, the following are equivalent.

(i) If a, a′ ∈ Ĉ \ ∂D and BaΘ
∼= Ba

′

Θ , then a = a′.

(ii) If ϕ, ψ are disk automorphisms with either ϕ◦Θ = Θ◦ψ or ϕ◦Θ = Θ# ◦ψ
then ϕ(z) = z.

The proof of Theorem 4.23 requires the following technical lemma.

Lemma 4.24. Let ψ be a disk automorphism. Then for each a ∈ D, there is a
ζ ∈ ∂D and a′ ∈ D so that ψ = b−a(ζba′).

Proof. Let

ψ(z) = λbc. (λ ∈ ∂D, c ∈ D)

Note, for a, a′ ∈ D and ζ ∈ ∂D, that

b−a(ζba′) = λbc ⇔ ba(λbc) = ζba′ .

From (4.17) we see that

ζ = λ
1 + aλc

1 + aλc
, a′ =

aλ+ c

1 + caλ
. (4.25)

This completes the proof. �

Proof of Theorem 4.23. Without loss of generality, we will assume that a, a′ ∈ D.
Assume (ii) and suppose that BaΘ

∼= Ba
′

Θ . By Theorem 4.4 we know there is a ζ ∈ ∂D
and a disk automorphism ψ so that

b−a(ζba′) ◦Θ = Θ ◦ ψ.

But by our assumption (ii) we see that b−a(ζba′) is the identity automorphism.
From (4.25) it follows that a = a′, which proves (i).

Conversely suppose that (i) holds and assume that ϕ, ψ are disk automorphisms
with ϕ ◦ Θ = Θ ◦ ψ. Our goal is to show that ϕ(z) = z. In Lemma 4.24 choose
a = 0 to produce ζ ∈ ∂D and a′ ∈ D so that ϕ = b−0(ζba′). By Theorem 4.4 we
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have B0
Θ
∼= Ba

′

Θ and so, by our assumption (i), it must be the case that a′ = 0. Thus
ϕ(z) = ζz. We will now show that ζ = 1.

Choose a 6= 0 and argue from above that ϕ = b−a(ζaba) for some ζa ∈ ∂D. But
from (4.25) we have

b−a(ζaba) = µbd,

where

µ =
ζa − |a|2

1− |a|2ζa
, d =

ζaa− a

ζa − |a|2
.

But ϕ(z) = ζz and so d = 0 (which implies ζa = 1 and µ = 1) and µ = ζ. Thus
ζ = 1. This proves (ii). Our proof is now complete. �

Theorem 4.23 has an interesting corollary.

Corollary 4.26. Suppose a, a′ ∈ Ĉ \ ∂D with a 6= a′, and BaΘ
∼= Ba

′

Θ .

(i) If a, a′ ∈ D, then there is a non-trivial automorphism ψ of Ĉ mapping D

to itself so that BcΘ
∼= B

ψ(c)
Θ for every c ∈ D.

(ii) If a, a′ ∈ Ĉ\D−, then there is a non-trivial automorphism ψ of Ĉ mapping

Ĉ \ D− to itself so that BcΘ
∼= B

ψ(c)
Θ for every c ∈ Ĉ \ D−.

(iii) If a ∈ D, a′ ∈ Ĉ \ D−, then there is an automorphism ψ of Ĉ mapping D

to Ĉ \ D− so that BcΘ
∼= B

ψ(c)
Θ for every c ∈ D.

Proof. Proof of (i): From (4.25) we see that

b−a(ζba′) = µbd,

where

µ =
ζ − aa′

1− aa′ζ
, d =

ζa′ − a

ζ − aa′
.

From Lemma 4.24 we know that for each c ∈ D, there is a w ∈ ∂D and a c′ ∈ D so
that

b−a(ζba′) = b−c(wbc′).

By Theorem 4.4 (applied to BaΘ
∼= Ba

′

Θ and BcΘ
∼= Bc

′

Θ) we conclude that BcΘ
∼= Bc

′

Θ .
Note, from (4.25) that

c′ =
c+ µd

µ+ cd
.

If we define

ψ(c) = µ
c+ dµ

1 + cµd

then ψ is a disk automorphism with the desired properties.

Proof of (ii): By Corollary 4.8, there is a (non-trivial) disk automorphism ψ so

that BcΘ#
∼= B

ψ(c)

Θ# for c ∈ D. By Proposition 3.7 we have B
1/c
Θ

∼= B
1/ψ(c)
Θ .

Proof (iii): By By Corollary 4.8, there is a (non-trivial) disk automorphism ψ so

that BcΘ
∼= B

ψ(c)

Θ# . Now apply Proposition 3.7 to get B
ψ(c)

Θ#
∼= B

1/ψ(c)
Θ . �

Example 4.27. From Corollary 4.11 we know that if Θ is a Blaschke product
whose zeros all have the same argument then B0

Θ
∼= B∞

Θ . From the techniques in

the proof of Corollary 4.26 we see that there is a ζ ∈ ∂D such that BcΘ
∼= B

ζ/c
Θ for

every c ∈ D.
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The proof of Theorem 4.4 can be easily modified to prove the following.

Theorem 4.28. Suppose Θ1,Θ2 are inner functions and a1, a2 ∈ D. Then

Ba1Θ1

∼= Ba2Θ2

if and only if there is a unimodular constant ζ and a disk automorphism ψ such
that

Θ1 = b−a1(ζba2) ◦Θ2 ◦ ψ. (4.29)

If a1, a2 ∈ Ĉ \ D−, then condition (4.29) is replaced by

Θ#
1 = b−1/a1(ζb1/a2) ◦ (Θ2)

# ◦ ψ.

If a1 ∈ D while a2 ∈ Ĉ \ D− is in the exterior disk, then the condition (4.29) is
replaced by

Θ1 = b−a1(ζb1/a2) ◦ (Θ2)
# ◦ ψ.

Remark 4.30. It is worth mentioning again (see Remark 4.10) that Ba1Θ1
, a1 ∈ ∂D,

is never spatially isomorphic to Ba2Θ2
, a2 ∈ Ĉ \ ∂D.

5. Isometric isomorphisms and Pick algebras

To conclude this paper, we consider the closely related question of whether or not
isometric isomorphisms of Sedlock algebras are necessarily spatially implemented.
To be more specific, suppose, for two inner functions Θ1 and Θ2 and extended

complex numbers a1, a2 ∈ Ĉ, that Ba1Θ1
is isometrically isomorphic to Ba2Θ2

. Is it
necessarily the case that Ba1Θ1

is spatially isomorphic to Ba2Θ2
? In certain cases, the

answer is yes.

Theorem 5.1. If Θ1 and Θ2 are finite Blaschke products with n distinct zeros and

a1, a2 ∈ Ĉ, then the algebras Ba1Θ1
and Ba2Θ2

are isometrically isomorphic if and only
if they are spatially isomorphic.

The proof of Theorem 5.1 requires a few preliminaries. Fix n distinct points
z1, z2, . . . , zn in D and consider the following inner product on Cn: For vectors

u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn),

in Cn define

(u,v)z :=
n∑

j,k=1

ujvk
1− zjzk

, (5.2)

where z = (z1, z2, . . . , zn). To emphasize the fact that Cn has been endowed with
this inner product, we use the notation Cn

z
.

For a fixed vector w = (w1, w2, . . . , wn) we define the corresponding diagonal
operator Rw : Cn

z
→ Cn

z
by setting, for u = (u1, u2, . . . , un),

Rw(u) = (u1w1, u2w2, . . . , unwn).

Among other things, it is clear that

Rw1
Rw2

= Rw1•w2

where w1 •w2 denotes the entrywise product of w1 and w2. This implies that the
set

Uz := {Rw : w ∈ C
n}

forms an algebra of operators on Cn
z
. This algebra, studied by B. Cole, K. Lewis,

and J. Wermer [9, 10], is called the Pick algebra.
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Lemma 5.3. If Θ is a n-fold Blaschke product with distinct zeros z = (z1, z2, . . . , zn),
then B∞

Θ
∼= Uz.

Proof. It is well-known that the reproducing kernels

kzj (z) :=
1

1− zjz
, (1 ≤ j ≤ n)

from (1.1) form a (non-orthogonal) basis for the model space KΘ. Define the unitary
operator U : KΘ → Cn

z
by setting

U




n∑

j=1

ajkzj


 = (a1, a2, . . . , an).

The fact that U is unitary comes from the fact that Cn
z
is equipped with the inner

product in (5.2). Since

Aϕkzj = ϕ(zj)kzj

holds for ϕ in H∞, we have

UAϕ




n∑

j=1

ajkzj


 = (ϕ(z1)a1, ϕ(z2)a2, . . . , ϕ(zn)an)

= Rw(a1, a2, . . . , an)

= RwU




n∑

j=1

ajkzj


 ,

where w = (ϕ(z1), ϕ(z2), . . . , ϕ(zn)). Now use interpolation to show that

UB∞
Θ U

∗ = Uz.

Hence B∞
Θ

∼= Uz. �

The proof of Theorem 5.1 requires one more little detail. For fixed a ∈ D,
let w1, w2, . . . , wn be distinct points in D which satisfy Θ(wj) = a. As Sedlock
demonstrated, the operators

Qj :=
1

Θ′(wj)
Ckwj ⊗ kwj , (j = 1, 2, . . . , n)

belong to BaΘ. Moreover, it is not hard to show that the Qj are idempotents which
form a non-orthogonal resolution of the identity:

Q2
j = Qj,

n∑

j=1

Qj = I, QjQl = δj,lQj , TΘ =

n∨

j=1

{Qj , Q
∗
j}.

Since Q∗
j ∈ B

1/a
Θ we see that

BaΘ =

n∨

j=1

{Qj}.

Furthermore, since each Qj is a non-selfadjoint idempotent we also have

‖Qj‖ > 1. (j = 1, . . . , n)
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The setup for the case a ∈ ∂D is handled in a similar manner. Indeed, if a ∈ ∂D,
let ζ1, ζ2, . . . , ζn be the distinct (necessarily unimodular) solutions to the equation
Θ(ζj) = a. As before, Sedlock shows that the orthogonal projections

Pj =
1√

Θ′(ζj)
kζj ⊗ kζj , (j = 1, 2, . . . , n)

belong to BaΘ. Moreover, we also observe that the Pj form a resolution of the
identity

P 2
j = Pj ,

n∑

j=1

Pj = I, PjPl = δj,lPj , TΘ =

n∨

j=1

{Pj , P
∗
j },

and that

BaΘ =
n∨

j=1

{Pj}.

Furthermore, each Pj is an orthogonal projection whence ‖Pj‖ = 1.
We are now ready to finish off the proof of Theorem 5.1.

Proof of Theorem 5.1. : For a finite Blaschke product Θ with distinct zeros and
a ∈ D we have

BaΘ
∼= B0

Θa (by (2.14))

∼= B∞
(Θa)#

(by (3.8))

∼= Uz (by Proposition 5.3)

where z is the vector of distinct zeros of (Θa)
#. For a ∈ Ĉ \ D−,

BaΘ
∼= B

1/a

Θ# (by (3.8))

∼= B0
(Θ#)1/a

(by (2.14))

∼= B∞
((Θ#)1/a)#

(by (3.8))

∼= Uz, (by Proposition 5.3)

where z is the vector of distinct zeros of ((Θ#)1/a)
#.

Now suppose that a1, a2 ∈ Ĉ \ ∂D with Ba1Θ1
and Ba2Θ2

isometrically isomorphic.
Then, by the computation above, their corresponding Pick algebras are isometri-
cally isomorphic. However, two Pick algebras are isometrically isomorphic if and
only if they are spatially isomorphic [10], whence, by the above computations,
Ba1Θ1

∼= Ba2Θ2
.

If a1, a2 ∈ ∂D, then, by Corollary 4.2, Ba1Θ1

∼= Ba2Θ2
and so there is nothing to

prove.

If a1 ∈ ∂D and a2 ∈ Ĉ\∂D we see, using the above discussion, that any isometric
isomorphism will map Qj to Pσ(j), for some permutation σ of {1, 2, . . . , n}. But
since ‖Pσ(j)‖ = 1 and ‖Qj‖ > 1, we see that this case never arises. The proof is
now complete. �

An interesting application to this theorem is the following Corollary.

Corollary 5.4. Suppose that Θ1 and Θ2 are finite Blaschke products with n distinct
zeros. Then the quotient algebras H∞/Θ1H

∞ and H∞/Θ2H
∞ are isometrically
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isomorphic if and only if there is a unimodular constant ζ and a disk automorphism
ψ so that Θ1 = ζΘ2 ◦ ψ.

Proof. By means of extremal problems [18] or Hankel operators [3] one can show,
for any inner function Θ and ϕ ∈ H∞, that

‖Aϕ‖ = dist(ϕ/Θ, H∞).

This means that B0
Θ is isometrically isomorphic to H∞/ΘH∞. The corollary now

follows from Theorem 5.1 and Theorem 4.28 . �
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