Claremont Colleges Scholarship @ Claremont

Pomona Faculty Publications and Research

Pomona Faculty Scholarship

1-1-2006

Intrinsic Linking and Knotting of Graphs in Arbitrary 3—manifolds

Erica Flapan Pomona College

Hugh Howards

Don Lawrence

Blake Mellor

Loyola Marymount University

Recommended Citation

 $E.\ Flapan,\ H.\ Howards,\ D.\ Lawrence,\ B.\ Mellor,\ Intrinsic\ Linking\ and\ Knotting\ in\ Arbitrary\ 3-Manifolds,\ Algebraic\ and\ Geometric\ Topology,\ Vol.\ 6, (2006)\ 1025-1035.\ doi:\ 10.2140/agt.2006.6.1025$

This Article is brought to you for free and open access by the Pomona Faculty Scholarship @ Claremont. It has been accepted for inclusion in Pomona Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

Intrinsic linking and knotting of graphs in arbitrary 3-manifolds

ERICA FLAPAN HUGH HOWARDS DON LAWRENCE BLAKE MELLOR

We prove that a graph is intrinsically linked in an arbitrary 3-manifold M if and only if it is intrinsically linked in S^3 . Also, assuming the Poincaré Conjecture, we prove that a graph is intrinsically knotted in M if and only if it is intrinsically knotted in S^3 .

05C10, 57M25

1 Introduction

The study of intrinsic linking and knotting began in 1983 when Conway and Gordon [1] showed that every embedding of K_6 (the complete graph on six vertices) in S^3 contains a non-trivial link, and every embedding of K_7 in S^3 contains a non-trivial knot. Since the existence of such a non-trivial link or knot depends only on the graph and not on the particular embedding of the graph in S^3 , we say that K_6 is *intrinsically linked* and K_7 is *intrinsically knotted*.

At roughly the same time as Conway and Gordon's result, Sachs [12; 11] independently proved that K_6 and $K_{3,3,1}$ are intrinsically linked, and used these two results to prove that any graph with a minor in the *Petersen family* (Figure 1) is intrinsically linked. Conversely, Sachs conjectured that any graph which is intrinsically linked contains a minor in the Petersen family. In 1995, Robertson, Seymour and Thomas [10] proved Sachs' conjecture, and thus completely classified intrinsically linked graphs.

Examples of intrinsically knotted graphs other than K_7 are now known, see Foisy [2], Kohara and Suzuki [3] and Shimabara [13]. Furthermore, a result of Robertson and Seymour [9] implies that there are only finitely many intrinsically knotted graphs that are minor-minimal with respect to intrinsic knottedness. However, as of yet, intrinsically knotted graphs have not been classified.

Published: 9 August 2006 DOI: 10.2140/agt.2006.6.1025

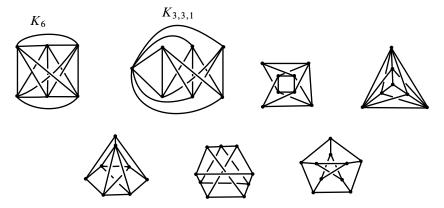


Figure 1: The Petersen family of graphs

In this paper we consider the properties of intrinsic linking and knotting in *arbitrary* 3-manifolds. We show that these properties are truly *intrinsic* to a graph in the sense that they do not depend on either the ambient 3-manifold or the particular embedding of the graph in the 3-manifold. Our proof in the case of intrinsic knotting assumes the Poincaré Conjecture.

We will use the following terminology. By a *graph* we shall mean a finite graph, possibly with loops and repeated edges. Manifolds may have boundary and do not have to be compact. All spaces are piecewise linear; in particular, we assume that the image of an *embedding* of a graph in a 3-manifold is a piecewise linear subset of the 3-manifold. An embedding of a graph G in a 3-manifold M is *unknotted* if every circuit in G bounds a disk in M; otherwise, the embedding is *knotted*. An embedding of a graph G in a 3-manifold M is *unlinked* if it is unknotted and every pair of disjoint circuits in G bounds disjoint disks in M; otherwise, the embedding is *linked*. A graph is *intrinsically linked* in M if every embedding of the graph in M is linked; and a graph is *intrinsically knotted* in M if every embedding of the graph in M is knotted. (So by definition an intrinsically knotted graph must be intrinsically linked, but not vice-versa.)

The main results of this paper are that a graph is intrinsically linked in an arbitrary 3-manifold if and only if it is intrinsically linked in S^3 (Theorem 1); and (assuming the Poincaré Conjecture) that a graph is intrinsically knotted in an arbitrary 3-manifold if and only if it is intrinsically knotted in S^3 (Theorem 2). We use Robertson, Seymour, and Thomas' classification of intrinsically linked graphs in S^3 for our proof of Theorem 1. However, because there is no analogous classification of intrinsically knotted graphs in S^3 , we need to take a different approach to prove Theorem 2. In particular, the proof of Theorem 2 uses Proposition 2 (every compact subset of a simply connected 3-manifold is homeomorphic to a subset of S^3), whose proof in turn relies on the Poincaré

Conjecture. Our assumption of the Poincaré Conjecture seems reasonable, because Perelman [7; 8] has announced a proof of Thurston's Geometrization Conjecture, which implies the Poincaré Conjecture [4]. (See also Morgan and Tian [5].)

We would like to thank Waseda University, in Tokyo, for hosting the International Workshop on Knots and Links in a Spatial Graph, at which this paper was conceived. We also thank the Japan Society for the Promotion of Science for providing funding for the third author with a Grant-in-Aid for Scientific Research.

2 Intrinsically linked graphs

In this section, we prove that intrinsic linking is independent of the 3-manifold in which a graph is embedded. We begin by showing (Lemma 1) that any unlinked embedding of a graph G in a 3-manifold lifts to an unlinked embedding of G in the universal cover. In the universal cover, the linking number can be used to analyze intrinsic linking (Lemma 2), as in the proofs of Conway and Gordon [1] and Sachs [12; 11]. After we've shown that K_6 and $K_{3,3,1}$ are intrinsically linked in any 3-manifold (Proposition 1), we use the classification of intrinsically linked graphs in S^3 , Robertson, Seymour, and Thomas [10], to conclude that any graph that is intrinsically linked in S^3 is intrinsically linked in every 3-manifold (Theorem 1).

We call a circuit of length 3 in a graph a triangle and a circuit of length 4 a square.

Lemma 1 Any unlinked embedding of a graph G in a 3-manifold M lifts to an unlinked embedding of G in the universal cover \widetilde{M} .

Proof Let $f: G \to M$ be an unlinked embedding. $\pi_1(G)$ is generated by the circuits of G (attached to a basepoint). Since f(G) is unknotted, every cycle in f(G) bounds a disk in M. So $f_*(\pi_1(G))$ is trivial in $\pi_1(M)$.

Thus, an unlinked embedding of G into M lifts to an embedding of G in the universal cover \widetilde{M} . Since the embedding into M is unlinked, cycles of G bound disks in M and pairs of disjoint cycles of G bound disjoint disks in M. All of these disks in M lift to disks in \widetilde{M} , so the embedding of the graph in \widetilde{M} is also unlinked.

Recall that if M is a 3-manifold with $H_1(M) = 0$, then disjoint oriented loops J and K in M have a well-defined linking number lk(J, K), which is the algebraic intersection number of J with any oriented surface bounded by K. Also, the linking number is symmetric: lk(J, K) = lk(K, J).

It will be convenient to have a notation for the linking number modulo 2: Define $\omega(J, K) = \text{lk}(J, K) \mod 2$. Notice that $\omega(J, K)$ is defined for a pair of *unoriented* loops. Since linking number is symmetric, so is $\omega(J, K)$. If J_1, \ldots, J_n are loops in an embedded graph such that in the list J_1, \ldots, J_n every edge appears an even number of times, and if K is another loop, disjoint from the J_i , then $\sum \omega(J_i, K) = 0 \mod 2$.

If G is a graph embedded in a simply connected 3-manifold, let

$$\omega(G) = \sum \omega(J, K) \bmod 2,$$

where the sum is taken over all *unordered* pairs (J, K) of disjoint circuits in G. Notice that if $\omega(G) \neq 0$, then the embedding is linked (but the converse is not true).

Lemma 2 Let \widetilde{M} be a simply connected 3-manifold, and let H be an embedding of K_6 or $K_{3,3,1}$ in \widetilde{M} . Let e be an edge of H, and let e' be an arc in \widetilde{M} with the same endpoints as e, but otherwise disjoint from H. Let H' be the graph $(H-e) \cup e'$. Then $\omega(H') = \omega(H)$.

Proof Let $D = e \cup e'$.

First consider the case that H is an embedding of K_6 . We will count how many terms in the sum defining $\omega(H)$ change when e is replaced by e'. Let K_1 , K_2 , K_3 and K_4 be the four triangles in H disjoint from e (hence also disjoint from e' in H'), and for each i let J_i be the triangle complementary to K_i . The J_i all contain e. For each i, let $J_i' = (J_i - e) \cup e'$, and notice that

(1)
$$\omega(J_i', K_i) = \omega(J_i, K_i) + \omega(D, K_i) \bmod 2.$$

Because each edge appears twice in the list K_1, K_2, K_3, K_4 , we have $\omega(K_1, D) + \omega(K_2, D) + \omega(K_3, D) + \omega(K_4, D) = 0 \mod 2$. Thus, $\omega(K_i, D)$ is nonzero for an even number of i. It follows from Equation (1) that there are an even number of i such that $\omega(J_i', K_i) \neq \omega(J_i, K_i)$. Thus, $\sum_{i=1}^4 \omega(J_i', K_i) = \sum_{i=1}^4 \omega(J_i, K_i) \mod 2$, and

$$\omega(H') = \sum_{\substack{J,K \subseteq H' \\ \ni e' \notin J,K}} \omega(J,K) + \sum_{i=1}^{4} \omega(J'_i,K_i) \bmod 2$$

$$= \sum_{\substack{J,K \subseteq H \\ \ni e \notin J,K}} \omega(J,K) + \sum_{i=1}^{4} \omega(J_i,K_i) \bmod 2$$

$$= \omega(H)$$

Next consider the case that H is an embedding of $K_{3,3,1}$. Let x be the vertex of valence six in H (and in H').

Case 1 e contains x. Then e is not in any square in H that has a complementary disjoint triangle. Let K_1 , K_2 and K_3 be the three squares in H disjoint from e, and let J_1 , J_2 and J_3 be the corresponding complementary triangles, all of which contain e. As in the K_6 case, let $J_i' = (J_i - e) \cup e'$ for each i; again we have Equation (1). Every edge in the list K_1 , K_2 , K_3 appears exactly twice, so $\omega(K_1, D) + \omega(K_2, D) + \omega(K_3, D) = 0 \mod 2$. Thus, $\omega(K_i, D)$ is nonzero for an even number of i; and for an even number of i, $\omega(J_i', K_i) \neq \omega(J_i, K_i)$. The other pairs of circuits contributing to $\omega(H)$ do not involve e. As in the K_6 case, it follows that $\omega(H') = \omega(H)$.

Case 2 e doesn't contain x. Let J_0 be the triangle containing e, and let K_0 be the complementary square. Let J_1 through J_4 be the four squares that contain e, but not x (so that they have complementary triangles); and let K_1 through K_4 be the complementary triangles. With J_i' defined as in the other cases, we again have Equation (1). Every edge appears an even number of times in the list K_0 , K_1 , K_2 , K_3 , K_4 , so $\sum_{i=0}^4 \omega(K_i, D) = 0 \mod 2$, and $\omega(K_i, D) \neq 0$ for an even number of i. As in the other cases, it follows that for an even number of i, $\omega(J_i', K_i) \neq \omega(J_i, K_i)$; and an even number of the terms in the sum defining $\omega(H)$ change when e is replaced by e'; and $\omega(H') = \omega(H)$.

Proposition 1 K_6 and $K_{3,3,1}$ are intrinsically linked in any 3-manifold M.

Proof Let G be either K_6 or $K_{3,3,1}$, and let $f: G \to M$ be an embedding. Suppose for the sake of contradiction that f(G) is unlinked. Let \widetilde{M} be the universal cover of M. By Lemma 1, f lifts to an unlinked embedding $\widetilde{f}: G \to \widetilde{M}$.

Let $\widetilde{G}=\widetilde{f}(G)\subseteq\widetilde{M}$, and let \widetilde{H} be a copy of G embedded in a ball in \widetilde{M} . Isotope \widetilde{G} so that \widetilde{H} and \widetilde{G} have the same vertices, but do not otherwise intersect. Then \widetilde{G} can be transformed into \widetilde{H} by changing one edge at a time – replace an edge of \widetilde{G} by the corresponding edge of \widetilde{H} , once for every edge. By repeated applications of Lemma 2, $\omega(\widetilde{G})=\omega(\widetilde{H})$. Since \widetilde{H} is inside a ball in \widetilde{M} , Conway and Gordon's proof [1], and Sachs' proof [12; 11], that K_6 and $K_{3,3,1}$ are intrinsically linked in S^3 , show that $\omega(\widetilde{H})=1$.

Thus, $\omega(\widetilde{G})=1$, and there must be disjoint circuits J and K in \widetilde{G} that do not bound disjoint disks in \widetilde{M} , contradicting that \widetilde{f} is an *unlinked* embedding. Thus, f(G) is linked in M.

Let G be a graph which contains a triangle Δ . Remove the three edges of Δ from G. Add three new edges, connecting the three vertices of Δ to a new vertex. The

resulting graph, G', is said to have been obtained from G by a " $\Delta - Y$ move" (Figure 2). The seven graphs that can be obtained from K_6 and $K_{3,3,1}$ by $\Delta - Y$ moves are the *Petersen family* of graphs (Figure 1).

If a graph G' can be obtained from a graph G by repeatedly deleting edges and isolated vertices of G, and/or contracting edges of G, then G' is a *minor* of G.

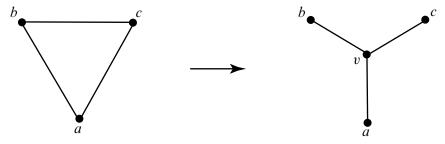


Figure 2: A $\Delta - Y$ Move

The following facts were first proved, in the S^3 case, by Motwani, Raghunathan and Saran [6]. Here we generalize the proofs to any 3-manifold M.

Fact 1 If a graph G is intrinsically linked in M, and G' is obtained from G by a $\Delta - Y$ move, then G' is intrinsically linked in M.

Proof Suppose to the contrary that G' has an unlinked embedding $f: G' \to M$. Let a, b, c and v be the embedded vertices of the Y illustrated in Figure 2. Let B denote a regular neighborhood of the embedded Y such that a, b and c are on the boundary of B, v is in the interior of B, and B is otherwise disjoint from f(G'). Now add edges ab, bc and ac in the boundary of B so that the resulting embedding of the K_4 with vertices a, b, c, and v is panelled in B (ie, every cycle bounds a disk in the complement of the graph). We now remove vertex v (and its incident edges) to get an embedding h of G such that if e is any edge of $G \cap G'$ then h(e) = f(e) and the triangle abc is in ∂B .

Observe that if K is any circuit in h(G) other than the triangle abc, then K is isotopic to a circuit in G'. The triangle abc bounds a disk in B, and since f(G') is unknotted, every circuit in f(G') bounds a disk in M. Thus h(G) is unknotted. Also if J and K are disjoint circuits in h(G) neither of which is abc, then $J \cup K$ is isotopic to a pair of disjoint circuits $J' \cup K'$ in f(G'). Since f(G') is unlinked, J' and K' bound disjoint disks in M. Hence J and K also bound disjoint disks in M. Finally if K is a circuit in h(G) which is disjoint from abc, then K is contained in f(G'). Since f(G') is unknotted, K bounds a disk K in K is represented in K.

can isotope D to a disk which is disjoint from B. Now abc and K bound disjoint disks in M. So h(G) is unlinked, contradicting the hypothesis that G is intrinsically linked in M. We conclude that G' is also intrinsically linked in M.

Fact 2 If a graph G has an unlinked embedding in M, then so does every minor of G.

Proof The proof is identical to the proof for S^3 .

Theorem 1 Let G be a graph, and let M be a 3-manifold. The following are equivalent:

- (1) G is intrinsically linked in M,
- (2) G is intrinsically linked in S^3 ,
- (3) G has a minor in the Petersen family of graphs.

Proof Robertson, Seymour and Thomas [10] proved that (2) and (3) are equivalent. We see as follows that (1) implies (2): Suppose there is an unlinked embedding of G in S^3 . Then the embedded graph and its system of disks in S^3 are contained in a ball, which embeds in M.

We will complete the proof by checking that (3) implies (1). K_6 and $K_{3,3,1}$ are intrinsically linked in M by Proposition 1. Thus, by Fact 1, all the graphs in the Petersen family are intrinsically linked in M. Therefore, if G has a minor in the Petersen family, then it is intrinsically linked in M, by Fact 2.

3 Compact subsets of a simply connected space

In this section, we assume the Poincaré Conjecture, and present some known results about 3-manifolds, which will be used in Section 4 to prove that intrinsic knotting is independent of the 3-manifold (Theorem 2).

Fact 3 Assume that the Poincaré Conjecture is true. Let \widetilde{M} be a simply connected 3-manifold, and suppose that $B \subseteq \widetilde{M}$ is a compact 3-manifold whose boundary is a disjoint union of spheres. Then B is a ball with holes (possibly zero holes).

Proof By the Seifert–Van Kampen theorem, B itself is simply connected. Cap off each boundary component of B with a ball, and the result is a closed simply connected 3–manifold. By the Poincaré Conjecture, this must be the 3–sphere.

Fact 4 Let \widetilde{M} be a simply connected 3-manifold, and suppose that $N \subseteq \widetilde{M}$ is a compact 3-manifold whose boundary is nonempty and not a union of spheres. Then there is a compression disk D in \widetilde{M} for a component of ∂N such that $D \cap \partial N = \partial D$.

Proof Since ∂N is nonempty, and not a union of spheres, there is a boundary component F with positive genus. Because \widetilde{M} is simply connected, F is not incompressible in \widetilde{M} . Thus, F has a compression disk.

Among all compression disks for boundary components of N (intersecting ∂N transversely), let D be one such that $D \cap \partial N$ consists of the fewest circles. Suppose, for the sake of contradiction, that there is a circle of intersection in the interior of D. Let c be a circle of intersection which is innermost in D, bounding a disk D' in D. Either c is nontrivial in $\pi_1(\partial N)$, in which case D' is itself a compression disk; or c is trivial, bounding a disk on ∂N , which can be used to remove the circle c of intersection from $D \cap \partial N$. In either case, there is a compression disk for ∂N which has fewer intersections with ∂N than D has, contradicting minimality. Thus, $D \cap \partial N = \partial D$. \Box

We are now ready to prove the main result of this section. Because its proof uses Fact 3, it relies on the Poincaré Conjecture.

Proposition 2 Assume that the Poincaré Conjecture is true. Then every compact subset K of a simply connected 3-manifold \widetilde{M} is homeomorphic to a subset of S^3 .

Proof We may assume without loss of generality that K is connected. Let $N \subseteq \widetilde{M}$ be a closed regular neighborhood of K in \widetilde{M} . Then N is a compact connected 3-manifold with boundary. It suffices to show that N embeds in S^3 .

Let g(S) denote the genus of a connected closed orientable surface S. Define the complexity c(S) of a closed orientable surface S to be the sum of the squares of the genera of the components S_i of S, so $c(S) = \sum_{S_i} g(S_i)^2$. Our proof will proceed by induction on $c(\partial N)$. We make two observations about the complexity function.

- (1) c(S) = 0 if and only if S is a union of spheres.
- (2) If S' is obtained from S by surgery along a non-trivial simple closed curve γ , then c(S') < c(S).

We prove Observation (2) as follows. It is enough to consider the component S_0 of S containing γ . If γ separates S_0 , then $S_0 = S_1 \# S_2$, where S_1 and S_2 are not spheres, and S' is the result of replacing S_0 by $S_1 \cup S_2$ in S. In this case, $c(S_0) = g(S_0)^2 = (g(S_1) + g(S_2))^2 = c(S_1) + c(S_2) + 2g(S_1)g(S_2) > c(S_1) + c(S_2)$,

since $g(S_1)$ and $g(S_2)$ are nonzero. On the other hand, if γ does not separate S_0 , then surgery along γ reduces the genus of the surface. Then the square of the genus is also smaller, and hence again c(S') < c(S).

If $c(\partial N) = 0$, then by Fact 3 N is a ball with holes, and so embeds in S^3 , establishing our base case. If $c(\partial N) > 0$, then by Fact 4 there is a compression disk D for ∂N such that $D \cap \partial N = \partial D$. There are three cases to consider.

Case 1 $D \cap N = \partial D$. Let $N' = N \cup \text{nbd}(D)$. Since $\partial N'$ is the result of surgery on ∂N along a non-trivial simple closed curve, $c(\partial N') < c(\partial N)$, so by induction N' embeds in S^3 . Hence N embeds in S^3 .

Case 2 $D \cap N = D$, and D separates N. Then cutting N along D (ie removing $D \times (-1,1)$) yields two connected manifolds N_1 and N_2 , with $c(\partial N_1) < c(\partial N)$ and $c(\partial N_2) < c(\partial N)$. So N_1 and N_2 each embed in S^3 . Consider two copies of S^3 , one containing N_1 and the other containing N_2 .

Let C_1 be the component of S^3-N_1 whose boundary contains $D\times\{1\}$, and C_2 be the component of S^3-N_2 whose boundary contains $D\times\{-1\}$. Remove small balls B_1 and B_2 from C_1 and C_2 , respectively. Then glue together the balls $\operatorname{cl}(S^3-B_1)$ and $\operatorname{cl}(S^3-B_2)$ along their boundaries. The result is a 3-sphere containing both N_1 and N_2 , in which $D\times\{1\}$ and $D\times\{-1\}$ lie in the boundary of the same component of $S^3-(N_1\cup N_2)$. So we can embed the arc $\{0\}\times(-1,1)$ (the core of $D\times(-1,1)$) in $S^3-(N_1\cup N_2)$, which means we can extend the embedding of $N_1\cup N_2$ to an embedding of N.

Case 3 $D \cap N = D$, but D does not separate N. Then cutting N along D yields a new connected manifold N' with $c(\partial N') < c(\partial N)$, so N' embeds in S^3 . As in the last case, we also need to embed the core γ of D. Suppose for the sake of contradiction that γ has endpoints on two different boundary components F_1 and F_2 of N'. Let β be a properly embedded arc in N' connecting F_1 and F_2 . Then $\gamma \cup \beta$ is a loop in \widetilde{M} that intersects the closed surface F_1 in exactly one point. But because $H_1(\widetilde{M}) = 0$, the algebraic intersection number of $\gamma \cup \beta$ with F_1 is zero. This is impossible since $\gamma \cup \beta$ meets F_1 in a single point. Thus, both endpoints of γ lie on the same boundary component of N', and so γ can be embedded in $S^3 - N'$. So the embedding of N' can be extended to an embedding of N in S^3 .

4 Intrinsically knotted graphs

In this section, we use Proposition 2 to prove that the property of a graph being intrinsically knotted is independent of the 3-manifold it is embedded in. Notice that

since Proposition 2 relies on the Poincaré Conjecture, so does the intrinsic knotting result.

Theorem 2 Assume that the Poincaré Conjecture is true. Let M be a 3-manifold. A graph is intrinsically knotted in M if and only if it is intrinsically knotted in S^3 .

Proof Suppose that a graph G is not intrinsically knotted in S^3 . Then it embeds in S^3 in such a way that every circuit bounds a disk embedded in S^3 . The union of the embedding of G with these disks is compact, hence is contained in a ball B in S^3 . Any embedding of G in G

Conversely, suppose there is an unknotted embedding $f\colon G\to M$. Let \widetilde{M} be the universal cover of M. By using the same argument as in the proof of Lemma 1, we can lift f to an unknotted embedding $\widetilde{f}\colon G\to \widetilde{M}$. Let K be the union of $\widetilde{f}(G)$ with the disks bounded by its circuits. Then K is compact, so by Proposition 2, there is an embedding $g\colon K\to S^3$. Now $g\circ \widetilde{f}(G)$ is an embedding of G in S^3 , in which every circuit bounds a disk. Hence $g\circ \widetilde{f}(G)$ is an unknotted embedding of G in G. \square

Remark The proof of Theorem 2 can also be used, almost verbatim, to show that intrinsic *linking* is independent of the 3–manifold. Of course, this argument relies on the Poincaré Conjecture; so the proof given in Section 2 is more elementary.

References

- [1] **JH Conway**, **CM Gordon**, *Knots and links in spatial graphs*, J. Graph Theory 7 (1983) 445–453
- [2] **J Foisy**, *A newly recognized intrinsically knotted graph*, J. Graph Theory 43 (2003) 199–209 MR1985767
- [3] **T Kohara**, **S Suzuki**, *Some remarks on knots and links in spatial graphs*, from: "Knots 90 (Osaka, 1990)", de Gruyter, Berlin (1992) 435–445
- [4] **J Milnor**, Towards the Poincaré conjecture and the classification of 3-manifolds, Notices Amer. Math. Soc. 50 (2003) 1226–1233 MR2009455
- [5] J Morgan, G Tian, Ricci flow and the Poincaré Conjecture arXiv: math.DG/0607607
- [6] **R Motwani**, **A Raghunathan**, **H Saran**, *Constructive results from graph minors: linkless embeddings*, Foundations of Computer Science, 1988., 29th Annual Symposium on (1988) 398–409
- [7] **G Perelman**, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds arXiv:math.DG/0307245

- [8] **G Perelman**, *Ricci flow with surgery on three-manifolds* arXiv:math.DG/0303109
- [9] **N Robertson**, **PD Seymour**, *Graph minors*. *XX. Wagner's conjecture*, J. Combin. Theory Ser. B 92 (2004) 325–357
- [10] **N Robertson**, **P Seymour**, **R Thomas**, *Sachs' linkless embedding conjecture*, J. Combin. Theory Ser. B 64 (1995) 185–227 MR1339849
- [11] **H Sachs**, On a spatial analogue of Kuratowski's theorem on planar graphs—an open problem, from: "Graph theory (Łagów, 1981)", Lecture Notes in Math. 1018, Springer, Berlin (1983) 230–241 MR730653
- [12] H Sachs, On spatial representations of finite graphs, from: "Finite and infinite sets, Vol. I, II (Eger, 1981)", Colloq. Math. Soc. János Bolyai 37, North-Holland, Amsterdam (1984) 649–662 MR818267
- [13] M Shimabara, Knots in certain spatial graphs, Tokyo J. Math. 11 (1988) 405–413 MR976575

Department of Mathematics, Pomona College, Claremont, CA 91711, USA

Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109, USA

Department of Mathematics, Occidental College, Los Angeles, CA 90041, USA

Department of Mathematics, Loyola Marymount University, Los Angeles, CA 90045, USA

eflapan@pomona.edu, howards@wfu.edu, DonL@oxy.edu, bmellor@lmu.edu

Received: 25 October 2005 Revised: 3 May 2006