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than the new bound [ l ]  for the case of a channel with finite 
impulse response and with equalization over the full response 
length. 

The notations and definitions of [ l ]  are used here. The 
attention there is restricted to the case where the z k  satisfy [ I ,  
(2.01, 

-1  - M - 1  

Z k = a k +  h l e k + / +  h / a k + / + n k *  (l)  
l = - M  

We note that this case ( 1 )  does not include precursors. The 
bound of [ l ] ,  PK, for general PAM systems where ak  can assume 
one of 2 m  values is given by 

( 2 )  
We consider an important subset of the set of channels 

modelled by (1); those having nonzero response only for a finite 
time duration with equalization over the full response length [2 ] ,  
[3]-[5] .  Then the satisfy 

- 1  

Z k = a k +  h r e k + / + n k .  ( 3 )  
I = - M  

To obtain an upper bound using the method of [2] ,  one starts 
with the following expression for the probability of error [2 ,  
(14)-(16)1 

M - 2  i M - 1  - 1  

P,= 1 +  n a / + ( l - a M ) - l  n a/] . ( 4 )  [ i = o  l = O  l = O  

One has that [ l l ,  131 

, M -  

and 

a,,, = Pr{ek = Olek-l = 0;. .,ek-,+, = O}. (5b) 
Note that E = 1 - aM = Pr(Q( y k )  # a k }  when the noise samples 
n k  are independent and (3 )  is satisfied. Using ( 5 )  with (4) yields 
the bound, P,,,, given by 

1 

We will show that PDMM < PK whenever (3 )  is satisfied and 
E # 0. Note that E = 0 implies that P, = 0, PK = 0 and P,,, = 0. 

One has from (2 )  and ( 6 )  that 

and 

since M 2 1, m 2 1, and E > 0. Let f ( M )  = PK - ~ ( 2 m ) ~  where 
M is interpreted as continuous and real and M 2 1 .  Then 

P D M M  < PK if f ( M )  2 0 for all M 2 1 .  Differentiation gives 

( 9 )  
since E > 0 and In(.) is increasing. Since f ( M )  is increasing for 
M 2 1, f ( M )  2 f ( 1 )  = 0 for M 2 1 .  Thus, P,,, < PK is estab- 
lished. 
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On a Lower Bound for the Redundancy of Reliable 
Networks with Noisy Gates 

Nicholas Pippenger, George D. Stamoulis, 
and John N. Tsitsiklis 

Abstract -A proof is provided that a logarithmic redundancy factor is 
necessary for the reliable computation of the parity function by means of 
a network with noisy gates. This is the same as the main result of 
Dobrushin and Ortyukov except that the analysis therein seems to be 
not entirely correct. 

Index Terms -Reliable computation, noisy gates, parity function. 

I. INTRODUC~ION 

Computation of Boolean functions by means of noisy gates is 
a topic that started attracting the attention of researchers in the 
early ’50s. The first related work was that of von Neumann [4]  in 
1952. The problem defined there is as follows: Suppose that the 
gates available for the computation of a Boolean function are 
not completely reliable; in particular, each one of them fails with 
probability E < 1 / 2 ,  independently of the other gates. Given the 
values of its input bits, a gate is said to “fail” if it produces the 
complement of the output bit that it would have produced if it 
were completely reliable and its inputs were the same. Is it 
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possible under these assumptions to build, for any given func- 
tion f ,  a network that computes f ( x )  correctly with high proba- 
bility for every input vector x? 

Von Neumann proved in [4] that computations may be done 
reliably for all sufficiently small E > 0. In his construction, each 
intermediate result is computed several times and its value is 
determined by majority voting. One then obtains a probability of 
error T ( E )  for the final result, where V(E)< 1/2 for all suffi- 
ciently small E > 0. Unfortunately, this procedure for construct- 
ing reliable networks results in an unacceptably large number of 
gates. 

Almost 25 years after von Neumann introduced the problem, 
Dobrushin and Ortyukov [l] claimed that there are cases where 
a considerable increase in complexity is necessary for reliable 
computation. Indeed, let L(f) be the number of gates of a 
minimal noise-free network that computes some Boolean func- 
tion f ;  these authors stated the following result: There exists 
some function f *  (namely, the parity function) such that any 
network that computes f *  with probability of error p <1/3 
must contain Ct(L(f*)ln L(f*)) gates; i.e., the order ofmagni- 
tude of the number of gates in any such reliable network is at 
least L(f*)ln L(f*). Thus, reliable computation of f *  requires 
at least logarithmic redundancy. The proof of this claim in [l]  
contains two questionable arguments; moreover, there does not 
seem to be any obvious modification that could result in a 
correct proof. In this correspondence, we present a new proof of 
this result. Our analysis follows steps similar to those in [l]; 
however, our approach to the questionable points in [ l ]  is 
completely different. Moreover, our proof extends the validity of 
the claim in [l] to all p E (0,1/2), which is the broadest accept- 
able range for the probability of error. 

It is worth noting that for all Boolean functions there exist 
reliable networks with logarithmic redundancy; this result was 
proved by Dobrushin and Ortyukov in [2] .  Moreover, as was 
proved by Pippenger [5], a rather broad class of Boolean func- 
tions may be computed reliably by networks that involve only 
constant redundancy. Thus, the logarithmic lower bound for the 
redundancy factor is tight only in the worst case. 

To the best of our knowledge, our proof is the first correct 
one to be published. After writing this correspondence, it was 
communicated to us that Peter GBcs had obtained another 
correct proof, which was never published. 

The remainder of this correspondence is organized as follows: 
In Section 11, we present an outline of the analysis in [ l ]  and we 
state a result that implies the logarithmic lower bound on the 
redundancy factor. In Section 111, we give our proof of this 
auxiliary result. Finally, in Section IV, we present some conclud- 
ing remarks. 

11. h OUTLINE OF THE ANALYSIS I N  [I] 

In this section, we use a notation similar to that of [l]. First, 
we give some of the definitions therein. 

We consider a finite and complete basis @; that is, a set of 
gates that allows for the computation of any Boolean function 
by means of a network consisting exclusively of finitely many 
such gates (e.g., the AND-NOT basis). The maximum fan-in (i.e., 
number of input wires) of the gates in @ is denoted by a(@).  All 
networks considered in the analysis are assumed to consist only 
of gates belonging to this basis @. In the presence of noise, the 
gates available are assumed to fail according to the model 
presented in Section I; the probability E of failure is taken to be 
fixed. Let f be a Boolean function and k be a network over @. 

Moreover, let [(x,E) be the output of A, where x is some 
assignment of the values of the input bits of &, of course, 
( ( x ,  E) is a random variable. The network A is said to compute 
the function f with probability of error p if the following holds: 

~ r [ [ ( x , c )  z f ( x ) ]  I p ,  for all x; 

p E (0,1/2) is a given scalar. Let L p , J f , @ )  be the minimum 
number of gates in a reliable network that computes the func- 
tion f in such a way that (1) is satisfied. Similarly, Lo,o( f ,@)  
denotes the number of gates in the minimal network that 
computes f in the absence of noise. 

The redundancy factor R p , , ( N ,  0) for the basis @ is defined 
as follows: 

i.e., it equals the maximum of the required redundancy factor 
over all functions f that are computable in the absence of noise 
with the same minimum complexity N .  The main result in [l] is 
given in Theorem 2.1 of that article; we repeat it next, in 
simplified notation. 

Proposition 1: For any p E (0,1/2), the redundancy factor 
R p , , ( N , @ )  is R(ln N ) ;  that is, there exists some function h ( N )  
such that R , , ( N , @ )  2 h ( N )  and limN+m h(N) / ln  N = h* > 0. 

The expression for the function h ( N )  mentioned in Proposi- 
tion 1 is of no particular importance; what is important is that 
h ( N )  is asymptotically linear in In N .  Henceforth, we mainly 
focus on arguments involving orders of magnitude rather than 
giving detailed expressions. 

Proposition 1 may be established by proving that some spe- 
cific function f *  satisfies 

In particular, the authors of [l] considered the parity function 
f * ( x )  = xl@ . . . ex,, i.e., the sum modulo 2 of xl; . ., x,. (Note 
that @ is the symbol for the XOR operation.) The choice of this 
function makes intuitive sense, because, when the value of one 
of the x i ’ s  is reversed, the value of f * ( x )  changes; in some 
sense, f * ( x )  is a “sensitive” function. 

For this sensitivity of the parity function f * to be exploited, a 
new model for noise is introduced in [l]. Under the new model, 
each of the wires fails with probability 6, independently of all 
other wires and gates; failure of a wire results in transmission of 
the complement of the input bit-signal. Consider now some gate 
that receives j binary input bits T ~ , . . ’ , T ~  and computes the 
function  TI. Due to failures of the input wires, the vector 
T = (T~;. .,T,) may be different than the vector t = ( t , ;  . . , t i )  of 
the bits that the gate should have received. Moreover, given the 
distorted input vector T ,  the gate may not produce 4(~) ;  this is 
assumed to occur with probability P(T,  S ) ,  independently of all 
other gates. However, since the output of the gate in the 
absence of noise would have been 4 ( t ) ,  the gate is considered to 
fail if it does not produce 4 ( t ) .  It is established in Lemma 3.1 of 
[l] that, given some 6 E [O,E/~],  there exists a unique vector of 
malfunction probabilities ( P ( T ,  S ) ) ,  E(O,l), such that the overall 
probability that the gate does not produce 4 ( t )  is equal to e (for 
all t ) ,  as was the case in the original model. Though technically 
complicated, the underlying idea is clear: failures of gates may 
be visualized as not caused only by noisy computation, but also 
by noisy reception of the inputs. The parameters of this new 
model for noise can be selected in such a way that each gate still 
fails with probability E .  In this case, the state-vector of the 
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network has the same statistical properties as originally, which is 
intuitively clear. This is established in Lemma 3.2 of [l], by using 
induction on the depth of the network; this result holds for all 
6 E [O, E /n(@)]. Thus, as far as reliability is concerned, the two 
types of networks are equivalent. On the other hand, under the 
new model for failures, wires also are unreliable, which suggests 
that the number of wires plays a key role in reliability; this was 
not that clear under the original model for noise. Since the 
parity function f *  is the most sensitive in the noisy transmission 
of inputs, it is expected that the redundancy involved in its 
reliable computation is of the worst possible order of magni- 
tude. 

So far, we have discussed the preliminary part of the analysis 
in [l], where the original problem was transformed into an 
equivalent one. Henceforth, we are only dealing with the newly 
introduced problem. 

It is well known that, in the absence of noise, f *  may be 
calculated by using a tree of XOR gates. Thus, if the basis @ 
includes the gate for x,@x,, then we have L,,,(f*,@) I n - 1; if 
not, then we have L,,?(f*,@)s C ( @ h  - l), where C(@) is the 
complexity of the noise-free network over @ that computes 
x,@x,. (Notice that C(@) is finite because @ is a finite and 
complete basis.) On the other hand, it is straightforward that 
L,,,(f*,@) 2 n /n(@). Therefore, proving (2) is equivalent to 
proving that L,,,(f*,@) is fl(n.lnn). (Recall that n is the 
number of input bits.) 

We consider a reliable minimal complexity noisy network JI/ 
for the function f *. We denote by mi the number of wires of-4' 
over which the input bit x i  is transmitted, for i = 1,. . . , n. Thus, 
M h a s  at least 1;- ,mi wires, which implies that 

i mi 

It follows from the above discussion that to prove (2) (which 
implies Proposition l), it suffices to prove the following result. 

Proposition 2: The total number CY= lmi of input wires in any 
reliable network that computes f *  with probability of error p is 
n ( n  *In n) for all p E (0,1/2). 

In [l], this result is dealt with in Theorem 3.1 and in its 
auxiliary Lemma 3.3. This part of the analysis in [l] seems not to 
be correct; we comment on this in the Appendix. In the next 
section, we present our proof of Proposition 2. 

It is worth noting that Theorem 3.1 of [l] would hold for 
several Boolean functions that are "sensitive" under some par- 
ticular assignment of the input bits (e.g., the AND function, 
which is "sensitive" for x = (1; * . ,1)). On the contrary, Proposi- 
tion 2 holds only for the parity function. 

111. PROOF OF PROPOSIT~ON 2 

We fix some p~(O,1 /2 ) .  Moreover, we fix some 6 E 
(O,e/n(@)]; note that such a 6 satisfies 6 < E  < 1/2. Hence- 
forth, we assume that the input bits X,; . ., X, are independent 
random variables and that Pr [X,=0]=1/2  for i = l ; . . , n .  We 
use the notation (x,; . ., x,) to denote some particular value of 
the random vector (XI; . e ,  X,). Under this assumption, we 
shall prove that the average (over all possible inputs) probability 
of an erroneous output for the noisy network for the parity 
function f * must be greater than p unless C;,,mi is R(n.ln n). 
This implies that if lmi is not fl(n. In n), then there exists at 
least one input assignment for which the probability of an 

Y!" - 
Y? I I 

Fig. 1. 

erroneous output exceeds p; this statement is equivalent to 
Proposition 2. 

After introducing the assumption of equally likely input as- 
signments, any noisy network for f *  may be visualized as a 
device for estimating the binary parameter f*(X)  = Xl@ . . . @ 
X,. The decision is to be based on the values of the signals 
communicated by the input wires. Notice that such a decision- 
making device employs randomization due to the presence of 
noise. We denote by r' the random vector (Y('); . . ,Y(")),  where 
Y(')  = (YJ'), . * ,  Y::,') is the vector of binary random variables 
corresponding to the output signals of the input wires for XI 
(see Fig. 1). The value y ( ' )  = (~(111,. . . , y::) of Y(' )  is a vector of 
distorted copies of the ith input bit X,, for i = 1; . ., n. Thus, the 
data on which estimation is based is contained in the vector 
Y'= (Yc'), . . . , Y(")). Clearly, we have 

def 

Pr [ f * (  X )  = 01 = Pr [ f*( X )  = 11 = 1/2. 
Therefore, the decisionmaking device that has the minimum 
average probability of error is the one based on the maximum 
likelihood (ML) test. Hence, to prove Proposition 2, it suffices to 
prove the following result. 

Proposition 3: If the average probability of error for the 
device based on the m+mum likelihood rule does not exceed 
p ,  then Ey=lm, is fl(n.lnn). 

Proof: We fix some index iE(l;. . ,n}. We denote by w, 
the number of entries of the observed vector y ( ' )  that equal 0. 
Recalling that wires fail with probability 6 and independently of 
each other, it follows that the ML rule for estimating XI is 
equivalent to the majority-voting test: 

m, x, = a  

x, - 1  
w, -2  5. 

If w, = m, /2, then the tie may be broken arbitrarily. 
We denote by Z, the Boolean random variable indicating 

whether the ML estimate yf X, is correct or not; that is, we 
have 2, = 1 if and only if X, # X,. If all copies of the input bit 
XI are communicated erroneously, then we have Z, = 1; this 
implies that 

Pr [ Z ,  = 11 2 6"i. (3) 
Because wires fail independently of each other and because 

different input bits are independent, the random vectors 
Y(l ) ;  . . ,Y(")  are independent conditioned on any given X. The 
parameter to be estimated is the parity among the input bits; 
thus, it is intuitively clea; that the ML estimate of f * ( X )  should 
be equal to X,@ . . . ex,, where X I  is the ML estimate of XI. 
This is proved formally in Lemma 5; first, we state the following 
auxiliary result (also see [3]), whose proof we include for com- 
pleteness. 0 



642 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991 

Lemma 4: There holds Combining this with (8), we obtain 

Proof: We denote by C#J,(.) the probability generating func- This together with (7) proves (6). 
tion of the Boolean random variable Z, for i = 1; . ', n.  We have 
C#J,(t) = E[tZ1l = 1 -Pr[Z, = 11+ t PrM, = 11. Since Z,,. . ., Z ,  
are independent, the probability generating function q 4 . 1  of the 
random variable c:,lz, can be expressed in the following 
product form 

0 

We now complete the proof of Proposition 3. 
We have already argued that the event zl@ . . . @Zn = 1 

coincides with the event that the ML estimate of 
erroneous. Thus, we have 

is 

n 

cp( t )  = r = l  n C#Jr(t>. 

Pr[Z,@ . . . @Z, = 11 I p 

by assumption. This together with (3) and Lemma 4 implies that (4) 

n 

r = l  

(Note that C:=,Z, denotes the ordinary sum of Z,; . ., Z,; this 
should not be confused with the modulo 2 sum Zl@ . . ' @Zn.) 

1 - 2 p s  n(1-26mI) .  

Clearly, we have 
Using the inequality between arithmetic and geometric means, 

q(')-q(- ') = we obtain 
pr [  k Z i = k  =Pr[Z,@ . . .  @Z,=1]. 

oddk  t = 1  1 2 

This together with (4) and the fact that q(1) = 1 establishes the 
lemma. 0 

Next, we prove the result on the ML estimate of f:(X). 
Lemma 5; The ML estimate of Xl@ . . . @Xn is Xl@ . . . @ 

kn, where X ,  is the ML estimate of Xi. 

Proof: Let V be some Boolean random variable with 
Pr[V = 01 = Pr[V = 11 = 1/2. Assume that V is to !e estimated 
based on the observationnof some data vector U.  Then, :he 
Boolean random variable I/ is the ML estimate of V given U if 
and only if the following is true: 

P ~ [ P + V I ~ = U ' I  I:, 2 VU'. (5) 

Thus, in order to prove the lemma, it suffices to show that 

Again, using the inequality between arithmetic and geometric 
means, followed by the inequality 1 - a I exp(- a), we obtain 

1-2p I (1-261/nZ-lmc)n Iexp(-2n61/nZ'-Im, >, 
which implies that 

1 

2 
Pr [ kl@ . . . @kn # XI@ . . . @Xnlf=  $1 5 -, VY'. (6) clearly, this proves that E:=lmi is CNn.ln n).  0 

(Recall that Xl@ . . . @Xn takes the values 0 and 1 with proba- 
bility 1/2.) 

Since Z, takes the value 1 if and only if ki # X,, we have 
kl@ . . . @Xn # Xl@ . . . exn if and only if Z,@ . . . @Zn = 1, 
that is, if and only if an odd number of the input bits are 
estimated erroneously. Therefore, we have 

Pr [ kl@ . . . @kn z x1@ . . . @x,I?= y] 

= P r [ z l @  . . .  @ z , = ~ l f = j + ] .  (7) 

Reasoning similarly as in proving Lemma 4, we obtain 

I - ~ P ~ [ Z , C B  . . .  @Z,=I I?=Y]  

IV. CONCLUSION 

In this correspondence we have proved a lower bound for the 
redundancy involved in constructing reliable networks by means 
of noisy gates. In particular, we have established that a redun- 
dancy factor logarithmic in n is necessary for reliable computa- 
tion of the parity (i.e., the sum modulo 2) of n bits. This result 
was first stated by Dobrushin and Ortyukov in [l]. As we have 
argued in the Appendix, we believe that the proof given in [l] is 
not entirely correct. We have established the result by following 
the same steps as Dobrushin and Ortyukov and by replacing the 
questionable part of their analysis with entirely new arguments. 
Nevertheless, formulating the lower bound problem and intro- 
ducing a suitable problem transformation has proved to be a 
valuable contribution of [l]. 

= fi (1 - 2Pr [ Z, = 1(? = $1 ) . (8) 

Since ki is the ML estimate of Xi given ?, it follows from (5) 
that 

A~PENDIX 
i = l  

In this appendix we discuss the proofs of Theorem 3.1 and of 

Lemma 3.3 of [ I ]  Let p ~ ( 0 , 1 / 3 )  and 6 ~ (0 ,1 /2 ) .  More- 
be independent events satisfying the following: 

V I  E Q 

Lemma 3.3 in [l]. First we consider the latter. 

over, let (Hl ) !  E 1 
~r [ Z, = 11?= y] = ~r [ 2, # x,lf= $1 I -, 2 VY. Pr[Hl] 2 S m ' ,  
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and 
r -  i 

P > ( l - P ) P r  U 4  7 

I I G Q  1 
HI is the event that exactly one of the events where 0, 

( HI) ,  E has occurred. Then, 

This lemma seems to be incorrect. Indeed, consider the 
simple case where Pr[Hl] = S m  for all 1 E Q. We fix some m > 0 
and some p E (0,1/3). Notice that 

Pr U H, =lQlSm(l-6m)lQ’p1. I 
Thus, according to the lemma, the inequality 

p 2 (1 - p)lQISm(l- S m ) I Q ’ - ’  

implies that 

However, this is seen to be false, because (A.l) holds for all 
sufficiently large IQ1 whereas (A.2) fails to hold for all suffi- 
ciently large IQ[. (Notice that the right-hand quantity in (A.l) 
te?ds to 0, as IQ1 +m, whereas the right-hand quantity in (A.2) 
tends to m, as IQ1 +m.) 

Lemma 3.3 is crucial for the proof of Theorem 3.1 of [l]. 
Thus, it does not seem that the proof of Theorem 3.1 can be 
fixed. Also note that at some point of that proof (namely, (3.30) 
of [l]), the authors seem to use the property that the inequalities 
Pr[rlA,] 2 1 - p and Pr[TIA,] 2 1 - p imply 

r i -  1 

However, this property is not generally valid. Indeed, taking 
r = AI  n A,, we have 

r i -  1 

These observations lead us to doubt that the analysis in [l] 
can be corrected by local modifications. 
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Exponential Error Bounds for Random Codes 
on Gaussian Arbitrarily Varying Channels 

Tony G. Thomas and Brian Hughes 

Abstrmt -The Gaussian arbitrarily varying channel (GAVC) models 
a channel corrupted by thermal noise and by an unknown interfering 
signal of hounded power. The upper and lower hounds are presented to 
the best error probability achievable on this channel with random 
coding. The asymptotic exponents of these bounds agree in a range of 
rates near capacity. The exponents are universally larger than the 
corresponding exponents for the discrete-time Gaussian channel with 
the same capacity. It is further shown that the decoder can be taken to 
be the minimum Euclidean distance rule at all rates less than capacity. 

Index T e r m  -Error exponents, arbitrarily varying channels, Gauss- 
ian channels, random codes. 

I. INTRODUC~ION 

The Gaussian arbitrarily varying channel (GAVC), introduced 
in [l], models a communication channel corrupted by thermal 
noise and by an unknown and arbitrary interfering signal of 
bounded power. The channel is described as follows (see Fig. 1): 
Once in each unit of time, the transmitter sends a real number 
to the receiver, say x i  at time i, so that the sequence { x i )  has 
power (defined in the next section) at most b. This number is 
received as yi = x ,  + ni + si where {nil  is an independent and 
identically distributed (i.i.d.), zero-mean Gaussian sequence with 
variance a, and {si} is an unknown and arbitrary sequence with 
power at most c .  The goal of the transmitter is to construct a 
communication system that is robust in the sense that is per- 
forms reliably for all {si} that satisfy the power constraint. 

In [l], Hughes and Narayan investigated the random coding 
capacity of the GAVC for a variety of power constraints on 
transmitter and interference. For peak time-averaged power 
constraints on both transmitter and interference, the authors 
showed that the GAVC has random coding capacity 

1 b 

It is interesting to note that (1) is identical to the capacity 
formula for the discrete-time Gaussian channel that would be 
formed if {si} were an i.i.d. sequence of zero-mean, Gaussian 
random variables with variance c. For ensemble-averaged con- 
straints on transmitter or interference, the GAVC has no capac- 
ity in the usual sense; rather, the best achievable error probabil- 
ity depends continuously on the rate of transmission. 

The main objective of this paper is to develop exponential 
bounds to the best error probability achievable with random 
coding on the GAVC in the one case where a (strong) capacity 
exists (i.e., with peak time-averaged power constraints on both 
the transmitter and interference). Stiglitz [2] has derived a 
random-coding exponential upper bound for the discrete arbi- 
trarily varying channel (AVC) (with correlated random encoding 
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