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Finite amplitude convection between stress-free
boundaries; Ginzburg-Landau equations and

modulation theory

ANDREW J. BERNOFF1

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK

(Received 22 March 1993)

The stability theory for rolls in stress-free convection at finite Prandtl number is affected by
coupling with low wavenumber two-dimensional mean-flow modes. In this work, a set of
modified Ginzburg-Landau equations describing the onset of convection is derived which
accounts for these additional modes. These equations can be used to extend the modulation
equations of Zippelius & Siggia describing the breakup of rolls, bringing their stability theory
into agreement with the results of Busse & Bolton.

1 Introduction

Classically, the analytically simple problem of Rayleigh-Benard convection between stress-
free upper and lower boundaries has been studied. Early work (cf. Busse, 1978) only
considered roll-like disturbances with zero vertical vorticity. This yielded an interval of
stable wavenumbers of width 0(\/e), where e is the reduced Rayleigh number. Zippelius &
Siggia (1982, 1983) noted that large scale mean-flow modes with non-zero vertical vorticity
couple to the convective motion, and suggested that they lead to an instability of roll
patterns. Using modulation theory, they showed that this coupling reduced the interval of
stable convective motion to a width 0(e) at moderate Prandtl number, due to skew-varicose
type instabilities (Fig. 1). Their results suggested that for sufficiently small Prandtl number
(cr), stable roll solutions disappeared altogether. They also showed that this coupling to the
mean flow is present in the more physically realistic case of rigid boundaries; however, in
this case the effects only become relevant for fully nonlinear convection (cf. Cross & Newell,
1984).

Busse & Bolton (1984) investigated the same problem using perturbation theory. Their
results, which disagree with those of Zippelius & Siggia, showed that stable uniform roll
solutions disappeared for a < ac = 0.543 due to skew-varicose type instabilities.

In this paper, an attempt is made to resolve these conflicting results. A centre-manifold
method is used to derive the governing modified Ginzburg-Landau equations for
convection between stress-free boundaries near onset. In this expansion, the amplitudes of
the convection motion, the mean-flow modes, and distances transverse and parallel to the
rolls are scaled independently. It is shown that the long wavelength linear stability theory

1 Present Address: Department of Engineering Sciences and Applied Mathematics, Northwestern
University, Evanston, IL 60208-3125, USA.
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FIGURE 1. Stability boundaries in stress-free convection; wavenumber versus reduced Rayleigh
number, the stability boundaries for uniform rolls in stress-free convection at Prandtl number <T = 1
are shown as a function of their wavenumber (k) and the reduced Rayleigh number (e), following the
work of Busse & Bolton (1984). When e = 0 a roll with wavenumber kc becomes unstable. As e is
increased, the region of wavenumbers that are unstable increases quadratically (the boundary marked
by the parabola labelled B). Inside this region, uniform roll solutions will grow and saturate at some
finite amplitude. There finite amplitude solutions may be subject to secondary instabilities. The two
instabilities which bound a region of stable rolls are the oscillatory skew-varicose (labelled OSV and
leading to instability to the left of the boundary) and the skew varicose (labelled SV and leading to
instability to the right of the boundary), the boundaries are linear in the limit of small e, and
consequently they bound a region of stable wavenumbers of width 0(e). For lower a these boundaries
may cross eliminating the range of stable rolls.

for a uniform roll solution decouples into a finite dimensional eigenvalue problem due to
the symmetries of the system. In the limit of infinitely long wavelength, this eigenvalue
problem has a double zero eigenvalue, with one zero corresponding to the translational
invariance of the roll solution and the second corresponding to a mean-flow mode. It is the
perturbation of this double zero eigenvalue that leads to the skew-varicose type instabilities
of the problem. A major difficulty of perturbation problems of this type is knowing where
to truncate the expansion. In this paper, the expansion is kept to a sufficiently high order
to ensure a non-degenerate unfolding of the double zero eigenvalue of the long wavelength
linear stability problem. This methodology can be used to extend the modulation theory of
Zippelius & Siggia to higher order, bringing their roll stability theory into agreement with
that of Busse & Bolton.

The layout of the paper is as follows. In the next section, a set of modified
Ginzburg-Landau equations are derived from the Boussinesq equations; some of the
details of this calculation are deferred to an Appendix. The relation between these
equations and earlier models is indicated. In §3, a modulation theory is developed using the
modified Ginzburg-Landau equations as opposed to more classical scaling arguments. The
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result is an extension of work done by Zippelius & Siggia (1993), which reconciles their roll
stability results with those obtained by Busse & Bolton (1984) using amplitude expansions.

2 Derivation of the modified Ginzburg-Landau equations

The equations of motion for Boussinesq convection in a horizontally infinite layer heated
from below with stress-free boundaries is the starting point for this derivation. It is
convenient to write the differential equations in terms of a vector V made up of the
temperature and velocity. In this formulation, due to Schluter et al. (1965), it is possible to
write the linearization around the basic state as an operator that is self-adjoint with the
appropriate inner-product. This will prove invaluable in the calculation done below. Here
the nomenclature used is that of Cross (1980); note that there is no ad hoc scaling chosen
for the amplitude or the horizontal length scales.

There are two parameters in the problem, the Prandtl number <r, which is the ratio of
kinematic viscosity to thermal diffusivity, and the Rayleigh number R, which is a non-
dimensional measure of the thermal forcing. When R is increased, there is a transition when
the conductive state loses stability at Rc = 27TT4/4 (cf. Busse, 1978). The following
expansion is valid in the limit of small reduced Rayleigh number

r _ X.

A horizontally infinite layer of unit depth is considered. The vertical direction z is
bounded by O ^ z ^ 1, with f being a unit vector pointing upwards. Similarly, the
horizontal directions (x,y) are spanned by (x, j?). The state of this system is specified by the
velocity v, the pressure P, and the deviation of the temperature from the conductive state,
0. The state of the system can be specified by a vector V

v = (u,v,w), u = (u,v), V=(6;u,w) (2.1)

with the pressure determined implicitly by incompressibility (2.2 b) below.
The equations governing the advection and diffusion of momentum and heat, and the

incompressibility of the liquid are

Vt = DV-dP+N(V,V), (2.2a)

8 - ^ = 0 . (2.2b)

Here, the gradient operator 6 is composed of a horizontal gradient operator V and a vertical
derivative dz, so that

3 = (0;V,9,), V = (a,,3v). (2.3)

The advective nonlinear term is defined using this operator as

N(V,V') = -(V-d)V. (2.4)

The linear matrix operator D = Z)o + SD is defined by

(2.5)
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and 8D is the matrix with R — Rc in the upper right-hand corner as the only non-zero entry.
To complete the formulation, stress-free, fixed-temperature boundary conditions are
chosen

d = dzu = dzv = w = 0 at z = 0,1. (2.6)

To facilitate calculation, an inner product

*-v']m, (2.7)

is introduced. Here * denotes complex conjugates and [ ]m signifies an average over the fluid
layer. The motivation for choosing this form of the equations of motion and defining the
inner product is that the operator Do is self-adjoint subject to the constraint of equation
(2.2 b), i.e.

0V>*. (2.8)

Now, given two eigenvectors V, V1 of the linear portion of equation (2.2a) at R = Rc,

D0V
l-dP = XiV

i, (2.9)

Equation (2.8) implies the orthogonality condition

< r ( , ^ > = ctfw, (2.10)

where c is a normalization constant and S(j is the Kronecker delta function. This allows the
inner product (2.8) to be used as a projection operator, < P', • > applied to equation (2.2a)
picks out the portion of the equation projected on the eigenvector V.

The basic philosophy of most near-equilibrium amplitude expansions is to divide the
eigenspace into two subspaces. The first is spanned by a set of 'fast' eigenvectors whose
eigenvalues have negative real parts of order unity, and consequently motion in this
subspace is damped on a fast time scale. The remaining subspace is spanned by a set of
'slow' eigenvectors whose spectrum is clustered close to zero, corresponding to slow
growth or decay rates. The motion on the fast subspace can be adiabatically eliminated; it
is rapidly driven to a quasi-equilibrium solution which evolves on the slow subspace. The
result is a reduced set of equations describing the motion on this manifold (cf. Normand
et al. 1977; Haken, 1978; Cross, 1980; Arneodo et al., 1983; Spiegel, 1985a,b). In the case
of ordinary differential equations and partial differential equations with discrete spectra,
this process can be carried out using centre manifold theory (Guckenheimer & Holmes,
1983; Arnold, 1983). If the set of slow eigenvalues is sufficiently close to zero, the process
of projecting out the fast subspace and confining the motion to an invariant manifold
tangent to the slow subspace (called the centre manifold) is justifiable using the centre
manifold theorem.

For this problem, the spectrum of eigenvalues is continuous. Fortunately, the form of the
expansion is insensitive to where the division between fast and slow eigenvalues is made.
The expansion is derived by direct analogy with centre manifold theory. First, the set of
eigenvectors to be included in the slow subspace must be determined.

As R passes through Rc a set of eigenvalues passes through zero, signalling the onset of
convective motion. The translation invariance of the layer forces the eigenvector to have
a horizontal dependence of eikx. The stress-free boundaries lead to a sinusoidal depth
dependence, and allow us to solve analytically for the most unstable wavenumber at onset,
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(b)

FIGURE 2. Wave vectors in the slow subspace. (a) The annulus in k space where Vk is in the slow
subspace is shown. The annulus contains a band of wavevectors whose length is within 0(\/e) of kc.
This is restricted to the cross-hatched region near ±kcx for the modulation theory; (b) the disk in
a space where V" is in the slow subspace. This has radius 0(Ve)- F° r equations (2.18), the integrals
are performed only over the vectors in the slow subspace.

kc = n/ \/2. The eigenvectors for k « kc (here k = \k\) can then be approximated by (cf.
Schluter el al., 1965)

Vk = ikn cos (nz)
k2 sin (nz)

(2.11)

for \k — kc\ = 0(Ve). The corresponding eigenvalue for Vk is

A* *l-[e-t?(k- (2.12)

where T
2(cr+1)

3772
(2.13)

As A* is 0(e) for \k—kc\ = 0(v/e), the corresponding eigenvectors must be contained in the
slow subspace. For \k — ke\ P \/e, Re (A*) <̂  — e, which is adopted as the condition for Vk

to be in the fast subspace. Figure 2 a shows the annulus in k space of eigenvectors contained
in the slope subspace.

The linear stability theory for rolls is modified for finite Prandtl number by the presence
of mean-flow modes with non-zero vertical vorticity (Zippelius & Siggia, 1982, 1983; Busse
& Bolton, 1984). The eigenvectors representing these modes are

V' = (2.14)
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The associated eigenvalues are
(2.15)

where a = |a|. So for aa2 x 0(e) these modes must be included in the slow subspace. It is
assumed that cr is of 0(1) so that the eigenvectors in the slow subspace are contained in a
circle of radius 0(Ve) in a space (Fig. 2b).

The vector V can now be expanded in terms of these two sets of eigenvectors

[dkA\k{t)Vk+\d«.BI{t)V\ (2.16)

with the additional restriction that

to ensure the reality of V. Here a time dependent amplitude has been associated with each
vector in the slow subspace. Equation (2.16) is the lowest order approximation to the centre
manifold.

Typically at this point in a centre manifold calculation, the lowest order nonlinear terms
in the expansion are calculated, and the series is then truncated with the hope that the
equations encapsulate the dynamical behaviour of the full system. This calculation is
relegated to the Appendix due to its algebraic intricacy. The form of the final equations
obtained is

a, A\ = a2A"+ \dk' dk" a3 A
k'Ak' A"-"'-"' + \dx' a4 B'A"-"' (2.18 a)

\dk'b3A
k'Ax-k', (2.18 b)

where the real constants at, bt are computed in the Appendix, and the wave vectors k, k',
k" and a, a' are restricted to the regions described in Fig. 2.

These 'modified Ginzburg-Landau' equations (Haken, 1978) should preserve the
symmetries of the full equations. The transformations which leave equation (2.2) unchanged
and the equivalent transformation for the system (2.18) are listed below.

Translation

for arbitrary x0.

Rotation
x^-Mx=>k-^M~lk, a-^AT'a, (2.19b)

where M is a two dimensional rotation matrix.

Reflection

(x,y)->(-x,y)^>(kx,ky)^(-kx,ky), (ax,ay)^-(-ocx,ay), (2.19c)

(x,y) -+ (x, -y)=> (kx, ky) -• (kx, - ky), (ax, au) -+ (ax, -ay). (2.19d)



Finite amplitude convection between stress-free boundaries 273

In addition, there is the so-called 'Boussinesq symmetry', corresponding to an inversion of
the layer and changing the sign of the temperature perturbation

z-s-l-z, 0-*-e, w->-w^Ak->-Ak. (2.19e)

The symmetries restrict the form of the amplitude equations obtained. Applying the two
reflections (2.19c, d) to equation (2.18) and then using relation (2.17) and equating
coefficients implies that all the a,, bf's are real. Also, (2.19e) implies that all the terms of even
order in Ak vanish in (2.18 a) and those of odd order vanish in (2.18 b). As a check on this
calculation, roll solutions were calculated and their stability computed from (2.18). This
produced results identical with those derived by Busse & Bolton (1984) for the full
Boussinesq equations.

If the value of B* is set to zero, equation (2.18 a) resembles that derived by Schluter et al.
(1965) and Cross (1980); however, the value of a given in these papers is computed by
assuming \k\ = \k'\ = \k"\ = kc. This approximation leads to erroneous results for roll
stability at finite Prandtl number. Busse (1986) has derived an amplitude equation for this
problem similar to (2.18). His approach is modelled on the methods used in Busse & Bolton
(1984), and as such the coefficients should correspond to a Taylor expansion around kc of
those tabulated here.

By assuming the solutions are rolls with nearly the same orientation over the whole layer,
the system (2.18) can be reduced to a modulation type theory. These equations are derived
in the next section.

3 Modulation theory for nearly roll-like solutions

In this section, the modulation equations for nearly parallel roll-like solutions are derived.
Zippelius & Siggia (1982, 1983) attempted to analyse this problem using modulation theory
and scaling arguments. Although they realized the role of mean-flow modes in the
dynamics, their expansion is not of sufficiently high order to capture the quantitative details
of the stability theory for rolls. By using an alternative derivation for the modulation
equations for this problem starting from equations (2.18), a theory consistent with the
results of Busse & Bolton (1984) is produced. This derivation has the advantage that it
makes no ad hoc assumptions for the length scales on which the modulation acts.

By restricting the spectrum of (2.18) to small regions in Fourier space, the variation of
the solution is restricted to large spatial scales. The mean-flow modes are naturally
restricted to a region close to the origin. For this derivation, the convective eigenvectors are
restricted to a region close to a single vector of length kc, chosen to be kcx without loss of
generality (see Fig. 2 a). Condition (2.17) defines implicitly the amplitudes in the region near
—kcx. Outside these two regions, the amplitudes are taken to zero.

A modulation amplitude is defined by

S(x,t)= \dk'A"'(t)eiJx, (3.1a)

where A = k'—kcx. In addition, a streamfunction for the mean-flow modes is introduced
via
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B«(t)eP-, (3.1b)

where (2.19) ensures that Q is real. The velocity and temperature deviation can be
reconstructed from S(x, t) with the help of definitions (2.11) and (2.16); S is the slow
modulation proportional to eilCcX {sin (nz) or cos (nz)}.

To derive the equations governing these amplitudes, the coefficients in (2.18) are
expanded in Taylor series around kcx in terms of the perturbation wave vectors. Thus

A = Axx+Ayy, (3.2a)

. (3.2b)

A number of the terms vanish due to symmetry properties of the fluid layer and because
the expansion is at the point of onset. The coefficients are expanded retaining the minimum
number of terms needed to account for the independent small quantities (e, Ak, B", <xx, a.y,
Ax, Ay) and to break the accidental symmetries of a lower order truncation. This yields

dk"(f3 + / 4 A , +fs A'x + / 6 A"x) A* Ak' A k - k - " -

' \f7 ay + / 8 Ax a'y + / 9 < a'y +/1 0 Ay oQ B*' Ak~* (3.3 a)

- jdk'lg, axay +g2(4A'xax ay + 4A'v(a
2
x-ay) -ay a2)] A"' A*~k' (3.3 b)

where the / / s and g/s are now solely functions of a. It is argued below that a sufficient
number of terms are retained to compute correctly the linear stability of a uniform roll
solution.

The equations can be transformed into physical space by performing the Fourier
transform described by equation (3.1) and using the convolution theorem. The perturbation
wavevectors act as derivative operators.

The scalings used by Zippelius & Siggia (1983) are adopted. Define

, T=e±, (3.4a)
ay ^

7p (3.4b)

where L = Wt I ^0 = ̂ — , g. = - ? . (3.4c)
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ST =

+ s3 i&S* + st SQXY + sb(Sx Qy - SY Qx),

\) QT = (92
y + SdxfQ + qt dxy \S\2

+ g3 i8y(5(8*. + Sd2
x) S* - S*(dy + Sd2

x) §)-q4 idx(Sx S* - Sy §*),

(3.5 a)

(3.5 b)

VTe\l(5

VTe{ 1

[
VTe

(3.6a)

4 ' '<r+l'
(3.6 b)

Because of the restriction to particular wave vectors, equations (3.5) have different
symmetry properties from (2.18). Rotational symmetry is lost, but the isolation of k from
— k in Fourier space introduces a phase invariance of (3.5)

S-+Se">, (3.7a)

for arbitrary real <}>. This means the modulation model is insensitive to the phase of the
underlying rolls. This, coupled to the translation invariance of the problem, leads to the
symmetry

(3.7 b)

(3.7c)

(3.7d)

(3.7e)

for arbitrary Xo. Reflection in X yields invariance under

X+-X,

while reflection in Y yields

-Y, Q-+-Q.

The Boussinesq symmetry reduces to

A symmetry also is introduced because Q corresponds to the streamfunction (or by
considering (2.14) and (3.1b))

Q^Q + Qo, (3-7 f)

for arbitrary Qo.
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Although the rotational symmetry is broken, it must be preserved to the order of the
expansion of the amplitude equation. One consequence of this is that a uniform roll
solution with any orientation cannot drive the mean-flow modes. Equation (3.5 b) must be
satisfied by a solution of the form

S = /?oe"v* (2 = 0, (3.7 g)

for arbitrary Ro, ya.
By setting Q = 0, the Newell-Whitehead-Segel amplitude equation is obtained at lowest

order (Newell & Whitehead, 1969; Segel, 1969). The higher order terms can be compared
with the expansion of Cross et al. (1983) for time independent interior solutions derived for
a sidewall problem. The two agree after applying an operator of the form (1 +c6A.) to the
right-hand side of equation (3.5a). All the terms present in Zippelius & Siggia's (1983)
expansion are found here, but there are a number of additional terms of order y^. The
addition of these terms reconciles the stability theory for rolls derived by modulation theory
with that derived by Busse & Bolton (1984) via amplitude expansions.

The question of how to choose the scalings and to what order to expand the modulation
equation is difficult and not fully resolved. Here a strong argument that the stability theory
for a uniform roll can be computed correctly in the long-wave limit of perturbations from
the present expansion will be presented.

At least three basic philosophies can be presented for determining the correct order to
truncate the expansion. The first is to compare the results of the truncation with an
independent calculation performed by a different method. It will be shown below that the
result obtained for the theory of a uniform roll are in agreement with those of Busse &
Bolton (1984) which, in turn, they have verified by numerical calculations of the full system.
Although satisfying, this method of checking the present calculation denies it any predictive
value of its own. Moreover, as discussed earlier, other results in the literature are at
variance with these calculations.

A second method is to use the ideas of centre manifold theory (cf. Guckenheimer &
Homes, 1983) to truncate the expansion. Equations (3.5) are, in fact, an expansion in (e,
Q, S, idx, idy). These quantities can be considered as scaling independently as opposed to
in some fixed ratio. The equations can be expanded to an order that breaks any accidental
symmetries that occur in the equation, and until the terms neglected can be shown to be
small in comparison to those retained. In fact, the equations were originally obtained by
applying these ideas to expansion (3.3). In equation (3.5a), this yields the conclusion that
the terms with coefficients s1 through sb must be retained to break the accidental symmetry
X^ — X. A similar argument leads to the retention of q3 and qt. This approach has certain
advantages; the form of the expansion of (3.5) can be determined by taking the linear
dispersion terms (as known from a linear analysis of the full equations) and then
determining all the nonlinear terms that satisfy symmetries (3.7). However, the basis for
these ideas can be shown to be quantitatively valid only for systems of ordinary differential
equations, and cannot be rigorously applied here.

The methodology here will be to show that these equations correctly reproduce the
stability theory for a uniform roll solution in the limit of long-wave perturbations. Note
that for linear stability theory, only terms linear in Q needs to be retained in equation (3.5).
To compute the stability of a uniform roll solution from (3.5), a steady solution of the form
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S = SRe<rx, 2 = 0, (3.8 a)

is considered. Substitution in (3.5) yields

This corresponds to a roll solution with wavenumber

k* = k.+&. (3.9)

It is well known that the stability of a roll solution can be determined a perturbation
localized to a pair of sidebands (e.g. Newell & Whitehead, 1969). By considering the
perturbation as expanded as a set of Fourier modes, examining the coupling, and using the
symmetries (3.7c,d), it can be shown that the linear perturbation theory decouples into
acting on sets of perturbations of the form

S = eirx[SR + Ae*T cos(y- X+&) + Be*T isin(y- X+0)] (3.10a)

Q = Ce*Tcos(yX+0) (3.10b)

with y = (yx,yy)- (3.10c)

Here A, B, C are real constants and 0 can be chosen arbitrarily, although it suffices to take
the values 0 = 0, n to span the set of perturbations for a given y. At this point, it will be
assumed that

r~ Ve
corresponding to the expected skew-varicose type instabilities. Although this restriction is
not necessary, it streamlines the presentation of the results. The perturbations will be
examined in the long wavelength limit and it will be assumed that

yy~ Vdyx->0.

This scaling corresponds to the transverse and parallel components of the perturbation
occurring on the same lengthscales in physical space. Substituting this form in system (3.5)
expanding and linearizing in A, B, C yields a 3 x 3 set of equations

- 2 - A (5 3 - j 1 -5 2 -2 / ' )y A .
(51 + 58 + S3 + 2

-2q2yx7y

Note that when y x = yY = A = 0 every entry except the upper left-hand corner of the
coefficient matrix vanishes. The matrix has a double zero eigenvalue in this case; these are
generated by the translation symmetry (3.7b) in the X direction applied to the solution
(3.8a) and by the streamfunction symmetry (3.7f). It is the perturbation of this double zero,
corresponding to the coupling of the translational mode to large scale mean flows that
drives the instability. The pair of zero eigenvalues, when perturbed, may become a complex
pair corresponding to an oscillation or two real eigenvalues. The third eigenvalue is always
— 2 to leading order.

The coefficients in the matrix have all been expanded to lowest order in yx, yY. The form
of the eigenfunction expansion guarantees that each coefficient will be a series of terms of
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only even or odd total degree in yx, yY. The leading term is present in all cases with one
exception (examined below), and by comparison with the form of (3.5) it can be seen that
the coefficients of these terms are expanded to leading order in e. Below, when the
eigenvalues of this matrix are found, it is expected that they will faithfully give the leading
order approximation to the full system. Note that every term in (3.5) contributes to the
expansion, with the exception of those with coefficients sb and qA which have the same
scaling behaviour as terms that do contribute. Moreover, all the terms contribute to the
stability boundaries derived below. Herein lies the explanation for the order of the
truncation; a sufficient number of terms have been kept so that a leading order
approximation to each coefficient of the equations (3.11) can be made; this should yield a
non-degenerate stability calculation.

The second entry in the third row has no linear term; this absence can be explained by
symmetry. The reflection symmetry (3.7d) implies that the nonlinear terms in (3.5b) must
contain an odd number of derivatives with respect to Y, and consequently at least one
derivative in this direction. A solution of the form

as a-*0 (3.12)

must vanish if substituted in (3.5b) due to the rotational symmetry (3.7g). If the linear
perturbation (3.10a) is substituted into (3.5 b), any coefficient linear in y must be
proportional to yY due to the Y derivative present in the nonlinearity. This coefficient can
be computed by substituting (3.10a) linearized in yY into equation (3.5b)

S~eirx(l+iCy¥Y). (3.13)

The form of (3.12) assures that (3.13) will vanish when substituted into (3.5 b), and
consequently the linear term in the second entry in the third row of (3.11) is absent.

Note that sending either yx or yY to zero separately with the other fixed also yields a non-
singular matrix, which should assure the validity of these limits also.

Expanding the characteristic polynomial of (3.11) yields the boundaries for the skew-
varicose (SV) and the oscillatory skew-varicose (OSV) instabilities, which are of greatest
interest when a as 1. Define

f (3,4,
then the conditions for instability are

(SV)

If, for a given p, only (3.15 a) is satisfied, there is a single positive real eigenvalue. If only
(3.15b) is satisfied, there is a complex pair of eigenvalues with positive real part. If both
conditions are satisfied, there are two positive eigenvalues. To find the boundary of the
region of stability, the right-hand side of the (3.15 a) must be maximized and the right hand
side of (3.15 b) must be minimized. This is accomplished by

(SV) p-+co, (3.16a)
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and

(osv) P

These results and those for the other possible stability boundaries agree with those of Busse
& Bolton (1984). Note that these two boundaries cross for a = <rc = 0.543, below which
there are no stable roll solutions.

4 Conclusions

The modified Ginzburg-Landau formulation derived here allows the derivation of
modulation equations for the onset of stress-free convection. These equations show how
the modulation theory of Zippelius & Siggia can be extended so that the stability theory of
a uniform roll solution agrees with the amplitude expansion results of Busse & Bolton.

By examining the stability theory in the long wavelength limit, it can be shown that the
skew-varicose and the oscillatory skew-varicose instabilities are related to the coupling of
two zero eigenvalues; one corresponds to the translational invariance of the uniform roll
solution, and the second due to the uniform mean flow solution allowed by the stress-free
boundary conditions. By relating this instability to the eigenvalues of a 3 x 3 matrix, it is
possible to determine which terms in the modulation theory contribute to the roll stability
problem in the long wavelength limit; this yields a concrete method for determining which
terms to retain in the theory.

The present methodology has an advantage over the methods of Busse & Bolton in that
it generates a set of modulation equation that can be integrated numerically to examine the
nonlinear behaviour of the instability (Bernoff, 1986). A concrete method of unfolding the
double zero eigenvalue in the long wavelength limit is described here.

Although stress-free boundaries may be physically unrealistic, they are a paradigm for
understanding the coupling of convection rolls to mean flows. The importance of mean
flows in rigid boundary convection at moderate Rayleigh numbers is clear from the work
of Newell and his collaborators (Cross & Newell, 1983; Newell et al. 1990).
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Appendix: Coefficients of the modified Ginzburg-Landau equations

In this section, the coefficients for equations (2.18) are derived. At lowest order, the centre
manifold is approximated by

V= Vo = \dkA\t) Vk+ \dxB*(t) V, (A 1)

where the regions of integration are defined in Fig. 2. To determine the equations governing
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the time dependence of Ak and B", V\% substituted into equations (2.2) and the projection
operators < Vk, • > and < V, • > are applied to yield, respectively,

ax A
k = a2 A

k + \doi'a4 B"' A"'*',

6, B*t = b2B' + \dk' b3 Ak' A*~k' + 0(B* B'),

(A 2 a)

(A 2 b)

where
a, = !(TT2 + k2) [<T(TT2 + A:2)3 + Rc k2],

|«'—Ar|2>], (A 3 a)

(A 3 b)

A factor of Rc has been divided out of (A 2 b). The quadratic terms in B" arises in equation
(A 2 b) due to the self-interaction of the mean-flow modes. For B* small, this term is always
smaller than the linear B* term, and consequently plays no role in the dominant balance in
this equation. Note that there are no quadratic Ak terms in (A 2 a); this is a direct
consequence of (2.19e).

It remains to calculate the cubic interaction term in (2.18 a). The only quadratic
interaction unaccounted for is that of Vk with itself. It is convenient to divide this
interaction term by its depth dependence

where

N( V\ Vk) = No( V, V) + N2( V, Vk\

N0(V, F*) =

' c2(k, k') sin (2nz)
N2(V

k,V')= \c3(k,k') cos (2nz)
. ct(k, k') sin (2nz)

(A 4)

(A 5a)

(A 5b)

Here A^ has constant depth dependence, and for small k + k' is contained in the slow
subspace. It gives rise to the b3 term in (A 2 b). Outside the slow subspace, this term
generates a contribution to the cubic term easily computed by extending (A 2 b), which is
always smaller than that computed below. The N2 term in (A 4) is part of the fast subspace.
This term yields a first order correction to the centre manifold for V

V=V0+V»

where Do V, - dP, = - \dk' dk" Ak' Ak" N2( V', F*").

(A 6)

(A 7)
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This yields an additional contribution to the right-hand side of (A 2 a) bringing it into the
same form as (2.18 a) .

+ dk' dk" a3 A"' A"' A"-"'-"". (A 8)

Here a3 = < V\ N( Vo, V,) + N( Vv Vo))

= £*'.(*'-*-) (A 9)

[K- (k + K) {Rc [2n%k • I) + k\k' + k") • L] + ado(n
2 + k2)2}

where K=k-k'-k", k2 = \k\2, K2 = \K\2,

Pok' + (Po-n)k"
2-no-H

2nRc PO + aH(n2 + \k"\2)2 + Rc \k'f

•" \Z — lim-Mir* -l-\lr" \*\*

(A 10)

*[RC-H2]

nk" • (k" - k') (Rc - H 2 ) - 2TTRC \k" \2 - 2TT<TH(TT2 + \k" \2)2
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