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Transient anomalous diffusion
in Poiseuille flow

By M A R C O L A T I N I AND A N D R E W J. B E R N O F F
Harvey Mudd College, Claremont, CA 91711, USA

(Received 29 January 2001 and in revised form 13 March 2001)

We revisit the classical problem of dispersion of a point discharge of tracer in laminar
pipe Poiseuille flow. For a discharge at the centre of the pipe we show that in the
limit of small non-dimensional diffusion, D, tracer dispersion can be divided into
three regimes. For small times (t � D−1/3), diffusion dominates advection yielding a
spherically symmetric Gaussian dispersion cloud. At large times (t� D−1), the flow is
in the classical Taylor regime, for which the tracer is homogenized transversely across
the pipe and diffuses with a Gaussian distribution longitudinally. However, in an
intermediate regime (D−1/3 � t� D−1), the longitudinal diffusion is anomalous with
a width proportional to Dt2 and a distinctly asymmetric longitudinal distribution.
We present a new solution valid in this regime and verify our results numerically.
Analogous results are presented for an off-centre release; here the distribution width
scales as D1/2t3/2 in the anomalous regime. These results suggest that anomalous
diffusion is a hallmark of the shear dispersion of point discharges at times earlier
than the Taylor regime.

1. Introduction
The basic mechanisms of tracer dispersion in laminar pipe Poiseuille flow were

first studied by Taylor (1953) and extended by Aris (1956). They concluded that for
sufficiently large time any localized initial configuration of tracer evolves to a sym-
metric Gaussian distribution moving with the mean speed of the flow and spreading
longitudinally with an effective diffusion coefficient Deff = 1/(192D) + D, where D
is the non-dimensional diffusion coefficient. This behaviour is achieved only when
sufficient transverse mixing has occurred, and even Taylor, in his experiments, noted
that for moderate time a distinct asymmetry was observed. Lighthill (1966) addressed
this discrepancy by describing the initial development of tracer dispersion before com-
plete transverse mixing has occurred. Lighthill assumed the initial distribution of the
tracer was radially uniform, and localized longitudinally as a δ-function. He showed
that the tracer distribution spreads longitudinally proportional to t, much faster than
the characteristic diffusion width of

√
Dt. This is perhaps the first observation of

anomalous diffusion in the fluids literature.
In this paper, we first consider a δ-function initial condition at the centre of the

pipe. Using Lighthill’s method we find an exact solution for the advection–diffusion
equation, valid in the absence of the pipe’s boundaries. This solution, where the
width spreads anomalously proportional to Dt2, provides a useful approximation at
times before a significant proportion of the tracer diffuses to the walls. From this
solution we derive the distribution’s longitudinal moments and useful approximations
for the shape of the head and tail of the concentration profile. We verify our results
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through numerical simulation. For completeness, we also present results for an off-
centre release, where the width spreads anomalously as D1/2t3/2 before the Taylor
regime (cf. Elrick 1962; Rhines & Young 1983). Finally, in the discussion, we present
a dimensional analysis argument suggesting that transient anomalous diffusion is
a feature of shear dispersion of a point discharge for laminar shear flows. In the
Appendix we present analogous results for plane Poiseuille flow.

1.1. Formulation of the problem

Consider dispersion due to pipe Poiseuille flow,

u(R, θ, Z) = U0

(
1− R2

a2

)
, (1.1)

where U0 is the centreline velocity and a is the pipe radius. Let C(R, θ, Z, T ) indicate
the concentration of the passive scalar, being advected with the flow and diffusing
with constant diffusivity D∗. In non-dimensional variables,

t =
U0

a
T , r =

R

a
, z =

Z

a
,

the system is governed by the advection–diffusion equation,

∂C

∂t
+ (1− r2)

∂C

∂z
= D

(
∂2C

∂r2
+

1

r

∂C

∂r
+

1

r2

∂2C

∂θ2
+
∂2C

∂z2

)
, (1.2)

where D = D∗/aU0 = 1/Pe is a non-dimensional diffusion constant and Pe is the
Péclet number. D is quite small in typical applications (blood flow, sewage dispersion,
etc). We consider a δ-function initial condition at the centre of the pipe (the origin
of our coordinate system) at t = 0,

C(r, θ, z, 0) = δ(z)δ(r), (1.3)

where δ(r) is a two-dimensional δ-function at the origin in (r, θ). At the pipe’s edge,

∂C

∂r
= 0 at r = 1, (1.4)

corresponding to no-flux boundaries. Integrating over the pipe’s cross-section,

C̄(z, t) =

∫ 2π

θ=0

∫ 1

r=0

C(r, θ, z, t)r dr dθ,

yields the longitudinal concentration distribution of the tracer. Information on the
shape of this distribution, such as whether it is peaked or asymmetric, its rate
of movement and expansion, etc. can be obtained from the first few longitudinal
moments, defined by

Mn(t) =

∫ ∞
z=−∞

znC̄(z, t) dz. (1.5)

Note that M0(t) = 1. In particular, the width of the distribution, σ(t), is defined as

σ(t) =

√
M2(t)−M2

1 (t).

1.2. Three regimes of shear dispersion

Figure 1 illustrates the three stages of longitudinal dispersion that are observed in this
problem. Initially the width scales diffusively (σ ∼ √2Dt). In the anomalous regime,
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Figure 1. The three stages of longitudinal dispersion characterized by different scaling laws of σ.
The results are for D = 1.625× 10−5.

the width scales in a superdiffusive fashion (σ ∼√8/3Dt2). Finally, in the Taylor
regime, the width again scales diffusively, but with a much larger diffusion coefficient
(σ ∼√2Deff t), where Deff = 1/(192D) + D †. Let us examine these three regimes.

Diffusive regime (t� D−1/3): Initially, dispersion due to diffusion dominates over
the effects of shear (figure 2a). The longitudinal displacement due to diffusion O(

√
Dt)

is large compared to the relative longitudinal displacement of two particles, one
at the centreline, and a second that has diffused transversely a distance O(

√
Dt).

These particles become separated by a distance O(Dt2) due to the parabolic shear.
Comparing the two longitudinal displacements, we obtain the range of validity cited
above. At leading order, the longitudinal distribution is a Gaussian, advected with
centreline velocity

C̄(z, t) ≈ exp (−(z − t)2/4Dt)√
4πDt

as is illustrated in figure 2(d).
Anomalous regime (D−1/3 � t � D−1): In this regime the displacement due to

tracer diffusing transversely and being sheared longitudinally dominates over the
longitudinal diffusion. However, the majority of the tracer has not yet interacted

† Note that our definition of D (and consequently of Deff ) differs from Aris’ definition as we
have non-dimensionalized on the midline velocity, U0, not the average velocity Um = U0/2.
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Figure 2. The three dispersion regimes observed in this problem. (a–c) The particles are being advected and dispersing in the pipe, plotted as a
function of the axial position ξ = z − t and of the radius. (d–f) The corresponding longitudinal distribution functions. The results are obtained for
D = 8 × 10−6. (a, d) The diffusive regime at t = 10. Note the Gaussian distribution. (b, e) The anomalous regime at t = 1250. Note the asymmetric
and peaked distribution of the concentration profile. (c, f) The Taylor regime at t = 150000. The particles have diffused across the entire pipe and
the distribution is a symmetric Gaussian.
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with the pipe’s boundary. In this regime, the distribution is distinctly asymmetric
(figure 2b, e) and is advected with the pipe’s centreline velocity.

Taylor regime (D−1 � t): In the classic Taylor regime, the particles have become
uniformly distributed over the cross-section of the pipe (figure 2 c, f). The longitudinal
distribution is again a Gaussian

C̄(z, t) ≈ exp (− (z − t
2

)2
/4Deff t)√

4πDeff t

moving longitudinally with the average speed, and where Deff = 1/(192D) + D.
The Taylor regime of dispersion has received the greatest attention in the literature;

Taylor (1953) argued that after the tracer has completely mixed across the tube
diameter, it diffuses longitudinally as a Gaussian with an effective diffusion coefficient.
Amazed by this “remarkable” result he then verified it experimentally. Aris (1956)
improved Taylor’s approximation of the effective diffusive coefficient, finding that
Deff = 1/(192D) + D; he also first introduced longitudinal moments to characterize
the tracer distribution. Chatwin (1970), noting the asymmetry of the tracer distribution
at earlier times, investigated the approach to a Gaussian distribution by incorporating
asymmetric corrections. Taylor’s theory has also been extended to cover a great variety
of transport problems well beyond straight pipes and unidirectional flows. Frankel &
Brenner (1989) gave a solid foundation to this generalized version of Taylor transport
theory with an asymptotic expansion similar to the one developed by Chatwin for the
classical theory. Another approach was taken by Gill & Sankarasubramanian (1970)
who showed that an advection–diffusion equation with a time-dependent diffusion
coefficient could exactly reproduce the centroid and width of the concentration for all
time. Smith (1981) improved their idea by using a delay-diffusion equation, capable of
describing the asymmetry of the distribution and reproducing the skewness exactly.
A more complete history can be found in the review by Young & Jones (1991).

All these methods depend heavily on expanding the transverse tracer distribution
in an eigenfunction expansion, in particular Bessel functions for a circular pipe.
While this is valid and appropriate in the limit of complete transverse mixing, we will
concentrate on earlier times when the scalar has not yet strongly interacted with the
pipe boundary, and a free-space expansion is more appropriate.

The diffusive limit was discussed by Chatwin (1976, 1977) based on earlier work
by Saffman (1960). Chatwin noted that for small values of time longitudinal diffusion
could not be neglected; he developed a Gaussian approximation, multiplied by a
Taylor series in time, valid as t→ 0.

Lighthill (1966) first studied the anomalous regime; he noticed that for large arteries
the flow times were too small for the theory of Taylor to apply. Lighthill assumed the
initial distribution of the tracer was radially uniform, and localized longitudinally as
a δ-function. In the absence of diffusion, he argued that the longitudinal distribution
of the tracer would be a uniform-height finite-width step, with a support between
the initial point of release (corresponding to tracer at the stagnant edge of the
pipe) and the head of the distribution which moves with the centreline velocity. This
solution spreads ballistically, with a width proportional to t. Lighthill then found an
exact solution for the concentration incorporating transverse diffusion, but ignoring
longitudinal diffusion and interactions with the pipe’s boundary, in terms of a Fourier
transform. He found that the sharp transition at the head of the uniform step turned
into a transition layer which spread at a rate proportional to Dt2, foreshadowing
the results presented here. His solution is valid for times before the tracer interacts
strongly with the tube wall, i.e. before the Taylor regime.
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Subsequent authors have tried to take a more unified approach to the problem,
allowing a description of the solution valid for all times. Stokes & Barton (1990)
developed a description based on a Laplace transform in time and a Fourier transform
in space, yielding an eigenfunction problem for the radial dependence. These ideas
were extended by Phillips & Kaye (1996, 1997). Most relevant to the problem studied
here is an expansion in Phillips & Kaye (1997) done for a parabolic profile in an
infinite domain; they found an infinite expansion in terms of the product of Laguerre
polynomials and Gaussians. They used this expansion to recover Lighthill’s expansion
at the head of the distribution. This method can be used with the δ-function initial
condition discussed here, and Phillips & Kaye give the first term of the head expansion.
Our results give complete expansions for both the head and the tail of the radially
averaged concentration. In addition, our derivation is more compact and avoids the
radial eigenfunction expansion.

The related problem for linear shear has been well studied; Elrick (1962) gives the
exact solution, a Gaussian, for a δ-function release. Related results and extensions
can also be found in Foister & Van De Ven (1984), Rhines & Young (1983), Liron &
Rubinstein (1984) and references therein. Brunet & Haynes (1995) found a solution
analogous to Lighthill’s solution for plane Poiseuille flow, again with a radially
uniform initial condition. Pasmanter (1985) found a variety of exact solutions for
advection–diffusion equations including rederiving Lighthill’s solution.

Recently there has been interest in problems exhibiting anomalous diffusion, where
the variance of the concentration distribution, σ2(t) ∝ tγ , spreads with a non-diffusive
exponent (γ 6= 1) (Young & Jones 1991; Weeks, Urbach & Swinney 1996; ben
Avraham, Leyvraz & Redner 1992; Jones 1994). Weeks et al. (1996) give a Levy
flight model for these behaviours; they describe superdiffusive (γ > 1) and ballistic
behaviour (γ = 2) associated with a collection of particles each moving with its own
velocity. The behaviour in the anomalous regime here is superballistic, with particles
separating faster than the ballistic case as observed in the particle model of ben
Avraham et al. (1992). Though this behaviour is transient, its appearance in this
model suggests that anomalous diffusion due to differential shear may be a common
feature observable at early times in fluid experiments.

Our numerical results are obtained using the split-step Monte Carlo method devel-
oped for advection–diffusion equations by Lingevitch & Bernoff (1994); this method
is particularly robust for small values of the diffusion constant.

2. The anomalous regime
The advection–diffusion equation (1.2) is solved with an approach similar to the

one taken by Lighthill (1966). This yields an approximation that is valid for both the
initial diffusive regime and the anomalous regime.

We Fourier transform the advection–diffusion equation in the z-direction; define

Ĉ(r, θ, k, t) =

∫ ∞
−∞
C(r, θ, z, t) e−ikzdz,

then

Ĉt + ik(1− r2) Ĉ = D

(
Ĉrr +

Ĉr

r
+
Ĉθθ

r2

)
− Dk2Ĉ, Ĉ(r, θ, k, 0) = δ(r). (2.1)
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Now substituting Ĉ(r, θ, k, t) = B̂(r, k, t) exp (−(ik + k2D)t) yields

B̂t − ikr2B̂ = D

(
B̂rr +

B̂r

r

)
.

Following Lighthill, we look for a solution of the form B̂(r, k, t) = f(k, t) exp (r2g(k, t)),
which yields two differential equations:

ft = 4Dfg, gt = 4Dg2 + ik.

Solving the Riccati equation for g(k, t) yields the general solution:

g(k, t) = − q

4D

(
eqt − Be−qt

eqt + Be−qt

)
, f(k, t) =

H

eqt + Be−qt
,

where q =
√−4Dik.

Lighthill chose B = 1, corresponding to an initial condition that is uniform trans-
versely to the pipe and a δ-function longitudinally [Ĉ(r, θ, k, 0) = 1]. If we let B = −1,

g(k, t) = − q

4D
coth qt, f(k, t) =

H

2 sinh qt
,

as t→ 0, this solution approaches a δ-function initial condition at the origin,

Ĉ(r, θ, k, t)→ H exp (−r2/4Dt)

2qt
.

We choose H = q/2πD corresponding to the unit mass.
This yields an exact solution to the advection–diffusion problem (2.1):

Ĉ(r, θ, k, t) =
q

4πD

exp (−qr2/(4D tanh qt))

sinh qt
exp (−(ik + k2D)t). (2.2)

2.1. Moments

Integrating (2.2) over the transverse cross-section yields the Fourier transform of the
longitudinal distribution function:

ˆ̄C(k, t) =

∫ 2π

θ=0

∫ ∞
r=0

Ĉ(r, θ, k, t)r dr dθ = sech (qt) exp (−(ik + k2D)t). (2.3)

The nth moment of the averaged concentration (cf. (1.5)), Mn(t), is given by

Mn(t) = (i)n
∂n ˆ̄C

∂kn

∣∣∣∣∣
k=0

. (2.4)

Note that M0(t) = 1 due to conservation of mass. Also

M1(t) = −2Dt2 + t, M2(t) =
20

3
D2t4 − 4Dt3 + t2 + 2Dt,

M3(t) = −488

15
D3t6 + 20D2t5 − 6Dt4 + (1− 12D2)t3 + 6Dt2,

M4(t) =
4432

21
D4t8− 1952

15
D3t7 +40D2t6 +(80D3−8D)t5 +(1−48D2)t4 +12Dt3 +12D2t2.

The variance σ2(t) can now be calculated (assuming M0(t) = 1):

σ2(t) = M2(t)−M2
1 (t) = 8

3
D2t4 + 2Dt. (2.5)
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Note that for the diffusive regime (t � D−1/3) σ ∼ √2Dt, while in the anomalous
regime (t � D−1/3) σ ∼ √8/3Dt2. This result is verified numerically in figure 1, and
is clearly valid until t ≈ O(D−1) when the tracer begins to interact with the pipe’s
boundary.

We can also evaluate the skewness and the kurtosis in the anomalous regime:

Sk = lim
t→∞

M3(t)− 3M1(t)M2(t) + 2M3
1 (t)

σ3(t)
= −4

√
6

5
≈ −1.959591794, (2.6)

Ku = lim
t→∞
−3M4

1 (t) + 6M2
1 (t)M2(t)− 4M1(t)M3(t) +M4(t)

σ4(t)
=

309

35
≈ 8.828571429.

(2.7)
The negative value of the skewness indicates an asymmetric profile with a tail to
the left of the maximum. The large positive kurtosis indicates a profile with a much
narrower peak than a Gaussian distribution (for which Ku = 3).

2.2. Longitudinal concentration profile

Computing the inverse Fourier transform of (2.3) yields the longitudinal concentration
profile:

C̄(z, t) =
1

2π

∫ ∞
−∞

ˆ̄C(k, t) eikzdk =
1

2π

∫ ∞
−∞

sech (qt) e−(ik+k2D)teikzdk.

The problem simplifies if we choose similarity variables,

` = 4Dkt2, η =
z − t
4Dt2

,

in a reference frame moving with the centreline velocity. Then

C̄(η, t) =
1

8πDt2

∫ ∞
−∞

sech (
√−i`)ei`η exp

(
− `2

16Dt3

)
d`

∼ 1

8πDt2

∫ ∞
−∞

sech (
√−i`)ei`η d`+ O

(
1

D2t5

)
.

For t� D−1/3, the anomalous regime, we neglect the term exp (−`2/16Dt3), which is
associated with longitudinal diffusion.

This integral can be evaluated with contour integration. The singularities of the
integrand are simple poles in the lower half-plane along the negative imaginary axis
at αn = −iπ2(n + 1

2
)2. For η > 0 the integral can be closed in the upper half-plane

where the function is analytic, therefore C̄(η, t) = 0. For η < 0 we close the contour
in the lower half-plane picking up the residue from each pole:

C̄(η, t) ∼ i

4Dt2

∞∑
n=0

Res [sech (
√−i`)ei`η; αn]

=
π

4Dt2

∞∑
n=0

(−1)n(2n+ 1) exp ((2n+ 1)2π2η/4). (2.8)

This series converges for η < 0 and is a good approximation for |η| � 1.
For 0 < −η � 1 we find a different approximation that can account for the peak

in the concentration profile. Note that if we differentiate with respect to x the Jacobi
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theta function identity found in Bellman (1961, p. 10)

∞∑
n=−∞

exp (−t(x+ n)2) =

√
π

t

∞∑
k=−∞

exp (2πikx− (π2k2/t))

and choose appropriate values for the constants, we are able to recover (2.8) from the
left-hand side. The right-hand side yields

C̄(η, t) =
π

4Dt2
1

(−πη)3/2

∞∑
n=0

(−1)n(2n+ 1) exp ((2n+ 1)2/4η). (2.9)

This result has information about the head of the concentration of passive tracer.
Note the first term of this expansion can be deduced from equation (3.7) in Phillips
& Kaye (1997). Figure 3 displays the longitudinal concentration profile with the head
and tail approximations.

2.3. Off-centre point discharge

We now consider a point discharge release at an arbitrary location along the cross-
section of the pipe. Note that it is always possible to rotate the Cartesian coordinate
system so that the release occurs at some positive value b, for 0 < b < 1 along
the y-axis. If we rescale in the neighbourhood of the point release, X = x/

√
D,

Y = (y−b)/√D, Z = (z− (1−b2)t)/
√
D, T = t, then equation (1.2) for C(X,Y , Z, T )
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Figure 4. The three stages of longitudinal dispersion characterized by different scaling laws of σ
for a release of tracer at b = 1/2. The results are for D = 8× 10−6.

becomes
∂C

∂T
− 2bY

∂C

∂Z
= ∇2C + O

(√
D
∂C

∂Z
(X2 + Y 2)

)
. (2.10)

This equation has an exact solution (cf. Elrick 1962; Rhines & Young 1983)

C(X,Y , Z, T ) =
1

8πDT
√
πDT (1 + b2T 2/3)

exp

(
− 1

4T

(
(Z + bY T )2

1 + b2T 2/3
+ Y 2 +X2

))
.

(2.11)

Integrating this result over the cross-section yields the longitudinal concentration
distribution

C̄(Z,T ) =

√
3

2
√
πDT

1√
4b2T 2 + 3

exp

(
− 3

4T

Z2

4b2T 2 + 3

)
, (2.12)

a Gaussian distribution in the longitudinal direction. The variance,

σ2(t) = 8
3
Db2t3 + 2Dt, (2.13)

is again anomalous and superdiffusive. This approximation is valid when the tracer
has only diffused a small distance radially, for t� D−1. This indicates that even in the
presence of an off-centre tracer discharge we observe a transient anomalous regime.
Figure 4 displays the three distinct regimes when the tracer is released for b = 1/2.
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3. Discussion
Anomalous diffusion due to differential shear is clearly a feature of dispersion in

Poiseuille flow, before the tracer interacts strongly with the pipe’s wall. Our results
suggest that two hallmarks of a point discharge at the centre of the pipe are a width
σ ∝ Dt2 and a strongly peaked asymmetric longitudinal distribution. An off-centre
point discharge still produces an anomalous spread with a width proportional to
σ ∝ D1/2t3/2 and a symmetric Gaussian distribution.

These results can be understood on dimensional grounds, following an argument
given by Rhines & Young 1983. Consider a point discharge in a Lagrangian frame
moving with a parallel shear flow that scales locally as (∆y)n where ∆y is the
transverse displacement. After a time t, the tracer will have diffused transversely a
distance proportional to

√
Dt. Consequently, the difference in velocity, ∆v, between

tracer in the centre and the limb of the distribution will scale as ∆v ∝ (Dt)n/2. Finally,
the width of the distribution will scale as σ ∝ (∆v)t ∝ Dn/2tn/2+1, in agreement with
the Poiseuille flow results for release on the centreline (n = 2) and away from the
centreline (n = 1) given above. Note that as t approaches 1/D from below a transition
is seen to the Taylor regime. At this transition the width σ ∝ 1/D � 1, suggesting
that the anomalous regime is relevant for large distribution widths that should be
easily observable in experimental settings.

This research suggests that transient anomalous diffusion, at times before the
Taylor regime, is a robust feature of shear dispersion in laminar flows. The solutions
presented here can be used to describe the initial dispersion of a point discharge in
either a local quadratic or linear shear.

The authors would like to thank Bill Young, Neil Balmforth, Andrea Bertozzi and
Tom Witelski for enlightening conversations. Parts of this research were conducted at
Duke University and the WHOI GFD Summer School. This research was supported
by NSF grants DMS-9971969 and DMS-0074049. The authors also wish to thank
the referees for their careful and constructive criticism.

Appendix. Application to Poiseuille flow in a channel
In this appendix we present results for plane Poiseuille flow using the same tech-

niques. The system is governed by the advection–diffusion equation in two dimensions
with a δ-function initial condition at the channel’s centre:

∂C

∂t
+ (1− y2)

∂C

∂z
= D∇2C, C(y, z, 0) = δ(y)δ(z), (A 1)

and no-flux boundary conditions at y = ±1.
The Fourier-transformed concentration

Ĉ(y, k, t) =

∫ ∞
−∞
C(y, z, t)e−ikz dz

satisfies

Ĉ(y, k, t) =

√
q

2
√
πD

exp (qy2coth qt/4D)√
sinh qt

exp (−(ik + k2D)t). (A 2)

Moments are obtained by integrating (A 2) over the width of the channel,

ˆ̄C(k, t) =

∫ ∞
−∞
Ĉ(y, k, t) dy = exp (−(ik + k2D)t)

√
sech qt, (A 3)
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and by differentiating and evaluating at 0 (cf. (2.4)). This yields

M1(t) = −Dt2 + t, M2(t) =
7

3
D2t4 − 2Dt3 + t2 + 2Dt,

M3(t) = −139

15
D3t6 + 7D2t5 − 3Dt4 + (1− 6D2)t3 + 6Dt2,

M4(t) =
5473

105
D4t8− 556

15
D3t7 +14D2t6 +(28D3−4D)t5 +(1−24D2)t4 +12Dt3 +12D2t2,

σ2(t) = M2(t)−M2
1 (t) =

4

3
D2t4 + 2Dt, (A 4)

Sk = lim
t→∞

M3(t)− 3M1(t)M2(t) + 2M3
1 (t)

σ3(t)
= −8

√
3

5
= −2.771281293, (A 5)

Ku = lim
t→∞
−3M4

1 (t) + 6M2
1 (t)M2(t)− 4M1(t)M3(t) +M4(t)

σ4(t)
=

513

35
= 14.65714286.

(A 6)
Computing the inverse Fourier transform of (A 3) yields

C̄(z, t) =
1

2π

∫ ∞
−∞

ˆ̄C(k, t)eikzdk =
1

2π

∫ ∞
−∞

√
sech qt exp (−(ik + k2D)t)eikzdk.

Using similarity variables ` = 4Dkt2, η = z − t/4Dt2 and again neglecting the term

e−k2Dt in the anomalous regime (D−1/3 � t� D−1) yields

C̄(η, t) =
1

8πDt2

∫ ∞
−∞

ei`η√
cosh

√−i`
d`.

This integral can be approximated via contour integration. The singularities of the
integrand all lie on the negative real axis so C̄(η, t) = 0 for η > 0. The square root
creates a branch at each singular point. However, we can pair the singularities and let
the branch cuts connect consecutive singularities. In this way the integration contour
will evaluate to loop integrals around the pairs of singularities. As the integrand is
decaying exponentially we approximate the integral by a loop integral around the
first pair of singularities, yielding

C̄(η, t) ∼ 1

4Dt2
exp ( π

2

4
η)√−η for − η � 1. (A 7)

For 0 < −η � 1 steepest descents yields

C̄(η, t) ∼ 1

8
√

2πDt2
1

(−η)3/2
e1/(16η) as η → 0−. (A 8)
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