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Empiricism:

An Environment for Humanist Mathematics

Carl E. Behrens1

Alexandria, VA
cbehrens1@cox.net

Synopsis

Humanists have extended some links between mathematics and the physical
world, but most mathematicians still believe they operate in an immaterial realm
of the mind, with unquestionable logic and abstract thought. By rehabilitating
the empiricism of John Stuart Mill and combining it with growing knowledge of
the character of the human mind, we can escape from the indefinable Platonic
universe of immaterial consciousness and abandon the futile quest for certainty
that has plagued philosophy since the time of the Greeks.

quid nobis certius ipsis sensibus esse potest, qui vera ac falsa notemus?
(What can we have more sure than the senses themselves, by which to
discern the true and the false?)

–Lucretius, de rerum natura, Book I, Lines 699-700 [16].

The humanist approach to mathematics is an admirable and successful
movement to describe and analyze how mathematicians achieve what it is
they achieve. On the way, a number of conventional assumptions have been
challenged. One is that the practice of mathematics is simply the mechanical
application of deductive formulas; instead, humanists claim, it involves intu-
ition and value judgments that are uniquely human in character. Another is

1Carl Behrens is a student of the philosophy of science and is at present focusing
on the largely ignored (by mathematicians, that is) but rapidly evolving philosophy of
mathematics. He is currently chair of the Philosophy of Mathematics Special Interest
Group of the Mathematical Association of America (POMSIGMAA). The views expressed
in this essay do not necessarily reflect the beliefs of any other member of that organization.
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that mathematical proof is a formal process that can be completely and sat-
isfactorily expounded to universal consensus. Humanists have demonstrated
that in practice, proofs are necessarily abbreviated, and their acceptance
depends on their ability to persuade the mathematical community that the
omitted steps do not affect the validity of the conclusion.

Having proceeded thus far from the conventional view, humanists nev-
ertheless have failed to persuade mathematicians to abandon the concept of
mathematics as taking place in an immaterial world, involving immutable
objects subject to laws that are true a priori and not subject to question.

In other words, most mathematicians work in Jonathan Swift’s Laputa,
the island in the air populated by speculative thinkers so focused on the
abstract that they need to employ flappers to attract their attention to the
physical world. Humanists have let down a few ladders from Laputa, but
not many mathematicians have been lured down them to join the rest of
humanity in the physical universe.

In a broader sense, however, most of humanity has lived in Laputa since
the birth of consciousness. It is true that humanism originated in the Re-
naissance as a theme of focusing not on the life hereafter, but on the material
world of the present. For half a millennium humanists have relished the here-
and-now in the face of those who sought to assuage the woes of the present
with the promises of the future.

Throughout this history of conflicting views, however, there has never
been a time when humans, whether humanist or not, did not believe that
there was an immaterial soul or spirit, a mind, a consciousness, directing the
affairs of the crass material clay that we call the body. Even though New-
ton brought the heavens into synchronization with world of matter, and the
Darwin brought humans into kingdom of the animals, it seemed inconceiv-
able to most people that such a marvelous phenomenon as thinking could be
anything but a miracle.

Durant’s Dismay

There were doubters, of course, starting with Lucretius and continuing
through Richard Dawkins. There were also believers who suffered doubts.
One of the most poignant of these believers was the popular mid-20th century
writer Will Durant. In the 1920’s, Durant wrote a wildly popular book, The
Story of Philosophy [7]. It was lucid, balanced, particularly insightful in
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explaining the positions of individual philosophers, and conveyed a sense of
the true worth of the subjects they dealt with.

He followed that success with another book on philosophy. His purpose,
he said, was to focus not so much on the personalities as on the philosophy
itself. But that was a disaster, for the philosophy at the time was a chaos
of nonsense: Kantian idealism, taken into half a dozen wild worlds by Hegel,
Schopenhauer, Nietzsche, and into existentialism; “analytical” philosophy
by Moore and Russell and Ayer; logical positivism; Brouwer’s intuitionism;
Cantor and his infinitists. Durant pasted together a few pages out of these
outré views of metaphysics and epistemology, and then declared the range
of philosophy to include history, morality, religion, aesthetics, and politics.
He devoted 80 pages to philosophy, and 600 pages to the other “mansions of
philosophy” [6].

But in the process he laid out his dismay in the following paragraph:

If there is any intelligence guiding this universe, philosophy wishes
to know and understand it and reverently work with it; if there
is none, philosophy wishes to know that also, and face it without
fear. If the stars are but transient coagulations of haphazard neb-
ulae, if life is a colloidal accident, impersonally permanent and
individually fleeting, if man is only a compound of chemicals,
destined to disintegrate and utterly disappear, if the creative ec-
stasy of art, and the gentle wisdom of the sage, and the willing
martyrdom of saints are but bright incidents in the protoplasmic
pullulation of the earth, and death is the answer to every problem
and the destiny of every soul – then philosophy will face that too,
and try to find within that narrowed circle some significance and
nobility for man [6, page 21].

Philosophy will “face the reality” he defined so dramatically, he said. But
philosophers did not, and Durant himself resigned from philosophy. He be-
came instead a historian. A magnificent historian, a historian of civilization,
including philosophy; there are few who have so comprehensively portrayed
the “protoplasmic pullulation” (the word means “sproutings,” and was no
doubt as obscure to his first readers as it is today) of humanity with such
verve and art. But his history ended with Napoleon – the last volume in
his Story of Civilization, published in 1975 – and he never again dealt with
modern philosophy.
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Astonishing Hypothesis

Within the last few decades, the evidence has become overwhelming that
“man is only a compound of chemicals, destined to disintegrate and utterly
disappear,” as Durant feared; that “death is ... the destiny of every soul.”
This dismaying conclusion, coming on top of the scientific evidence of the
miniscule niche humans occupy in universal time and space, is still stoutly
resisted by almost every consciousness. So strong is the reflexive rejection
that Francis Crick, articulating the idea in 1994, described it as “The As-
tonishing Hypothesis,” acknowledging its character as contrary to common
belief. Nevertheless, Crick brought convincing evidence to support his hy-
pothesis that “we are nothing but a pack of neurons”; that “our joys and
sorrows, our memories and our ambitions, our sense of personal identity and
free will, are in fact no more than the behavior of a vast assembly of nerve
cells and their associated molecules” [3, page 1].

The reaction when one expounds the Crick hypothesis is uniformly aston-
ishing. As Crick points out, most scientists and many other people “share
the belief that the soul is a metaphor and that there is no personal life ei-
ther before conception or after death.” But when it comes to applying that
view to themselves, there is a curious hesitation. Crick is jocular about it:
“Whatever he says, Mabel, I know I’m in there somewhere, looking out on
the world.” But most people find it difficult to appreciate the irony. It does
not entertain them to realize, to be conscious of the fact, that their con-
sciousness of the world and of their own thoughts is a matter of electrons
and synapses.

For the philosophically minded such as Durant, the loss of the immaterial
soul is most distressing because it makes the ontological pursuit of final
causes, especially for humanity, an impossible, insignificant endeavor. From
the rational and spiritual master of the center of the universe that was the
Greek philosopher, humanity has descended to a “colloidal accident.” The
query of poets and philosophers, “What’s the meaning of life?”, has lost its
meaning, or at least its significance.

An Ordered Universe

Scientists in general have relinquished the search for ontological princi-
ples, at any rate in their professional activities. But for the scientific com-
munity – and I include mathematicians in this group – there is a further
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disquieting implication that some may draw from the Crick hypothesis, al-
though Crick himself did not do so. It lies in the words Durant used in his
lament: in the word “accident,” in the word “haphazard.” To the scientist,
there is nothing haphazard or accidental about the universe we inhabit, no
matter how tiny or evanescent may be the corner of it that we can observe.
It is an ordered universe: a universe that behaves according to universal
physical laws, some of which we have discovered. Does accepting the Crick
hypothesis nullify this belief?

I would argue that it does not. Humans up to now have believed in the
existence of an immaterial, spiritual world primarily because they found it
inconceivable that the mind and its operations could be wholly grounded
in physical reality. While accepting the Crick hypothesis does not deny
that a spiritual universe exists, it does remove one of the most powerful
reasons for believing that it must. However, the validity of the conclusions
of consciousness does not depend on whether consciousness is an immaterial
phenomenon or is part of the physical world. Humans with conscious minds
have constructed a model of an ordered, logical universe. We do not need to
abandon that model because we have changed our view of the engine that
created it. That would be to throw out the baby with the bathwater.

The Quest for Certainty

However, I do think we need to revise our justification for believing our
conclusions are true. And in the process we need to abandon an endeavor
that has plagued philosophy since the Greeks first invented it: the quest for
certainty.

As John Dewey [5] put it, the Greek philosophers undertook to replace
religion with philosophy. In doing so, they “stripped away imaginative accre-
tions” of myths and rituals. But they retained the principle of “immutable
and necessary truth” that characterized belief in religious doctrines. In-
evitably, this led to a downgrading of the kind of truth one obtains through
physical observation, as compared to pure and uncontaminated thought, as
exemplified by geometry.

The Greeks derived their view of the natural world on the principle of
logic and necessary truth. Descartes, on the eve of the revolution that ex-
plained the physical world through the force of experimental science, decided
that sense perceptions were unreliable. He created a dualistic universe: the
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external body that exists in the physical world, and the immaterial mind,
where absolutely certain “clear and distinct ideas” can be found and de-
clared. The same pursuit of certainty inspired the development of “analytic
philosophy” in the late 19th century, and continues to clog the structure of
philosophy today [2].

As long as it was widely accepted that there exists an immaterial universe
in which the mind operates (although contaminated to a greater or lesser
degree by the emotions and other worldly events and interruptions), it was
not too far a stretch to conclude that there was a way in which the mind might
attain absolutely certain knowledge. In particular, it might have been valid
to claim that the process of deductive logic leads to unchallengeable truth,
and that the laws and theorems of mathematics, so derived, shared in that
infallibility. The laws of the physical sciences also are derived by logic, but
they are confirmed by observation of the physical universe. Mathematics, on
the contrary, rested its claim to truth on mental operations that appeared
to be independent of material contamination and the uncertainty of sense
perceptions. It was not unreasonable to claim that mathematical knowledge
was of a different sort from knowledge gained by observation of the physical
world.

But the time has passed when such a distinction is valid. Because under
the Crick hypothesis, ideas, thoughts, concepts, feelings, beliefs – all the
evanescent phenomena that previously were thought to compose the mind,
or the spirit, or the soul – are physical objects that exist in the physical world
at a particular time. They are the chemical, electrical, and mechanical states
of the neurons of human brains.

My philosopher friends will immediately pronounce that claim to be bla-
tant reductionism, and I accept the charge. And I certainly am not suggesting
that we can draw a circuit diagram of the brain of a human being as it thinks
of the abstract number 5. It may never be possible to do that. The com-
plexity of consciousness is probably as profound as any physical phenomenon
we may encounter. We can reduce the weather into the collective action of
atmospheric molecules that we hypothesize are following Newtonian laws of
motion, but we can’t draw a map of those molecules. In the same way, we
can probably never map the action of the neurons of consciousness, even if
we believe that they obey the physical and chemical laws that dictate the
interactions of those physical objects.
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But reduction is not the point here. By locating abstract ideas and con-
cepts in the physical world, we can treat them as we treat other objects in
the physical world. If we want to assert the truth of a proposition involving
an abstract concept, we can use the same criterion that we apply to asser-
tions of physical fact: did we observe it to be true? In fact, we can apply the
principles of empiricism to the activities of the mind, including, significantly,
mathematics. Specifically, it is time to rehabilitate the empiricism of John
Stuart Mill.

Reenter John Stuart Mill

Mathematics (and formal logic, its close relative) occupy an anomalous
place in today’s materialistic world. Most mathematicians view the object
of their profession as an abstract, ideal world with Platonic echoes. This
immaterial character derives from the belief that mathematical propositions,
unlike physical laws, are not testable by experiment in the material world, but
depend for their proof on the interior logic of the system. And because logic
appears to be more certain of producing true conclusions than observation of
physical phenomena, there is a general belief that mathematical propositions,
unlike scientific propositions, are not subject to doubt.

This common view of the distinctive character of mathematics is in sharp
contrast with the empiricist philosophy that was prominent in Britain in the
18th and early 19th centuries. In particular, it was contradicted by the views
of the 19th century polymath, John Stuart Mill.

Mill was a major philosophical voice in Britain in the early Victorian era,
and he remains well recognized and often cited. Today he is viewed almost
entirely as a social and political philosopher. He developed and expanded
the utilitarianism that he inherited from his father, James Mill, and Jeremy
Bentham, and he played an important role in the changing British society as
it adjusted to the challenges of the Industrial Revolution.

But Mill was equally renowned in his time as a pursuer of traditional
philosophy and of the developing philosophy of science of the 19th century.
Building on the empiricism of John Locke and David Hume, Mill produced
a massive System of Logic, Ratiocinative and Inductive.2

2 Until recently The System of Logic was available only as Volumes VII and VIII of an
edition of The Collected Works of John Stuart Mill published by the University of Toronto
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Mill’s empiricism is very plainly stated: The only knowledge human be-
ings can have is the physical observation of singular events. How, then, can
we know the truth of generalities? Here is the key paragraph:

Whence do we derive our knowledge . . . ? From observation. But
we can only observe individual cases . . . From instances we have
observed, we feel warranted in concluding that what we found
true in those instances holds in all similar ones, past, present, and
future, however numerous they may be [17, Book II, Chapter iii,
Section 3].

The key feature of Mill’s epistemology is that he applies this principle
to all knowledge, including mathematical propositions, and even to the very
process of logical deduction itself. How do we know that if the premises of
a valid syllogism are true, then the conclusion is true? Because we have
observed many instances in which that process has led to the truth. We
therefore “feel warranted in concluding” that it will lead to the truth the
next time.

Note that Mill’s principle does not specify the number of instances that
are necessary to warrant our concluding a general principle. A simple sum,
say five plus three equals eight, would probably not require more than a
single counting on the fingers. In the case of Goldbach’s conjecture, many
individual instances have not been adequate for many mathematicians to
satisfy the extension of inductive truth to the principle (in one of its forms)
that “every even integer greater than 2 can be written as the sum of two
primes.”

Mill’s Logic was a standard academic text in British universities for much
of the 19th century. From its first publication in 1843, it went through eight
editions, the last in 1872. In the process of updating and revising the numer-
ous editions, Mill engaged in lively debate over the principles he expounded
about the source of human knowledge.

After his death in 1873, however, Mill’s Logic, and the empiricism it ex-
pounded, lost favor. Through most of the 20th century and into the present it

Press in 1973 [18]. The Logic is now in print in a 2002 paperback edition published by the
University Press of the Pacific [17]. Of course since it is now in public domain, readers
can also find the complete text online.
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has been virtually ignored, both by philosophers and by scientists and math-
ematicians. This occurred primarily because of the difficulty mathematics
presents to the empiricist model.

Historical Empiricism and Mathematics

The English empiricists of the 17th and 18th century found mathemat-
ics an embarrassment in their attempt to demonstrate their claim that all
knowledge comes from the senses. Mathematics, especially geometry, seemed
in its elements so unchallengeable, and at the same time so abstract from
sensory data, that they could not bring themselves to class it with the other
speculative mental exercises of Descartes which they rejected.

David Hume, it is true, refused to grant mathematical conclusions the
quality of infallible truths. But he based their imperfections on the fallibility
of mathematicians, not of mathematics. In “demonstrative sciences” (those
involving number and geometry), he wrote, “the rules are certain and infal-
lible, but when we apply them, our fallible and uncertain faculties are very
apt to depart from them, and fall to error... By this means all knowledge
degenerates into probability” ([13] as cited in [12, page 189]). The laws and
theories of all other sciences are also only probably true, being based on ob-
servation and derived by applying the law of cause and effect, which is itself
not deductively valid. But mathematical rules are “certain and infallible,”
and only the application of them, possibly erroneous, makes mathematical
knowledge uncertain along with all other knowledge.

Hume’s concession that mathematical rules are certain and infallible gave
Immanuel Kant an opening to claim that other abstract principles of logic
were also true a priori, exclusive of sensory input. In addition, Kant related
arithmetic and geometry to human intuitions of time and space, and claimed
that since those intuitions are the same for everyone, they are valid for every
human mind.

Kant’s “certain” knowledge was thus based on rather uncertain principles.
Not only did he concede the impossibility of knowledge of the physical world
except as observed via the senses. He also pinned the correctness of basic
ideas to the structure of the human mind. This was a shift from the view
of Descartes, who claimed his “clear and distinct ideas” were true because
they were so obvious no one could argue with them. Kant demolished logical
(and theological) assertions based on rationalistic arguments of this kind.
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His own logic, and his mathematics, were true because the mind intuitively
structured space and time on Euclidean principles. Since everyone has the
same intuitive structure, logic and mathematics must be true, or at least
valid, for everyone.3

Despite making these concessions to Hume’s empiricism, Kant was able to
structure an ideal world of reason by maintaining a strong Cartesian dualism
separating mind and the physical universe. During the 19th century, Kantian
idealism dominated Western philosophy, and the paradigm of the “ghost
in the machine” structured most intellectual activity. Hume’s empiricism
was relegated to the level of a nuisance, and Kant had effectively made it
irrelevant.

Mill: Intransigence and Disaster

By the mid-19th century, another British empiricist was ready to take a
crack at mathematical and other “certain” knowledge, and John Stuart Mill
was not making any concessions. Simply put, Mill argued that all human
knowledge, general or specific, was derived inductively from observation of
individual events, not deductively. In a supposedly deductive process, we
would be moving from known premises to certain conclusions, but where
would the premises come from? They, too, would have to come from induc-
tion.

Not content with basing experimental sciences on what we “feel warranted
in concluding,” Mill extended his principle into realms that had seemed cer-
tain and infallible. The axioms of geometry, the laws of arithmetic and
mathematics, even the rules of logic and reason themselves, only appear cer-
tain because they have been observed to hold true up to now. They are
certain, but their certainty derives from exactly the same process as any gen-
eral conclusion about the physical world. The conclusion that the sun will
rise in the east tomorrow is of the same quality, and very nearly the same
certainty, that three plus five will equal eight the next time someone carries
out that operation.

Mill’s radical empiricism was widely accepted for many years, but after
his death it lost favor. A major reason was that the loss of certainty im-
plicit in it bothered mathematicians and philosophers, as it does to this day.

3[12] discusses Kant’s mathematics at some length, see pages 129ff.
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Bertrand Russell, who was probably the most influential destroyer of Mill
as a philosopher, said, “What I most desired was to find some reason for
supposing mathematics true.” Mill’s position, that the truth of all general-
izations rests on inductive reasoning from single instances, was, in Russell’s
words, “very inadequate.”

Another factor was probably a matter of style. Comparing Mill’s verbose
Victorian syntax and leisurely completeness with Russell’s modern, vigorous,
and entertaining prose, it is easy to see why the one has been unpublished
for a century and the other widely excerpted and quoted.

But the primary cause of Mill’s defeat, ironically, was the explosive cre-
ation of the natural sciences, which empiricism itself had fostered. The Sci-
entific Revolution directed attention of “natural philosophers” toward the
evidence of experiment as the source of knowledge, rather than relying on
rationalistic speculation. By the 19th century the experimental sciences –
physics, chemistry, geology, biology, even astronomy – were beginning an
era of explosive and successful growth, which has been unabating since. All
of their advances have been based on the principle that truth derives from
observation of phenomena, as stimulated by experiment. Out of such obser-
vations scientists built theories to generalize the results and predict new ones,
but always the proof of the proposition lies in verification by experiment and
observation.

Thus the development of the natural sciences has rested on the very
principle that Mill espoused: the truth of any proposition depends on ob-
servation, and general propositions are based inductively on observation of
single instances.

The role of mathematics in this development was a curious one. The
formulation, and even the understanding, of theories in the natural sciences
have been and continue to be expressed mathematically, and mathematical
ideas and concepts, developed independently, continue to find a role in various
scientific environments. But mathematics seemed not to be a science like the
others, based on observation and experiment. In mathematics, truth depends
on logical proof, and logic, so it appeared, is a purely mental affair. What is
there to observe, besides other mathematicians?

It is on this point that Mill met disaster. In Logic, Book II, Chapter
7, Section 2, Mill stated that all numbers “must be numbers of something:
there are no such things as numbers in the abstract.”
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For such a remarkably sensible person, it was a remarkably foolish thing
to say, and Mill himself knew it. He immediately started backtracking. Nu-
merical and algebraic expressions are not necessarily attached to physical
objects, he said; they “do not excite in our minds ideas of any things in
particular.” It was a futile maneuver, however. If numbers don’t excite ideas
of any particular thing, how can they be “numbers of something”? More
importantly, if abstract numbers don’t exist, how do we know that five plus
three equals eight? We can show that five fingers and three fingers count up
to eight fingers, but mathematicians generally don’t count on their fingers.
And no amount of finger counting will help anyone derive Euler’s equation.

Why did Mill fall into this trap? The answer is, he saw no other way to
deal with the problem that since abstract activities such as mathematics take
place only in the mind, there appears nothing to observe. And at the time he
was writing, indeed, in every period of history prior to the last few decades,
mental activities were generally taken to operate in another universe. If Mill
wanted to insist that our knowledge of numbers derived from observation of
the physical world, he had to ground numbers in that world: numbers had
to be numbers of something. Abstract numbers didn’t exist – in the physical
universe, that is. When we add three to five, we are adding three somethings
to five somethings, and we observe that our result is eight of those things.
But what do we get when we take the square root of eight somethings? In
Mill’s system, we get disaster.

Millsian Empiricism: Into Limbo

Mill’s critics seized on the fallacy of claiming that there are no such
things as abstract numbers. It might be impossible to say exactly where
the numbers were, in a physical sense, given the general acceptance of the
Cartesian separateness of the immaterial mind, but to say they did not exist
was absurd. Gottlob Frege [9] complained that it restricted the scope of
mathematics to “pebble arithmetic”; he might have called it finger counting.
Bertrand Russell portrayed Mill as a bumbling, naive innocent whose heart
was in the right place but who couldn’t really understand what mathematics
was all about.4

4Russell’s final assessment of Mill was that his achievement “depended more upon his
moral elevation and his just estimate of the ends of life than upon any purely intellectual
merits... Mill deserved the eminence which he enjoyed in his own day, not by his intellect
but by his intellectual virtues” [19].



Carl E. Behrens 73

There were further grounds on which Russell and other anti-empiricists
attacked Mill’s logic. It was the implication, very important at the time,
that empiricism implied psychologism. There are various definitions of psy-
chologism, but in general it is described as the doctrine that reduces logical
entities, such as propositions, universals, or numbers, to mental states or
mental activities. There was a great deal of concern about psychologism in
the late 19th century, particularly after the Darwinian revolution. Both Rus-
sell and G.E. Moore in England, and Frege on the continent, formulated their
analytical philosophy largely in opposition to psychologism and naturalism;
Moore and Russell held that even Kantian idealism was too contaminated
with psychologist ideas to be acceptable.5 The opposition to psychologism
probably reflected the unease that now exists to a much greater degree about
the Crick hypothesis, but its ostensible expression mainly was concerned with
the implication that mind-dependent mathematics would lose its claim to ab-
solute certainty. Mill’s emphasis on physical observation as a source of truth
was a major denial of that claim. It had to be destroyed completely as a
philosophical force, and indeed it was.

Beyond Psychologism

The Crick hypothesis has brought us far beyond the tentative ideas of psy-
chologism that so terrified Russell and Frege, but the issues remain the same.
Mathematicians still reject the suggestion that their truths are no different
from the truths the rest of us enjoy, and insist that, however much humans
may contribute to the process of mathematizing, there must be something
taking place beyond the physical activities of human brains and their internal
synapses.

Despite such opposition, it is philosophically revealing to consider the
implications of Crick’s hypothesis. Because with it, Mill’s logic becomes
complete, and the haze of mystic conceptions of mind clears away. In com-
bination with Crick’s hypothesis, Mill’s empiricism makes clear the nature
of mathematical knowledge. Mathematics no longer needs to base its claim
to truth on mere assertion, but can rely on the evidence other sciences have
found so rewarding: the observation of physical fact.

5The article [10] discusses the attitude of Frege and Russell toward Mill, in particular
the question of psychologism.
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Nor is it necessary to deny, as Mill did, the existence of abstract ideas.
Of course they exist. If the mind is entirely contained in the body, then the
products of the mind – that is, thoughts – are physical objects. They are the
mechanical, chemical and electrical states of neurons in the brains of human
beings. No matter how abstract or fantastic these thoughts or concepts are,
they possess the attributes of the physical world, having a specific location
in space and time.

It might be argued that, if ideas and concepts exist in individual brains,
there is no way we can know that a particular idea, such as the number five,
in one brain is the same as it is in another brain. But this same doubt exists
about all our knowledge of the existence and characteristics of all objects,
whether they are located in an open field, or on a mountaintop, or in another
human brain. Our knowledge depends on observation of individual instances.
Whether those observations are accurate is beyond us. Solipsists argue that
we cannot even know if other brains exist. We judge only by results.

Thus when we observe another human correctly adding five and three
to get eight, we feel warranted in concluding that the abstract ideas held
by that individual are the same as ours, and we record this as a physical
phenomenon. If someone insisted on a different answer, we would suspect
that that person’s idea of the numbers involved, or the operation of addition,
was different from ours. When we observe ourselves, or another person,
deriving that sum from the definitions of abstract numbers and the axioms
of the real number system, we are observing a physical phenomenon. And
our knowledge that, in general, five plus three equals eight, is based on our
observation of individual instances of that result, and our feeling that we are
“warranted in concluding” that it is true in general.

It is important to distinguish this empirical approach from social con-
structivism. Constructivists focus on the process by which scientists and
mathematicians “warrant” their conclusions. Frequently hinted at, but rarely
explicitly stated, is the implication that in “constructing” scientific propo-
sitions, humans have the option of reaching different conclusions. But for
the empiricist, humans observe physical phenomena, and if the phenomenon
observed is the proof of an abstract mathematical theorem, well, that is phys-
ical too, because the neurons that are doing the abstracting and the proving
are physical objects.

We do not “construct” mathematical truths, in the sense of willfully com-
posing them. We observe the discovery that propositions are true by prac-
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ticing the arts of ratiocination, which in the past we have found valid. That
is why mathematicians all come up with the same answer when they derive
Euler’s equation:

eiθ = cos θ + i sin θ.

If they don’t, they’ve made a mistake, just as they would if they concluded
that the gravitational force varied with the cube of the distance rather than
the square. Their associates will continue to press on them the correct an-
swer, until they concede it or retreat to another calling.

It sometimes occurs, of course, that there is disagreement about whether
a proposition is true or not. It is hardly likely that a simple statement,
like three plus five equals eight, or even a well-established proposition like
Euler’s equation, will be challenged. Perhaps the centuries-long debate over
the role of the infinitesimal in the calculus will illustrate how disagreements
are resolved. Far from the rigid logicism that would seem demanded by an a
priori set of unchallengeable principles, the debate was finally resolved by the
mathematics community agreeing on an acceptable format and explanation.
In other words, mathematicians “felt warranted to assume” that the problem
was solved and the proposition true.

Empirical Knowledge: Good Enough?

Let me point out again that mathematics is unique in demanding absolute
certainty. Humanist probing has established that mathematical proof is a
matter of consensus, but that the consensus is often assumed to be based on
agreement on the certain truth of its assertions.

The physical sciences also demand consensus. But in the case of physics,
the force that underlies unanimity is the observation of phenomena. When
everyone agrees on the same gravitational constant or the same charge on
the electron, it is because they have repeatedly been observed to have those
values and no others. However, a good part of mathematics is abstract and
unrelated to physical observation. How much is subject to debate. We can
confirm that three plus five is eight by counting on our fingers, but direct
physical evidence of the truth of Euler’s equation is hard to come by. Yet we
all believe it, and at this moment, some mathematics student somewhere is
probably deriving it or following somebody else’s derivation.

Here is the problem for those who are dissatisfied with the need to assume
that the laws of logic and mathematics are true a priori. If they are not, why
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is it that everyone agrees to use them in the same way and come up with the
same answer?

I’m afraid the only solution to that problem is the crude empiricism of J.
S. Mill. The only way we know something is by observing it. If we observe
that the sun rises in the east, that as far as we know it always has, and that
everyone we know says it does, then we say “The statement that the sun rises
in the east is true.” As Mill put it, “From instances which we have observed,
we feel warranted in concluding that what we found true in those instances
holds in all similar ones, past, present and future, however numerous they
may be” [17]. That is why we believe the sun will rise in the east tomorrow.

Applying crude empiricism to mathematics – and that’s exactly what
Mill did – the reason we believe that Euler’s equation is true is because ever
since he first wrote it down, anybody who tried to derive it came up with
the same answer. If not, the answer was labeled “wrong,” and the person
who produced the wrong answer either agreed to the correct one or took up
politics or gastronomy.

Thus the empiricist argument turns the problem around. The Platonist
asserts that Euler’s equation is true a priori, because of the logical process by
which it was derived. Since it is true, it is trivially unsurprising that everyone
gets the same result. To the empiricist, on the other hand, following a logical
sequence does not guarantee the truth of the result. The only source of truth
in any activity is observation. It is the very observation that everyone gets
the same answer that warrants our conclusion that Euler’s equation is true.
In fact, our feeling of certainty when we follow any sequence of logic derives
from the same observation: that everyone else has followed the same sequence
and got the same result. We are certain that the next person who follows it
will also get that result.

I can feel rumblings of dismay at the crudity of this empiricism. In his
review article in The American Mathematical Monthly of November 2006
[11], Charles Hampton pointed out that graduate mathematics students learn
no philosophy, and generally receive no formal tuition in the foundations
of mathematics. But one element of philosophy appears to be imparted
informally and ingrained indelibly; that mathematical truths are somehow
different, more certain, more immune to doubt, than mere observation of
physical events can produce.
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Stewart Shapiro, for instance, in his recent book Thinking about Mathe-
matics [20], one of the books that Hampton reviewed in his Monthly article,
puts it this way:

Basic mathematical propositions do not seem to have the contin-
gency of scientific propositions.

Here, in his introduction of the subject, Shapiro is diplomatically tenta-
tive, with that “seem to have.” But there is no doubt in his mind. A little
farther down the page, he says,

Unlike science, mathematics proceeds via proof. A successful,
correct proof eliminates all rational doubt, not just all reasonable
doubt.

To have any doubt about it is not only unreasonable, it is irrational. And
finally, in a grand climax:

Basic mathematical propositions enjoy a high degree of certainty.
How can they be false? How can they be doubted by any rational
human being? Mathematics seems essential to any sort of rea-
soning at all. If we entertain doubts about basic mathematics, is
it clear that we can go on to think at all?

Let me make it clear that I recognize mathematical propositions are differ-
ent from what Shapiro calls “scientific” propositions. I’ve already noted that
difference. But from an empiricist point of view, our knowledge of math-
ematical propositions – our certainty about their truth – rests on exactly
the same grounds as so-called contingent propositions: it rests on inductive
observation.

Does this approach truly threaten the basis of human thought? Am I
striking at the heart of all knowledge? Nonsense. Any doubts I might have
don’t bar me from thinking; don’t bar me from a really profound trust in
logic.

Despite my crude empiricism, I am really, really certain that three plus
five equals eight. My certainty rests on three points. First, other people have
told me so. Second, every time I hold up five fingers in one hand and three
in the other, and count, it come out eight.
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Third, when I consider the definitions of numbers, and axioms of the real
number system, I reach the logical conclusion that, if the definitions and
axioms are true, then the sum of three and five is eight.

Despite its abstract character, or perhaps because of it, this third rea-
son seems to be the most convincing. Let’s look at it a little more deeply.
Even this simple proposition is more complicated than it first appears. I’m
frequently grumbled at, “It’s true by definition,” or even, “You can see that
it’s true.” But it is not just a matter of primitive definition. We don’t define
eight as three plus five, we define eight as seven plus one. That’s the way all
the numbers are defined: the previous number plus one. And in addition to
the definitions of the numbers we need some axioms. At a minimum we need
the properties of equality.

Symmetry: if a = b, then b = a.

The transitive property: if a = b and b = c, then a = c.

Addition: if a = b, then a+ c = b+ c.

And we need:

The associative field axiom: a+ (b+ c) = (a+ b) + c.

Then, having defined the numbers two through eight, we can say:

5 + 3 = 5 + (2 + 1)

= (5 + 1) + 2

= 6 + 2

= 6 + (1 + 1)

= (6 + 1) + 1

= 7 + 1

= 8

Why is it that this rather complicated procedure is more convincing than
the physical evidence of counting on my fingers? It may be the result of
centuries of brain-washing, from Descartes and even back to Aristotle onward,
of the superior reliability of reason over the faulty uncertainty of the senses.
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Most probably it’s the generality of the proposition; it applies not only to
fingers but to spoons and toes and apples. It applies to everything, and to
nothing. As Richard Feynman put it, “The GLORY of mathematics is that
you don’t know what you’re talking about” [8].

But note that it depends not only on faith in the validity of deductive
reasoning – the proof that Shapiro was trumpeting – but also on the belief in
the specific axioms I cited, as well as any others I may have left out. To the
apriorist, that is not a problem: deductive reasoning is valid, and the axioms
of the real number system are true, because – well, because they are. As an
empiricist, however, I say that our beliefs are based on the observation that
everyone up to now has agreed that they are true, and on our assumption
that everyone will continue to do so in the future.

Let’s look at the so-called contingent question raised earlier: will the sun
rise in the east tomorrow? I’m really, really, certain that it will. In fact,
my certainty is based on the same kind of evidence that reassured me in the
case of simple addition. First, I’ve been told so. Second, as far as I know it
always has. Third ...

Third, if I assume that Newton’s laws of motion and gravity are true,
and follow a process of logical deduction based on a model of the planetary
system of the sun, I will conclude that the earth will continue to rotate as
it has, in the absence of an external force, of which there is no evidence.
Having rotated far enough to obscure the sun this evening, it will continue to
rotate until the sun reappears tomorrow morning. It will not stop rotating,
or reverse its rotation so as to bring the sun into view again in the west.

As in the case of simple addition, the construction of a model of the
planetary system and the exercise of deductive logic from basic principles
is somehow, in this still-persisting Age of Reason, more significant than the
simple observation of patterns, convincing though they may be. But the
logical processes I followed in constructing my certainty about tomorrow’s
sunrise are exactly the same as those involved in summing five and three.
I have constructed a model of a planetary system, just as I constructed a
sequence of real numbers. I have applied basic axioms, in one case Newton’s
laws, in the other the axioms of the real number system. In each case I have
to accept them as true, and I do, because everyone else does. I also follow
the methods of deductive logic, for the same reason.
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I would follow the same procedure if I set out to demonstrate the truth of
Euler’s equation. I am really, really sure that e to the i theta equals cosine
theta plus i sine theta. But in the same way, and for the same reasons, I am
really sure that the sun will rise in the east tomorrow morning, just as it did
this morning.

Mathematics: A Science

The similarity in demonstrating the truth of these two propositions, the
sum of three and five and the motion of the planets, suggests that the two
disciplines they represent, mathematics and physics, are likewise similar. In
fact, it makes it practical to assert that mathematics is itself a science, unique
in its own way, but metaphysically and epistemologically like physics, chem-
istry, biology and other sciences that have made such great advances since
they freed themselves from reliance on intuitive truths and focused on obser-
vation and experiment.

With the aid of Crick’s hypothesis, mathematics can free itself from de-
pendence on mystical concepts of a disembodied mind, and base its findings
on the same Millsian empiricism that other sciences employ to investigate the
ordered universe of the physical world: a universe that appears to operate
according to natural laws which it is the goal of science to discover.

At the same time, by treating mathematics as a science, we can relieve
the suspicion, raised by locating mathematics in the physical universe, that
mathematical laws did not exist before humans thought of them. We do not
claim that the law of gravity was invented by Newton; if we treat mathematics
as a science, we do not need to claim that Euler’s equation was invented by
Euler, or that it did not exist before he did. We can treat mathematics as
we treat the natural sciences: as models of an ordered universe which we
discover by observing phenomena.

Advantages of Empiricist Philosophy

In exchange for acknowledging the possibility of some doubt of the truth
of mathematical propositions – the possibility, not the existence, of doubt –
we gain a number of advantages. The first of these is giving up the futile
struggle to defend a priori truths.

Discussing Frege’s criticism of Mill in his Oxford History of Western Phi-
losophy, Anthony Kenny in 2000 summarized Frege’s “brilliantly successful”
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attack in Kantian terms, and said: “No philosopher of mathematics today
would defend” Mill’s views [14, page 264]. But on analysis, Frege’s argument
seems less than brilliant, no matter how successful. As Kenny describes it,

Kant had maintained that the truths of mathematics were syn-
thetic a priori and that our knowledge of them depended neither
on analysis nor on experience but on intuition. Mill took a quite
opposite view: mathematical truths were a posteriori, empirical
generalizations widely applicable and widely confirmed. Frege
disagreed with both his predecessors: he maintained that the
truths of arithmetic were not synthetic at all, [but] analytic.

The Cambridge Dictionary of Philosophy says that a statement is called
analytic “if the predicate concept is contained in the subject concept”; oth-
erwise it is synthetic [4, page 26]. The statement “All red roses are red” is
analytic; “All roses are red” is synthetic. Any analytic statement, accord-
ing to the Dictionary, is a priori – that is, it is knowable without empirical
evidence – and necessary – i.e., something that could not be false.6

In other words, Frege’s attack on Mill, as Kenny describes it, consisted of
simply declaring that mathematics is knowable without empirical evidence,
and something that could not be false.

Perhaps a more accessible criticism of Mill’s position is one by A.J. Ayer,
published in 1936. This was after Russell had demonstrated that he couldn’t
show Frege was right, having failed to derive mathematics from a priori
propositions. Ayer asserted that thought is a source of knowledge, indepen-
dent of, and more trustworthy than, experience. He conceded that mathe-
matical laws were probably discovered by induction – that is, by experience.
But he claimed that once discovered, they are so obviously true that they
must hold true in every conceivable instance [1, page 722]. Note that Ayer’s

6Philosophers make a distinction between a statement that is “certainly true” and one
that is “necessarily true.” If a statement is declared true a priori, it is assumed that its
truth is demonstrable without empirical evidence. If it is “necessarily true,” such as the
sentence “a red rose is red,” then it is true because it cannot be false. To an empiricist,
however, the claim that “a red rose is red” cannot be false depends on the validity of
the rules of logic, and those very rules are true only inductively: that is, they are valid
because the repeated instances of their success leads us to “feel warranted in concluding”
that they are true. Thus the distinction between “certainly true” and “necessarily true”
is meaningless to an empiricist.
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phraseology is almost identical to Mill’s own description of induction: “We
feel warranted in concluding that what we found true in those instances holds
in all similar ones, past, present, and future, however numerous they may
be.” But Mill didn’t claim that the inductive result was more certain than
the original observations.

After Ayer’s declaration, Mill’s empiricism completely disappeared from
the philosophical scene. The rest of the century was consumed with intricate
discussions of the implications of a priori knowledge and the complications
that arise from the concept. The futility of these efforts was illustrated in
a patient and detailed analysis by Philip Kitcher in 1983 [15]. For anyone
interested in the mental contortions of those trying to reconcile Platonic ide-
alism with modern science, Kitcher’s analysis of the philosophical difficulties
of apriorism is exhaustive and cogent.

What Are We Talking About?

A second advantage to adopting empiricism is that mathematicians can
clearly state what it is they are doing and where they are doing it. Without
the empiricist grounding in the physical world, mathematics is located in a
Platonic universe; it consists of manipulating immaterial objects on whose
nature there is no agreement. All such speculation becomes irrelevant if we
acknowledge that abstract objects – thoughts, ideas, fantasies, numbers –
are physical objects that exist in a place, the human brain, and a time, the
moment they are thought of.

It is important to graft the physicality of the Crick hypothesis to Mill’s
comprehensive empiricism in order to achieve this grounding. Without Crick,
the Millsian concept that requires numbers to be numbers of something runs
into immediate difficulties, particularly in the area of infinite sets. As one
critic has noted, “There are not enough physical objects (or mental states)
to account for Z, much less R.” How can you attach an object to every real
and complex number when there are an infinity of such numbers? Does that
mean there are an infinity of physical objects? Where are they?

But if we agree that numbers, and mathematical concepts, have an ex-
istence of their own, independent of the objects they are applied to, this
difficulty disappears. Rejecting Cartesian dualism, and regarding the mind
and its activities as purely physical phenomena, we avoid the trap Mill fell
into. Numbers and other abstract concepts can exist in the physical world
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without being attached to any physical objects other than the human brains
that conceive them. Thoughts, even the abstract thoughts of pure mathe-
matics, are physical objects: they are the physical states of human brains
at the moment they are thinking them. They are physical phenomena, and
as such can be studied scientifically. We do not need to posit an immaterial
Platonic universe for them to exist in.

Furthermore, we have no difficulty in asserting the physical existence of
R, Z, or the sum

∑∞
n=1

1
n
. They exist, and they exist only, as the physical

states of human brains. (They also exist in the “external memory” of written
records or other media, but external memory consists of marks on paper or
other physical materials; it has significance only as sensory input to individ-
uals’ neuronal connections. As such, it is no different from a fossil skull to a
paleontologist or a rock to a geologist.) Their existence does not depend on
our ability to attach a physical object to each term in the sum, and if the
sum converges (though obviously

∑∞
n=1 1/n doesn’t), we can use that fact

without difficulty, just as we can count from one to two without enumerating
all the real numbers that exist between them.

Dealing with the Doubtful: Navigating the Transfinite Universe

A further feature of empiricism is that it gives promise of some relief to
the heartburn caused by considering some features of modern mathematics,
particularly in the area of transfinite set theory. Through the considera-
tion of infinity, beginning with the Zermelo axiom that it exists (whatever
that means to a non-empiricist), paradoxes of various sorts appear to lurk,
contradicting the stern belief that logical processes must necessarily lead to
absolute truth.

It is beyond the scope of this article to plunge into the transfinite world;
few practicing mathematicians do so. But its existence is a constant source
of uneasiness for those who still quest for certainty. Perhaps an empiricist
approach, which allows for doubt when consensus is impossible, will bring
some relief to those who feel they must explore the infinite.

Philosophical Epilogue

This essay is not an exercise in academic philosophy, although I hope
philosophers will encounter in it a reflection of the respect I feel for the Queen
of the Sciences. I have carefully considered the major themes of contemporary
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philosophy and earnestly tried to deal accurately with philosophical concepts
when my argument touches them. Given the nature of philosophy, I cannot
expect to emerge without generating controversy, but I hope at least that
my conclusions can be found philosophically palatable.

It is also not a defense of John Stuart Mill’s mathematics; indeed, I
specifically reject Mill’s contention that there are no abstract numbers, an
argument I declare to have been a disaster. I do argue that Mill’s epistemol-
ogy, his empiricist insistence that all our knowledge derives from observation
of singular events, when combined with Crick’s hypothesis that human con-
sciousness and ratiocination are physical events in the brain, make it possible
to view mathematics as a phenomenon taking place in the physical universe.
Such a view can resolve many of the philosophical confusions that plague the
profession at present.

This argument, to be effective, must be directed to mathematicians –
those who are interested, to a greater or lesser degree, in the way their sci-
ence relates to the rest of the sciences, and to the world they inhabit. The
reason is that philosophers have universally accepted the view of mathemat-
ics that its own practitioners appear, frequently unconsciously, to hold; a
view, as I have attempted to demonstrate, that is in many aspects wrong.
From this derive most of the conundrums and controversies that frustrate
philosophy of mathematics today, and have frustrated it from its very begin-
ning. So the argument must be directed to the source of the frustration: to
the mathematical community.

It is not an easy audience to approach. The philosophy of mathemat-
ics is not a formal part of the curriculum and is rarely touched on in any
mathematics course. The principle reason given for this lack is the crowded
agenda that mathematics majors face, along with the fact that it is perfectly
possible to practice mathematics successfully without delving into questions
of philosophy.

But the reason goes deeper. The fact is, even if there were an urge to
explore philosophical questions with students, there is total disagreement on
how such questions could be answered. The metaphysics of mathematics is
in chaos. There is no widely accepted concept of what mathematical objects
are, where they are located, or how they relate to the physical world. There is
not even agreement on defining what mathematics is, or what its relationship
to the physical sciences is.
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Mathematicians do agree, almost universally, on the epistemology of
mathematics. Students are not instructed in philosophy, but one philo-
sophical principle is ingrained without question or doubt: the belief that
mathematical propositions, once proved, are necessarily true, in contrast to
propositions based on observation of the physical world.

In summary: There is chaos in the metaphysics of mathematics, and unity
in its epistemology. Unfortunately, the almost unanimous view of mathemat-
ical necessity is wrong.

This article offers a simple answer to metaphysical confusion. It declares
numbers, axioms, mathematical laws, theorems, and other abstract compo-
nents of mathematical science, to be physical objects, along with all other
abstract ideas and concepts. They are the physical state of the neurons in
human brains. They exist – there is no need to axiomatize their existence –
in specific times and places.

Assuming an ordered universe, in which physical events occur according
to universal laws, the human mind when manipulating abstract concepts
such as numbers will behave in a lawful way, in the same manner that other
physical objects follow their own laws. We may observe such behavior and
reach certain conclusions about the nature of those laws, just as we do for
the rest of the physical universe.

The empiricist position on epistemology is equally simple. Contrary to
the broadly accepted assertion that mathematical truth is a special kind, it
holds that we know mathematical propositions are true in the same way that
we know propositions in other sciences are true: by observation of singular
instances which we generalize inductively into universal laws.

Though simple, these philosophical solutions are not easy to accept. As
I have noted, adopting the Crick hypothesis means denying a view of hu-
man consciousness that has been almost unconsciously accepted throughout
history. Equally difficult for mathematicians is abandoning faith in the nec-
essary truth of mathematical propositions. I have tried to argue that putting
mathematics on a level with physical sciences does not call for any significant
degree of doubt about the truth of mathematical propositions. After all, if
we were not firmly certain of the truth of Newtonian mechanics, we would
not climb aboard airplanes. But it is certainly a hard sell.

Nevertheless, bringing mathematics into the family of material sciences
should enable viewing it in an accurate light, opening new possibilities for
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its development and resolving many nagging quandaries that lurk on the
outer fringes of its frontiers. And it certainly would remove a vast amount
of confusion and error in the philosophy of mathematics.
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