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A New Megalonychid Sloth from the Late Wisconsinan of the
Dominican Republic
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3Department of Geography and Environmental Studies, Carleton University,
Ottawa, ON K1S 5B6, Canada
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ABSTRACT.—An unusually well preserved skull, mandible, and indisputably associated post-cranial ele-
ments of new sloth, Acratocnus (Miocnus), were recovered from a cave in Jaragua National Park, Dominican
Republic. The animal died lying in a rimstone pool and was rapidly coated with a thin calcite patina. We have
documented a late Wisconsinan age for this specimen by inorganic 14C radiometric dating of the patina, with
supporting data on the carbon systematics of the speleothems in this cave. This sloth is described as a new
species on the basis of the distinctive morphology and relative size of cranial and mandibular features. We
consider the close relationship between Acratocnus of the Dominican Republic and Puerto Rico to constitute
clear evidence for late Tertiary inter-island dispersal of this lineage, congruent with similar evidence from
other West Indian terrestrial mammal orders.

INTRODUCTION

Hispaniola has been recognized as a cen-
ter of diversity for the late Quaternary ter-
restrial mammal fauna of the Greater An-
tilles (Woods, 1989) and is a critical test case
for comparing competing hypotheses for
the origin of these lineages. Nevertheless,
the megafaunal and mesofaunal compo-
nent of this diversity—an eclectic assem-
blage of megalonychid sloths—remains
poorly understood, even at the level of
simple alpha taxonomy. MacPhee et al.
(2000) and White and MacPhee (2001) have
added four new taxa, raising to six the
nominal megalonychid alpha diversity.
The specimen described below is as mor-
phologically distinct as previously erected
taxa assigned to the genus Acratocnus.

The specimen under consideration, here-
after the ‘Jaragua sloth’, was recovered
from Cueva del Perezoso, UTM 1988498N
219938E, Jaragua National Park, southwest-
ern Dominican Republic (Fig. 1). The ani-
mal died in a shallow rimstone pool and its
bones were coated with a thin (∼1 mm)

patina of speleogenic calcite sufficiently
rapidly that many elements remained in
approximate articulation. The preservation
quality of much of the post-cranial skeleton
was variable, but the skull, mandible, and
both scapulae escaped complete immersion
and were recovered in near-perfect condi-
tion. Other elements recovered include the
distal right femur, femoral head, right cal-
caneus, over a dozen intact vertebrae and
fragments of additional vertebrae, ilium,
radius, ulna, and ribs. The mandible was
first noted by the 1986 National Speleologi-
cal Society Expedition to the Dominican
Republic (Veni et al., 1987) but was col-
lected in June 1999.

DATING

The extremely superficial context of the
specimen seemed to favor a late Holocene
age, but laboratory analysis determined
that the post-cranial bone lacked recover-
able quantities of macromolecular collagen.
We therefore chose to date the specimen by
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the novel application of inorganic radiocar-
bon dating of the calcite patina, exploiting
the serendipitous co-occurrence of modern
calcite-rafts (Hill and Forti, 1986) to experi-
mentally determine the carbon systematics
of the site.

The 14C activity of the calcite patina was
measured by conventional beta counting at
Beta Analytic laboratories, Florida, yielding
a result in percent modern carbon (pMC).
However, interpretation of radiocarbon
data from speleogenic carbonates is com-
plicated because the carbon may originate
from different sources, each with different
initial 14C activity (Genty and Massault,
1999). The two main sources are 1. biologi-
cal activity of roots and soil organisms pro-
ducing CO2 with a 14C activity close to that
of the atmosphere; and 2. weathering/
dissolution of inorganic fractions of the soil
and/or the host rock, at zero 14C activity
(“dead carbon”). The proportion of atmo-
spheric C to rock C varies with biological
activity, rock thickness, and the type of dis-
solutional system (Holmgren et al., 1994).
In an “open” system percolation waters re-
main in contact with soil CO2 during rock
dissolution and the 14C activity remains
close to atmospheric. In a “closed” system,
percolation waters are isolated from soil
CO2 during rock dissolution and the 14C
activity is only 50 % of atmospheric. The
initial 14C activity of CaCO3 precipitated in
a cave from dripping percolation thus var-

ies with the 14C activity of the percolation
water. In addition to the calcite, a flowstone
may contain some detrital material, at zero
14C activity. The percentage of dead carbon
causes an uncorrected 14C date to be falsely
old. A way to correct this is by calibration
against the apparent age of a modern cal-
cite sample of true zero age. On the as-
sumption that the paleo-sample and the
modern sample formed under comparable
initial conditions, the percentage of dead
carbon can be calculated and the paleo-
sample age corrected.

For this study we measured the 14C ac-
tivity of a modern calcite raft forming on
the surface of a nearby pool. Our use of
such rafts for the determination of the car-
bon systematics of the system derived from
the fact that these speleothems form in time
frames of weeks to months and can be con-
fidently recognized as modern. However,
we acknowledge that raft calcite carbon
systematics may not be exactly comparable
with those of the patina calcite. Evapora-
tion may cause excessive loss of 12C16O2
over 14C18O2 resulting in some enrichment
in 14C in the raft material; this error would
make the sloth sample appear falsely
young, but the error would be small in a
sample of this age.

Results for the calcite patina and calcite-
raft from Cueva del Perezoso appear in
Table 1. There are two ways to view these
numbers: 1. If a conventional pre-1950
“modern” carbon value of 1.00 is used, then
a dead carbon contribution of 59 % is re-
quired to explain the low measured pMC
and convert the measured activity level to
1.000 and the age to zero. 2. If the modern
sample is assumed to have formed since
1950 and the true modern (post-bomb) car-
bon value of 1.17 is used, then the mea-
sured activity is 0.3548 percent of true mod-
ern carbon and a dead carbon contribution
of 64 % is required to explain the apparent
age.

The resultant values (see Table 2), ex-
pressed in the conventional form as 95 %
confidence limits, yield a corrected age of
the calcite patina of 18 499 to 21 491 radio
carbon years before present (rcybp).

As previously stated, much of the skel-
eton of the Jaragua sloth, especially the cra-

FIG. 1. Location map. Position of cave within the
Dominican Republic shown with a white asterisk. Lo-
cation of sloth within cave shown with a black aster-
isk.
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nium and mandible, is covered with a layer
of calcite of varying thickness. Therefore,
many observations and measurements of
features have been done with the aid of
medical computer axial tomography scans
(CAT scans).

SYSTEMATIC PALAEONTOLOGY

MAGNORDER XENARTHRA COPE,
1889

ORDER PILOSA FLOWER, 1883
SUBORDER PHYLLOPHAGA OWEN,

1842
SUPERFAMILY MEGATHERIOIDEA

GRAY, 1821,
FAMILY MEGALONYCHIDAE GERVAIS,

1855
SUBFAMILY CHOLOEPODINAE GRAY,

1871
TRIBE ACRATOCNINI VARONA, 1974

Acratocnus Anthony, 1916

Generic placement and diagnosis

The cranial features of the Jaragua sloth
are consistent with those defining the ge-
nus Acratocnus (MacPhee et. al., 2000), in-
cluding and a domed cranium, marked
sagittal crest, pronounced medio-lateral

flare of rostrum, trigonal and curved first
maxillary tooth, and a convex last man-
dibular molariform which is narrowest lin-
gually. The post-orbital constriction is pre-
sent but moderate—this dimension is
broader than in other species of Acratocnus
(Table 3). The first two mandibular teeth
are missing but the triangular shape of the
intact alveoli is consistent with generic as-
signment to Acratocnus. The Jaragua sloth
can be distinguished from Neocnus by the
presence of robust jugals, which are absent
or reduced in the latter (MacPhee and
White, 2001), rostral flaring, post-orbital
constriction, and its larger overall size. The
Jaragua sloth is distinguished from Paroc-
nus by its overall smaller size, its short and
pointed symphyseal spout, and the small
size of the first maxillary tooth relative to
the rest of the toothrow. The trigonal cross-
sectional shape of the first maxillary tooth
also distinguishes the Jaragua sloth from
Parocnus browni, where this tooth is oval.

A postcranial feature consistent with
placement in Acratocnus is the straight
femoral shaft, which at its distal end nar-
rows anterio-posteriorally and widens me-
dio-laterally. A narrow intercondylar notch
(Table 4) and sub-equal femoral condyles
terminating distally at the same level also
separate the Jaragua sloth from Neocnus.

TABLE 1. Modern calcite raft data.1

d13CPDB Percent modern carbon2 Conventional radiocarbon age3 Correct age

−0.5 0.4151 ± 0.0084 7060 ± 160 rcybp 0

Radiocarbon dates include 1-sigma error
1There are two ways to view these numbers. If a conventional “modern” carbon value of 1.00 is used, then a

dead carbon contribution of 59% is required to explain the low measured percentage of modern carbon and
convert the measured activity level to 1.000 and the age to zero. If the modern sample is assumed to have formed
since 1950 and the true modern (post-bomb) carbon value of 1.17 is used, then the measured activity is 0.3548
percent of true modern carbon and a dead carbon contribution of 64% is required to explain the apparent age.

2“Modern” represents the pre-1950s atmospheric value. Measured activity is normalized to the measured
d13 C, which represents the carbon isotopic fractionation for the material.

3Conventional radiocarbon age is reported ad rcybp (radiocarbon years before present, “present” representing
AD 1950) calculated using the Libby 14C half life.

TABLE 2. Old calcite flowstone data.

d13CPDB

Percent
modern carbon

Conventional
radiocarbon age

Corrected age using
59% dead carbon

Corrected age using
64% dead carbon

−2.7 0.03185 ± 0.0011 27687 ± 280 rcybp 20622 ± 440 rcybp 19368 ± 440 rcybp

Radiocarbon dates include 1-sigma error
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Although the distal humerus is damaged,
clear evidence of an entepicondylar fora-
men precludes assignment to Parocnus. The
elongate dimension of the vertebral border
of the scapula and the relative angle of the
scapular spine also support assignment to
Acratocnus and exclude Megalocnus.

ACRATOCNUS (MIOCNUS) SIMORHYNCHUS
NEW SPECIES

Holotype: Skull, mandible and unam-
biguously associated postcranial skeleton,

including distal right femur, femoral head,
right calcaneus, left and right scapulae,
over a dozen intact vertebrae and frag-
ments of additional vertebrae, acetabulum,
ilium, radius, ulna, and ribs.

(ALF 7194) collected June 1999 by Keith
Christenson and Donald A. McFarlane.

Type locality: Cueva del Perezoso, Jara-
gua National Park, Pedernales Province,
Dominican Republic (UTM 1988498N
219938E ).

Age: 18 499 to 21 491 rcybp (95% confi-

TABLE 3. Comparison of selected cranial measurements of Acratocnus.

Measurement (mm)
Acratocnus

simorhynchus
Adjusted A.

simorhynchus1
A. ye

UF170533
Adjusted

A. ye1
Mean A.

odontrigonis2

Maximum skull length 132.3 134.3 123.3 134.3 134.4
Maxillary diastema length 22.6 22.9 24.8 27.0 25.0
Maximum maxillary width at cani-

niform 42.5 43.1 40.6 44.2 42.5
Minimum width of palate 14.6 14.8 11.7 12.9 14.9
Total length of maxillary molari-

form tooth row 39.4 40.0 33.2 36.1 33.1
Posterior maximum palate width 32.6 33.1 23.8 25.9 25.8
Length infraorbital canal—rostrum 39.3 40.0 38.8 42.3 37.8
Midline total palate length 59.2 60.1 56.4 61.4 59.8
Maximum sagittal crest height 6.6 6.7 8.3 9.0 7.6
Sagittal crest length 48.5 49.2 N/A N/A 64.5
Minimum width of post-orbital con-

striction 31.5 32.0 22.3 24.3 26.8
Maximum palate arch3 4.8 4.8 3.6 3.9 4.2
Snout/palate angle4 60° 60° 35° 35° 37.5°
Mand. buccolingual width at mo-

lariform 2 20.8 21.1 16.5 18.0 18.1
Mandibular height at molariform 2 33.3 33.9 27.5 30.0 31.1
Mandibular inter-caniform width 39.1 39.7 N/A N/A 39.4
Distance mandibular caniform to

spout tip 11.4 11.5 N/A N/A 16.9
Width of spout at tip 6.3 6.3 N/A N/A 7.4
Height of mandible parallel to men-

tal suture including spout 43.2 43.9 N/A N/A 42.4
Total mandibular toothrow length 34.4 34.9 N/A N/A 27.8
Mandibular diastema length 10.3 10.5 N/A N/A 13.4

All numbers in mm rounded to nearest tenth, unless otherwise noted.
1Measurements of A. ye and A. simorhynchus are size-corrected to aid in comparison. The mean maximum

cranial length was chosen as the most suitable proxy for overall size and metrics were adjusted so that the
maximum cranial length of all specimens equals that of the mean of A. odontrigonis. The adjustment factors
utilized are 1.09 and 1.015, respectively.

2The A. odontrigonis mean was determined from measurements taken by the first author on the following
specimens: AMNH 17712, 17713, 17714, 17717, 17718, 17720, 17721, 17722, 17158.

3The maximum palate arch was measured as the perpendicular distance from the top of the maxillary palate
to a chord connecting the anterior maxillary alveolus to the palatine bones.

4Snout-palate angle was measured using a goniometer. The base rested on the hard palate, along a cord
spanning the anterior-most (maxillary) and posterior-most (palatine) points. The angle was then determined by
adjusting the arm tangential to the snout so that the maximum contact with the frontal and nasal bones was
achieved. Because it is a shape measure, snout-palate angle is not size adjusted.
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dence interval), based on inorganic 14C dat-
ing of the calcite patina on the bones, cali-
brated against modern carbon systematics
of the cave.

Synonyms and referred specimens:
None.

Etymology: Specific epithet from Latin
simo- meaning flattened or snub and rhyn-
chus meaning ‘nose or snout’. Recom-
mended vernacular name: “Hispaniolan
snub-nosed sloth”.

Distribution: Type locality.
Diagnosis: A megalonychid sloth distin-

guishable from other species of Acratocnus
by prominently enlarged frontal sinuses re-
sulting in the appearance of a foreshort-
ened snout angled approximately 60 de-
grees relative to the anterior-posterior
plane of the palate, only moderate postor-
bital constriction, flared rostrum, relatively
short symphyseal spout, deep mandibular
corpus and lengthed molariform toothrow
in both the maxilla and mandible with cor-
respondingly shortened diastema.

Description

The greatly enlarged frontal sinuses (Fig.
2) are the most prominent diagnostic cra-
nial feature. Anterior projection of maxilla
and associated nasal bones broadly similar
to other Acratocnus, including A. odontrigo-

nus (Puerto Rico). When scaled for size
(Table 3), snout length (anterior margin of
infra-orbital canal on maxilla to anterior-
most portion of rostrum) falls between that
of A. odontrigonus and A. ye (Hispaniola).
“Snub-nosed” appearance mainly due to
pronounced dome shape of frontal bones
due to marked frontal sinus enlargement,
which makes snout appear much shorter
(Fig. 3). Enlargement of frontal sinus far ex-
ceeds that of A. ye (observable because it is
exposed by breakage in UF 170533; see
MacPhee et al., 2000). Cranial dome in pa-
rietal region far more sharply angled along
sagittal crest relative to facial skeleton than
in A. ye or A. odontrigonus. Examination of
coronal section CT scans reveals large mas-
toid, sphenoid, and ethmoid sinuses (such
examination of other Acratocnus species is
warranted to evaluate significance of these
features).

Maxillary and mandibular diastema rela-
tively and absolutely shorter than in other
Acratocnus (Table 3). These characters are
related to total length of molariform
toothrows, which are longer in A. simorhyn-
chus. Principal features defining the species
appear to relate functionally to the masti-
catory apparatus, including expanded
frontal sinuses and relatively deep man-
dibular corpus. Change in frontal shape
could be an adaptation to counter addi-

TABLE 4. Selected postcranial measurements of Acratocnus simorhyncus.

Element measured (mm)

Calcaneus:
• Maximum length 53.5
• Maximum width 33.3

Scapula:
• Vertical scapular glenoid height 26.3
• Vertebral border length 90.7
• Cranial border length 82.1
• Axillary border length 81.7

Femur:
• Maximum head diameter 23.3
• Medio-lateral diameter at midshaft, 4.5 cm proximal to condyles 34.9
• Anterior posterior diameter at midshaft, 4.5 cm proximal to condyles 16.0
• Maximum bicondylar breadth 46.3
• Medial condyle length (anterior-posterior) 31.5
• Lateral condyle length (anterio-posterior) 31.4
• Intercondylar notch (proximal posterior dimension) 4.6
• Intercondylar notch (distal dimension) 8.5
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tional bending and/or torsion, since this
area is vital in transmitting bite force. Sev-
eral other mandibular features distinguish
A. simorhynchus, including a short, narrow
and spatulate symphyseal spout. Height of
mandibular corpus at the second molar
greater than that of A. ye and mean of A.
odontrigonus (Table 3). Anterior edge of as-
cending ramus, where it intersects man-
dibular corpus, overlaps second molari-
form tooth by one half its mesio-distal
diameter.

Femoral shaft (Fig. 4c) straight, with a
highly reduced third trochanter notably
smaller than in A. odontrigonus, but similar
to A. ye. Femoral condyles roughly sub-

equal, with only a slight bicondylar angle.
Intercondylar notch of distal femur narrow
(Table 4). Femoral angle cannot be assessed
because head is detached from shaft. Ac-
etabular fossa open, with moderate pit for
insertion of ligamentum fovea capitus
femoris. Femoral head small, half width
relative to medio-lateral diameter of distal
femur compared with two-thirds in A. ye.
Femoral head with shallow but distinct fo-
vea capitus femoris, thus differentiating it
from afoveate femoral head of A. ye. Hu-
merus smaller and more slender than in A.
odontrigonus. Distal humerus damaged but
with clear evidence of an entepicondylar

FIG. 2. Acratocnus simorhynchus n. sp. (ALF 7194) A.
Mid-sagittal CAT scan of holotype. Note the greatly
enlarged frontal sinus (at arrow). The paranasal and
other sinuses are clearly visible in other “slices” and
are distinct from the frontal sinus. The mandible is
slightly off mid-sagittal in this section, so the symphy-
seal spout is not shown in its full anterior projection.
B. Horizontal section of mandible through alveoli
showing anterior projection of symphyseal spout.

FIG. 3. (ALF 7194) Comparative line drawings. A.
Acratocnus simorhynchus n. sp. Dark stippling and
dashed line at posterior of mandible indicate areas of
breakage. B. Acratocnus ye, lateral view composite (af-
ter MacPhee, et. al. 2000).
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foramen. Scapula without markedly el-
evated second scapular spine demarcating
caudal origin of teres major. A small (rem-
nant?) spur present near vertebral border
only (Fig. 4). Selected postcranial metric
features are listed in Table 4.

DISCUSSION

The description of another Acratocnus
species invites comments on the alpha di-
versity of sloths known from the late Qua-
ternary of Hispaniola. As many as seven
taxa are recognized (six in MacPhee et al.,
2000 plus A. simorhynchus), which is a
remarkable diversification on an island 78
460 km2. This radiation complements the
extremely depauperate nature of other
members of the Hispaniolan terrestrial
mammal guild at the level of family and
order. The entire Late Quaternary mamma-
lian fauna of Hispaniola (excluding bats
and Sirenians) comprises only 7 families in
4 orders, in stark contrast to the much
smaller (4828 km2) continental-shelf island
of Trinidad with 16 (extant) families in 6
orders (data from Eisenberg, 1989). The
probability of the various subsets of the
same six lineages (Table 5; we assume that
Solenodontidae and Nesophontidae share a
common ancestor in the Antilles), and no
others, occurring on the four Greater Ant-
illean islands as random extinction-
winnowed representatives of a more di-
verse ‘continental’ assemblage of 16
lineages is calculated to be p = 0.008. Only
two explanations are reasonable, scenarios
corresponding to the much debated (e.g.
Williams, 1989) ‘overwater dispersal’ ver-
sus ‘land bridge’ hypotheses for the coloni-
zation of the Antilles; either the original
colonists of the islands were limited to very
few ancestral stocks, or an early, more di-
verse fauna was culled very early by a Ca-
ribbean basin-wide wave of deterministic
extinctions of unprecedented selectivity.
There is no theoretical foundation in sup-
port of identical extinctions acting across
multiple orders and ecologies of mammals.

Our goal here is not to review the con-
siderable evidence for Pleistocene inter-
island mammalian dispersal events. We

FIG. 4. (ALF 7194) Acratocnus simorhynchus n. sp.,
selected elements. A. Lateral view of skull and man-
dible. B. Right and left scapula, dorsal aspect; C. An-
terior and lateral views of distal right femur.
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simply note that multiple recoveries of
mid-Tertiary Antillean mammals have
added no new lineages to the Quaternary
mammal roster, with the sole exception of
an Eocene rhinocerotoid from Jamaica
(Domning et al., 1997) that predated the
late Eocene submergence of the island and
has no bearing on the late Tertiary-
Quaternary faunas of Jamaica or the other
Greater Antilles. Moreover, despite an ex-
haustive review of the paleogeography of
the Caribbean Basin in precisely this con-
text, Iturralde-Vinent and MacPhee (1999)
could not confirm the presence of a con-
tinuous land bridge between mainland
South America and the proto-Antilles, al-
though they hypothesize its existence.

The Iturralde-MacPhee model was effec-
tively challenged in a detailed critique by
Hedges (2001). However, if we accept the
time frame of the subdivision of the hy-
pothesized “GAARlandia” landmass, the
separation of Hispaniola and Cuba was
complete 12 million years ago (cf. Iturralde-
Vinent, 2001; much earlier in other models).
The presence of a single genus on all three
northern Greater Antilles requires that no
more than species-level differentiation oc-
cur in these forms in the interval since the
Miocene. Furthermore, since the separation
of Cuba and Hispaniola preceded the sepa-
ration of Hispaniola and Puerto Rico by
several million years in the Iturralde-
MacPhee model, a vicariant sloth model
predicts a closer similarity between the
Hispaniola-Puerto Rico sloth (and other
mammal) faunas than between Cuba-
Hispaniola. The reverse is, in fact, true.

The presence of representatives Acratoc-

nus on Cuba, Hispaniola, and Puerto Rico
can only reasonably be interpreted as re-
sulting from relatively late Quaternary in-
ter-island movements of these animals.
Given the narrow water barriers and the
favorable ocean current and probable
storm tracks, such dispersal in an easterly
direction is not surprising. Similar late-
Pleistocene dispersal patterns are seen in
the endemic echymyid rodents of these
three islands.

Our current understanding of the mega-
lonychid radiation on Hispaniola is very
limited, lacking as it does a meaningful un-
derstanding of the ecology of these ani-
mals. Differences between moist and xeric
vegetation could have driven the speciation
of Acratocnus, but this hypothesis is as yet
untested. Most notably, we cannot yet de-
termine why sloth diversification on Puerto
Rico was so limited compared to Hispani-
ola. The most obvious hypothesis, that the
arrival of Acratocnus on Puerto Rico was a
rather recent event (i.e. late Pleistocene) can
only be addressed by extending the mid
and early Pleistocene radiometric record on
Puerto Rico.
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Pagán, Director of the Museo del Hombre
Dominicano, who provided export permits
to McFarlane, and Kasia Grasela of the Di-
recin Nacional de Parques for issuing a col-
lecting permit to Keith Christenson. Jenni-
fer Christenson kindly and generously
tolerated the imposition of various field
parties. Dr. Greg McDonald and Dr. Tim
Gaudin graciously provided the benefit of

TABLE 5. Representation of endemic mammal lineages on the islands of the Greater Antilles.1

Jamaica Puerto Rico Hispaniola Cuba

Capromyid rodents present present present
Heptaxodontid rodents present present present
Echimyid rodents present present present
Ceboid primates present present present
Solenodontid insectivores present present present
Megalonychid sloths present present present

1Oryzomys antillarum, a muroid rodent from Jamaica, is excluded because it is known to be a Late Wisconsinan
arrival (McFarlane et al. in press) and not relevant to the early colonization of the islands. Isolobodon portoricensis,
a capromyid rodent from Puerto Rico, is excluded because it is generally considered to an Amerindian trans-
location from Hispaniola.
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