
Claremont Colleges
Scholarship @ Claremont

CMC Senior Theses CMC Student Scholarship

2013

Sampling from the Hardcore Process
William C. Dodds
Claremont McKenna College

This Open Access Senior Thesis is brought to you by Scholarship@Claremont. It has been accepted for inclusion in this collection by an authorized
administrator. For more information, please contact scholarship@cuc.claremont.edu.

Recommended Citation
Dodds, William C., "Sampling from the Hardcore Process" (2013). CMC Senior Theses. Paper 681.
http://scholarship.claremont.edu/cmc_theses/681

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/70974661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarship.claremont.edu
http://scholarship.claremont.edu/cmc_theses
http://scholarship.claremont.edu/cmc_student
mailto:scholarship@cuc.claremont.edu

CLAREMONT McKENNA COLLEGE

SAMPLING FROM THE HARDCORE PROCESS

SUBMITTED TO

PROFESSOR MARK HUBER

AND

DEAN GREGORY HESS

BY

WILLIAM DODDS

FOR

SENIOR THESIS

SPRING 2013

APRIL 29
TH

, 2013

Abstract

Partially Recursive Acceptance Rejection (PRAR) and bounding chains
used in conjunction with coupling from the past (CFTP) are two per-
fect simulation protocols which can be used to sample from a variety of
unnormalized target distributions. This paper first examines and then
implements these two protocols to sample from the hardcore gas process.
We empirically determine the subset of the hardcore process’s parameters
for which these two algorithms run in polynomial time. Comparing the
efficiency of these two algorithms, we find that PRAR runs much faster
for small values of the hardcore process’s parameter whereas the bounding
chain approach is vastly superior for large values of the process’s param-
eter.

i

Acknowledgments

First and foremost, I want to thank my reader, Professor Mark Huber, for his
tremendous support throughout the entire process of writing this paper. In
addition to guiding me to a topic and helping me through the many problems
I encountered, your advice and comments have been an invaluable resource.
Many, many thanks for working through this paper with me. A final thank you
to my family and friends who supported me throughout the semester.

ii

Contents

1 Introduction 1

2 Partially Recursive Acceptance/Rejection 1

3 PRAR on a Binary Tree Hardcore Process 2

4 PRAR on a Lattice Hardcore Process 5

5 Bounding Chains 11

6 Bounding Chain on a Lattice Hardcore Process 18

7 Conclusion 19

A R Code for Algorithms 27
A.1 PRAR on Binary Tree Code . 27
A.2 PRAR on Lattice Code . 29
A.3 CFTP on Lattice Code . 31

iii

1 Introduction

An independent set I is a collection of nodes on state space {0, 1}V such that
no two nodes colored 1 are adjacent to each other. The hardcore process is a
probability distribution π

π(I) = λ|I|/z

where λ is the parameter of the problem and z is the normalizing constant for
this distribution. A number of protocols have been suggested for sampling from
π, two of which are Partially Recursive Acceptance Rejection (PRAR, see [2])
and bounding chains (see [4]) in conjunction with coupling from the past (CFTP,
see [5]). This paper investigates experimentally which of these two algorithms is
more efficient to sample from the hardcore process on a k× k lattice for a given
value of λ. Implementing both of these protocols, we find that for relatively
small values of λ, PRAR is vastly superior to using bounding chains; however,
for large values of λ, bounding chains become far more efficient than PRAR.

This paper proceeds as follows: Section 2 discusses PRAR, Section 3 imple-
ments PRAR on a Binary Tree, Section 4 implements PRAR on a k× k lattice,
Section 5 discusses using bounding chains, Section 6 implements the bounding
chain and CFTP protocol on the k × k lattice, Section 7 compares the two
protocols and presents the study’s conclusions.

2 Partially Recursive Acceptance/Rejection

Acceptance/Rejection (AR) is a method of sampling from an unnormalized tar-
get distribution. Consider a discrete state space, Ω, with the property that
P(X = x) ∝ f(x), for some unnormalized weight function f(x). Hence:

P(X = x) = f(x)/z

for some normalizing constant z. Acceptance/Rejection eliminates the need to
explicitly calculate z by using an enveloping distribution g(x) on Ω such that
f(x) > 0 =⇒ g(x) > 0 and (∀x ∈ Ω)(f(x) ≤ g(x)). Further, it must be possible
to draw X ∼ g. In its simplest form AR then draws X ∼ g and accepts this
draw with probability f(X)/g(X), thus avoiding the need to explicitly calculate
the normalizing constant, z.

However, when using AR to sample from Markov random fields, the prob-
ability of acceptance can be very low; the running time of the algorithm can
grow exponentially in the dimension of the problem. A better approach is to
use a recursive form of AR. In essence, this form of AR allows us to draw each
individual node one at a time and accept or reject it based solely upon the values
of adjacent nodes.

Consider using AR on the hardcore process on a Markov random field over
a graph G = (V,E) with state space Ω = CV , where C is a set of colors, and
target density of the form:

1

f(x) =

[∏
v∈V

a(x(v))

] ∏
{i,j}∈E

b(x(i), x(j))

Definition The hardcore process is a Markov random field with C = {0, 1}
with parameter λ ≥ 0 such that λ is the weight factor given to each 1. In the
notation introduced above:

a(0) = 1, a(1) = λ, b(0, 0) = b(0, 1) = b(1, 0), b(1, 1) = 1.

Consider then the problem of determining the probability that the root node
in our hardcore process is a 1. We begin by drawing a value for the root node
with distribution Unif ({0, 1}). To use the recursive form of AR, start with a
node set V ; it is possible to partition V into {v} and V \{v} for a particular
node (the root node in the hardcore process), v. Using the notation introduced
above:

f{v} = a(x(v))

and

fV \{v} =

 ∏
v∈V \{v}

a(x(v))

 ∏
{i,j}∈E,i,j∈V \{v}

b(x(i), x(j))

 .
If g{v},V \{v} = f{v} · fV \{v}, we can sample X1 ∼ f{v} and X2 ∼ fV \{v} and
then accept X = (X1, X2) as a draw from f with probability:

f(X)

g(X)
=

∏
{v,j}∈E,j∈V \{v}

b(x(v), x(j)).

We can do this process recursively by drawing V \{v} using the same algorithm.
However, to save time, in some circumstances it may be possible to deter-

mine the color of the root node by only building out a fraction of the recursive
structure. For example, if the root node is a 0, we will accept it regardless of
the adjacent nodes, so we’re done. If, on the other hand, our root node is a 1,
it is necessary to build out the process further using recursive calls. However,
if we draw a 0 for any given node, we know we will accept it regardless of the
values of adjacent nodes so we stop the recursive calls on that node. Because
the method only uses a partial set of the recursive calls, this technique is named
partially recursive acceptance/rejection (PRAR).

3 PRAR on a Binary Tree Hardcore Process

We first consider the hardcore process on a binary tree. In essence, each node
on the infinite tree is colored either 0 or 1, but configurations with two adjacent
1’s are rejected. The goal is to determine the probability that the root node of
the tree is a 1. An algorithm to simulate this process is presented below:

2

Algorithm 1 PRAR1

1: Input: λ
2: Output: X(v) from f{v}
3: repeat
4: acceptflag ← false
5: U ← Unif ([0, 1])
6: X(v)← 0
7: if U ≤ λ

(λ+1) then

8: X(v)← 1
9: end if

10: if X(v) = 0 then
11: acceptflag ← true
12: else
13: left← PRAR1(λ)
14: if left = 0 then
15: right← PRAR1(λ)
16: end if
17: end if
18: if left = 0 and right = 0 then
19: acceptflag ← true
20: end if
21: until acceptflag = true

Implementing this algorithm (code included in Appendix), we find estimates
of P(Rootnode = 1) for various values of λ. See Figure 1. Notably, we find the
algorithm runs in finite time for λ ≤ 0.82, i.e., the critical value of λ is ∼ 0.83.

Furher, one can analytically calculate the probability that the root node is
a 1 in the binary tree setting. First, let p = λ/(λ + 1), the probability that a
node is rolled a 1 and let P(Acceptance) be the probability that a node colored
1 is accepted.

Note that there are an infinite number of “ways” one can have a root node
with a value of 1: You can first roll a 1 and accept it; you can roll a one, reject
it, roll another one, accept it; you can roll a one, reject it, roll a one, reject it,
roll a one, accept it; etc. Hence:

P(Root = 1) = p · P(Acceptance)+

p · [1− P(Acceptance)] · p · P(Acceptance)+

p2 · [1− P(Acceptance)]
2 · p · P(Acceptance) + ...

Simplifying this geometric sequence yields:

P(Root = 1) =
p · P(Acceptance)

1 + p (P(Acceptance)− 1)
(1)

3

Figure 1: Points in the figure indicate the percentage of time the root node was
a 1 for a given value of λ. The line shows the predicted percentages based on
the equations derived below.

4

Furthermore, we can calculate P(Acceptance) as for a node colored 1 to be
accepted, both of its children nodes must be 0. So:

P(Acceptance) = [1− P(LeftChild = 1)] · [1− P(RightChild = 1)]

From the fact that P(Root = 1) = P(LeftChild = 1) = P(RightChild = 1), we
get (2):

P(Acceptance) =

[
1− p · P(Acceptance)

1 + p (P(Acceptance)− 1)

]2
(2)

From (2), (1), and p = λ/(λ+1), we can calculate P(Root = 1) entirely in terms
of the parameter, λ. This is plotted in the above figure as a straight line through
the estimated probabilities.

To find the critical value of λ then, we look at the expected number of tosses,
denoted E(T) as a function of p and P(Root = 1):

E(T) = (1−p)+p [E(T) + P(Root = 1) · E(T) + (1− P(Root = 1)) [E(T) + P(Root = 1) · E(T)]]

If [1− p (2 + P(Root = 1) · (1− P(Root = 1)))] > 0, we can simplify the above
equation to:

E(T) =
1− p

1− p (2 + P(Root = 1) (1− P(Root = 1)))
(3)

Numerically solving for the critical value of λ, i.e., the value of λ for which
the root node is either accepted or rejected in finite time with probability 1, I
find λcrit ∼ 0.8284. A graph of the number of tosses taken by the algorithm
can be seen in Figure 2.

4 PRAR on a Lattice Hardcore Process

In this section we turn to look at the same hardcore process described above
on a k × k lattice. Again, the end goal here is to describe the probability that
the root node of the lattice is a 1. The PRAR algorithm on the k × k lattice is
slightly more involved (see Algorithm 2).

Implementing this algorithm, the first thing we can discover is the probability
that our root node is a 1 as a function of λ for various values of k. Graphs of
this probability vs. λ for k = 4, 5, and 10 can be seen in Figure 3, Figure 4,
and Figure 5, respectively. Furthermore, as a check to determine whether the
output from this algorithm is actually X(v) from f{v}, we can use a brute force
method for a low dimensional field to determine exactly the probability of the
root node being colored 1 for all values of λ.

The next phenomenon that we’re interested in looking at is the run-time,
or number of tosses required as a function of λ. Figure 6 shows the number of
tosses required, per trial, to generate a sample from the hardcore process.

5

Figure 2: Each point represents the number of tosses per trial, for a specific
value of λ that Algorithm 1 needed to determine the color of the root node.

6

Figure 3: Each point represents the probability that the root node is a 1 for a
specific value of λ on the 4× 4 lattice. The line through the points denotes the
actually probability that the root node is a 1 for each value of λ calculated by
generating all possible 4× 4 lattices.

7

Figure 4: Each point represents the probability that the root node is a 1 for a
specific value of λ on the 5× 5 lattice.

8

Figure 5: Each point represents the probability that the root node is a 1 for a
specific value of λ on the 10× 10 lattice.

9

Figure 6: Each point represents the number of tosses per trial, for a specific
value of λ, that Algorithm 2 needed to sample from the hardcore process on the
5× 5 lattice.

10

Algorithm 2 PRAR2

1: Input: λ, Location
2: Output: X(v) from f{v}
3: repeat
4: acceptflag ← false
5: U ← Unif ([0, 1])
6: X(v)← 0
7: if U ≤ λ

(λ+1) then

8: X(v)← 1
9: end if

10: if X(v) = 0 then
11: acceptflag ← true
12: else
13: repeat
14: Draw Adjacenti conditional on Location
15: Adjacenti ← PRAR2(λ, Location)
16: until (Adjacenti = 1 or no more adjacent nodes exist)
17: end if
18: if Adjacent1 = Adjacent2 = ... = Adjacentn = 0 then
19: acceptflag ← true
20: end if
21: until acceptflag = true

However, the more pertinent question surrounding run-times is that of de-
termining the set of λ for which run-time grows polynomially, rather than ex-
ponentially, in the dimension of the problem (i.e., the size of the lattice). To
get an idea of an upper bound on this critical λ, we can look at the average
required number of tosses, per trial, to get an accepted draw from the hardcore
process. For values of λ below ≈ 0.5, the relationship between the dimension
of the problem and the required number of tosses is roughly linear. This is
illustrated in Figure 7 below. For values of λ between 0.5 and ≈ 0.67, the re-
lationship between the dimension of the lattice and the run time is polynomial.
This is illustrated in Figure 8 below. Finally, for λ above approximately 0.7, the
required number of tosses is growing faster than polynomially in the dimension
of the problem. This can be seen in Figure 9. While it is somewhat difficult
to tell whether or not PRAR is running in polynomial time when λ = 0.7, it is
certainly no longer polynomial when λ = 0.75 (see Figure 10). Hence, we can
conclude that for values of λ ≤ 0.67, the PRAR algorithm, implemented on the
hardcore process, runs in time polynomial in the dimension of the problem.

5 Bounding Chains

Another way to sample perfectly from the hardcore process is to use bounding
chains in conjunction with coupling from the past (see [3] and [4]). To use a

11

Figure 7: This figure describes the relationship between the required number of
tosses, per trial, to get a sample from the hardcore process vs. the dimension of
the lattice that Algorithm 2 is working on for λ = 0.5. Note that the relationship
is linear.

12

Figure 8: This figure describes the relationship between the required number of
tosses, per trial, to get a sample from the hardcore process vs. the dimension of
the lattice that Algorithm 2 is working on (both axes are plotted on a log scale)
for λ = 0.67. As the log-log plot of dimension vs. required tosses is linear, the
relationship between dimension and tosses is polynomial.

13

Figure 9: This figure describes the relationship between the required number of
tosses, per trial, to get a sample from the hardcore process vs. the dimension of
the lattice that Algorithm 2 is working on (both axes are plotted on a log scale)
for λ = 0.7. As the log-log plot of dimension vs. required tosses is no longer
linear, the relationship between dimension and tosses is not polynomial.

14

Figure 10: This figure describes the relationship between the required number
of tosses, per trial, to get a sample from the hardcore process vs. the dimension
of the lattice that Algorithm 2 is working on (both axes are plotted on a log
scale) for λ = 0.75. As the log-log plot of dimension vs. required tosses is no
longer linear, the relationship between dimension and tosses is not polynomial.

15

bounding chain to sample from the hardcore process, we first need a Markov
chain that is stationary over the hardcore process. While both a Gibbs sampler
or a Metropolis-Hastings algorithm could be used, Dyer and Greenhill present
a new Markov chain, hereafter referred to as the Dyer-Greenhill chain, which
mixes faster than either a Gibbs sampler or a Metropolis-Hastings algorithm for
the hardcore process. First, we present the algorithm to take a step in the Dyer-
Greenhill chain (Algorithm 3), then we present the corresponding bounding
chain.

For a lattice with node set V , the Dyer-Greenhill chain, letting Nv denote
the neighbors of a node v:

Algorithm 3 Dyer-Greenhill Chain

1: Input: State X, λ, pswap
2: Output: New State X
3: v ← Unif (V)
4: U ← Unif ([0, 1])
5: if U > λ

(λ+1) then

6: X(v)← 0
7: else if U < λ

(λ+1) and Nv contains no elements colored 1 then

8: X(v)← 1
9: else if U < pswap× λ

(λ+1) and Nv contains exactly one element colored

1 (call it w) then
10: X(v)← 1 and X(w)← 0
11: end if

Essentially, the Dyer-Greenhill chain is very similar to a regular Gibbs sam-
pler, in that it picks a node v at random and changes it based on probabilities
that depend on the neighbors, Nv, of v. The difference, however, lies in the fact
that the Dyer-Greenhill chain invokes a new parameter, pswap, which can take
on any value between 0 and 1, that determines the probability that the chain
makes a new move - swapping two adjacent nodes. However, this new move can
only occur if exactly one adjacent node is colored 1, at which point the chain
changes the color of v to 1 and the color of the adjacent node to 0.

The idea behind creating a bounding chain for a process X on the Dyer-
Greenhill chain is to create a new process Y , such that Xt(v) ∈ Yt(v) =⇒
Xt+1(v) ∈ Yt+1(v). In other words, Y (v) contains all the possible values that
X(v) could possibly be at any given time step in the chain. For the Dyer-
Greenhill chain, each node v is colored 0 or 1, so each element of our bounding
chain Y is colored 0, 1, or {0, 1}. The chain begins such that Y0(v) = {0, 1} ∀v ∈
V , denoting essentially that all the values of X0 are unknown. If it is the case
after t steps in the bounding chain that |Yt(v)| = 1 ∀v, it must be the case that
Xt = Yt, and hence Xt is a draw from the stationary distribution as Y starts in
the stationary distribution. The bounding chain for the Dyer-Greenhill chain
(Algorithm 4) considers six possible cases, determining how to take a step in
the chain for a given set of a neighbors of a node v.

16

Algorithm 4 Bounding Chain for the Dyer-Greenhill Chain

1: Input: State Y , λ, pswap
2: Output: New State Y
3: v ← Unif (V)
4: U ← Unif ([0, 1])
5: if U > λ

(λ+1) then

6: Y (v)← 0
7: else
8: if Nv contains no elements colored 1 and Nv contains no elements

colored {0, 1} then
9: Y (v)← 1

10: else if U ≤ pswap × λ
(λ+1) and Nv contains exactly one element

colored 1 (call it w) and Nv contains no elements colored {0, 1}
then

11: Y (v)← 1 and Y (w)← 0
12: else if U ≥ pswap × λ

(λ+1) and Nv contains exactly one element

colored 1 (call it w) and Nv contains no elements colored {0, 1}
then

13: Y (v)← 0
14: else if Nv contains more than one element colored 1 then
15: Y (v)← 0
16: else if U ≤ pswap × λ

(λ+1) and Nv contains exactly one element

colored {0, 1} (call it w) and Nv contains no elements colored 1
then

17: Y (v)← 1 and Y (w)← 0
18: else if U ≥ pswap × λ

(λ+1) and Nv contains exactly one element

colored {0, 1} (call it w) and Nv contains no elements colored 1
then

19: Y (v)← {0, 1}
20: else if U ≤ pswap × λ

(λ+1) and Nv contains at least one element

colored {0, 1} (call it w) and Nv contains 1 element colored 1
then

21: Y (v)← {0, 1} and Y (w)← {0, 1}
22: else if U ≥ pswap × λ

(λ+1) and Nv contains at least one element

colored {0, 1} (call it w) and Nv contains 1 element colored 1
then

23: Y (v)← {0, 1}
24: else if Nv contains more than one element colored {0, 1} and Nv

contains no elements colored 1 then
25: Y (v)← {0, 1}
26: end if
27: end if

17

First, note that if all neighbors of v are known, we are simply moving ac-
cording to the Dyer-Greenhill chain. If no neighbors are colored 1, but one is
colored {0, 1}, then if we roll to swap, v is a 1 and the unknown neighbor is
now a known 0. If no neighbors are colored 1, but one is colored {0, 1}, and we
roll for v to be a 1, we must change it to {0, 1}. If two or more neighbors are
colored {0, 1}, then we do not know the value of v, so it must be changed to
{0, 1}. The worst case scenario is if one neighbor is colored 1 and at least one
neighbor is colored {0, 1}. If we roll to swap, both v and the neighbor colored
1 are switched to {0, 1}, and if we do not roll to swap v changes to {0, 1}.

An algorithm using this bounding chain to sample exactly from the hardcore
process using coupling from the past can be found in Section 6.

6 Bounding Chain on a Lattice Hardcore Pro-
cess

In order to use the theory developed in the previous section to sample perfectly
from the hardcore process, we use the bounding chain in conjunction with cou-
pling from the past (CFTP). In essence, what this algorithm does is start with
Y (v) = {0, 1} ∀v, and then use t uniform random variates to run the bounding
chain forward t steps. If |Yt(v)| = 1 ∀v, we are done and we return Y as our draw
from the hardcore process. If, however, |Yt(v)| > 1 for some v, we recursively
call our CFTP protocol to generate a new Y0, essentially going back in time to
generate our new initial state. Then, we use the same original t uniforms to run
our new Y0 forward to Yt, finally returning Yt as our draw from the hardcore
process. This is presented in Algorithm 5.

Algorithm 5 CFTP for Dyer-Greenhill Bounding Chain

1: Input: t
2: Output: Y from the hardcore process
3: U1, U2, . . . , Ut ← Unif ([0, 1])
4: Y0(v)← {0, 1} ∀v
5: Use Algorithm 4 and U1, U2, . . . , Ut to run Y0 forward to Yt
6: if |Yt(v)| = 1 ∀v then
7: Return Yt
8: else
9: Y0 ← CFTP(2t)

10: Use Algorithm 4 and U1, U2, . . . , Ut to run Y0 forward to Yt
11: Return Yt
12: end if

The first thing that we can look at by implementing this algorithm on a k×k
lattice is the probability that the root node is a 1 for various values of λ and a
given value of k. Graphs of this probability vs. λ for k = 4, 5, and 10 can be
seen in Figure 11, Figure 12, and Figure 13, respectively. Finally, to determine

18

whether the output from this algorithm is actually X(v) from f{v}, we use a
brute force method on the 4× 4 lattice to determine exactly the probability of
the root node being colored 1 for all values of λ.

Potentially, the next phenomenon we are interested in around Algorithm 5
is the number of uniform random variates required to generate a draw from
hardcore process. This is shown below in Figure 14 for the 5× 5 lattice.

Finally, the most pertinent question surrounding run-times is that of deter-
mining which values of λ run-time grows polynomially, rather than exponen-
tially, in the dimension of the problem (i.e., the size of the lattice). To find out
where run-time is growing polynomially, we can look at the average required
number of tosses, per trial, to get an accepted draw from the hardcore process.
In [4], Huber proves that for λ ≤ 1, Algorithm 5 will run in polynomial time.
We experimentally verify this as well, noting that for λ ≤ 1.5 Algorithm 5 runs
in polynomial time. This is shown below in Figure 15 and 16.

7 Conclusion

Quite possibly the most important experimental finding of our work is the de-
termination of the values of λ for which PRAR is faster than using a bounding
chain in tandem with coupling from the past to sample from the hardcore pro-
cess. The general finding here is that for small values of λ, PRAR is faster,
often by many orders of magnitude, than a bounding chain approach to sam-
pling from the hardcore process on a k×k lattice. However, at around the point
that PRAR appears to be no longer polynomial in the dimension of the lattice,
the bounding chain protocol seems to become more efficient. Finally, for large
values of λ, the bounding chain approach is significantly more efficient, often by
many orders of magnitude, than using PRAR. Figure 17 displays the required
number of tosses to get a sample from the hardcore process on a 20× 20 lattice
using both Algorithm 2 and Algorithm 5.

For values of λ below roughly 0.67, PRAR is significantly faster than using
a bounding chain. For example, on a 20 × 20 lattice, PRAR used ∼ 11, 000
uniforms to generate a draw from the hardcore process whereas the bounding
chain algorithm used ∼ 32, 000 uniforms. The difference is even starker if λ is
slightly lower. By the time that λ = 0.7, the bounding chain approach is slightly
faster than PRAR. On a 20× 20 lattice, PRAR required approximately 37,000
uniforms to generate a draw from the hardcore process whereas the bounding
chain approach needed only 32,000 uniforms. The difference becomes even more
pronounced for slightly larger values of λ. Again on the 20 × 20 lattice, when
λ = 0.8, PRAR requires just over 8,000,000 uniforms to generate a single draw
from the hardcore process whereas using a bounding chain requires roughly
36,000 uniforms. Finally, when λ = 1.5, the bounding chain approach required
only 66,000 uniforms to generate a sample from the hardcore process on the
20 × 20 lattice, demonstrating that it is vastly more efficient at higher values
of λ than PRAR. Hence, we conclude that for small values of λ, using PRAR
is faster than using a bounding chain protocol, whereas for large values of λ a

19

Figure 11: Each point represents the probability that the root node is a 1 for a
specific value of λ on the 4× 4 lattice. The line through the points denotes the
actually probability that the root node is a 1 for each value of λ calculated by
generating all possible 4× 4 lattices.

20

Figure 12: Each point represents the probability that the root node is a 1 for a
specific value of λ on the 5× 5 lattice.

21

Figure 13: Each point represents the probability that the root node is a 1 for a
specific value of λ on the 10× 10 lattice.

22

Figure 14: Each point represents the number of tosses per trial, for a specific
value of λ, that Algorithm 5 needed to sample from the hardcore process on the
5× 5 lattice.

23

Figure 15: This figure describes the relationship between the required number
of tosses, per trial, to get a sample from the hardcore process vs. the dimension
of the lattice (both axes are plotted on a log scale) for λ = 1 using Algorithm 5.
As the log-log plot of dimension vs. required tosses is linear, the relationship
between dimension and tosses is polynomial.

24

Figure 16: This figure describes the relationship between the required number of
tosses, per trial, to get a sample from the hardcore process vs. the dimension of
the lattice (both axes are plotted on a log scale) for λ = 1.5 using Algorithm 5.
As the log-log plot of dimension vs. required tosses is linear, the relationship
between dimension and tosses is polynomial.

25

Figure 17: This figure presents a comparison of Algorithm 2 and Algorithm 5.
Each point represents the number of tosses per trial, for a specific value of λ,
needed to sample from the hardcore process on the 20× 20 lattice.

26

bounding chain algorithm is significantly more efficient.

References

[1] M. Dyer and C. Greenhill. On Markov chains for independent sets. J.
Algorithms, 2000.

[2] M. Huber. Perfect simulation using partially recursive acceptance/rejection.
2012.

[3] M. Huber. A faster method for sampling independent sets. 1999.

[4] M. Huber. Perfect Sampling Using Bounding Chains. Annals of Applied
Probability, 1999.

[5] J.G. Propp and D.B. Wilson. Exact Sampling with coupled Markov chains
and applications to statistical mechanics. Random Structures Algorithms,
1996.

A R Code for Algorithms

A.1 PRAR on Binary Tree Code

This function creates the binary tree and returns the value of the root node. (Algorithm 1)

f <- function(root,lambda) {
x <- c(0,1);
prob <- c(1/(lambda+1),lambda/(lambda+1));
repeat {
tosscounter <<- tosscounter + 1;
if(root == 0) {
break;

}
else {
child1 <- sample(x,1,replace=TRUE,prob);
child1 <- f(root=child1,lambda);
if(child1[1] == 0) {

child2 <- sample(x,1,replace=TRUE,prob);
child2 <- f(root=child2,lambda)
}

}
if(child1[1] == 0 && child2[1] == 0) {
break;
}
if(child1[1] == 1 || child2[1] == 1) {
Calls the function recursively if either of the children nodes are 1.
root <- sample(x,1,replace=TRUE,prob);
}

}
output <- matrix(c(root,tosscounter),2,1);
return(output);

}

27

This function replicates the function f a specified number of times
And returns the probability the root node is a 1, the standard deviation,
And the average number of tosses required to determine the value of the root node

simulation <- function(lambda,trials=10000) {
x <- c(0,1);
prob <- c(1/(lambda+1),lambda/(lambda+1));
PVector <- rep(0,trials);
TVector <- rep(0,trials);
for (i in 1:trials) {
tosscounter <<- 0;
run <- f(sample(x,1,replace=TRUE,prob),lambda);
PVector[i] = run[1];
TVector[i] = run[2];

}
results <- (PVector == 1) + 0;
return(c(mean(results),sd(results)*trialsˆ(-1/2),mean(TVector)));

}

This function calls simulation for a specified set of lambdas

results <- function(lambdas) {
output <- rep(0,length(lambdas));
output <- sapply(lambdas, simulation);
return(output);

}

These next two functions are used to calculate the exact probability
That the root node is 1 as a function of lambda

predict.fun <- function(lambda,x){((1-(lambda/(lambda+1))*x/(1-(lambda/(lambda+1))*(1-x)))ˆ2 - x)}

acceptprob <- function(lambdas,l=10000) {
x<-seq(.05,.99,length=l);
predicted = rep(0,length(lambdas));
dist <- rep(9,10000)
for(i in 1:length(lambdas)) {

for(j in 1:length(x)) {
dist[j] <- abs(predict.fun(lambdas[i],x[j]))

}
predicted[i] <- x[which.min(dist)]*(lambdas[i]/(lambdas[i]+1))/(1-(lambdas[i]/(lambdas[i]+1))*(1-x[which.min(dist)]))
}
return(predicted);
}

This function numerically finds the critical value of lambda as a function
Of the probability of acceptance(pred) and lambda

critval <- function(lambdas,pred) {
dist <- 9;
criticalval <- 0;
for(i in 1:length(lambdas)) {
tempdist <- (-1/(pred[i]ˆ2-pred[i]-2) - lambdas[i]/(lambdas[i]+1));
if (tempdist >= 0 && tempdist < dist) {
dist <- tempdist;
criticalval <- lambdas[i]

28

}
}

return(criticalval);
}

A.2 PRAR on Lattice Code

This function f implements PRAR on the lattice, returning the value of the root node. (Algorithm 2)

f <- function(root,lambda,row,column,k=4) {
modified <- matrix(nrow = k, ncol = k);
right <- 0;
down <- 0;
up <- 0;
left <- 0;
x <- c(0,1);
prob <- c(1/(lambda+1),lambda/(lambda+1));
repeat {
tosscounter <<- tosscounter + 1;
mat[which(modified==1)] <<- NA;
mat[row,column] <<- root;
if(root == 0) {
break;

}
else {

If the root node is not 0, we draw it’s children
if(column<k && is.na(mat[row,column+1])==TRUE) {
right <- sample(x,1,replace=TRUE,prob);
modified[row,column+1] <- 1;

right <- f(root=right,lambda,row,column+1,k)[1];
}
if(right == 0 && row<k && is.na(mat[row+1,column])==TRUE) {

down <- sample(x,1,replace=TRUE,prob);
modified[row+1,column] <- 1;

down <- f(root=down,lambda,row+1,column,k)[1];
}
if(right == 0 && down ==0 && row>1 && is.na(mat[row-1,column])==TRUE) {

up <- sample(x,1,replace=TRUE,prob);
modified[row-1,column] <- 1;
up <- f(root=up,lambda,row-1,column,k)[1];
}
if(right == 0 && down==0 && up==0 && column>1 && (is.na(mat[row,column-1])==TRUE)) {

left <- sample(x,1,replace=TRUE,prob);
modified[row,column-1] <- 1;
left <- f(root=left,lambda,row,column-1,k)[1];

}
}
If all children are 0, we return the value of the root node
if(right==0 && down==0 && up==0 && left==0) {
break;

}
If not, we redraw the root node and start over
if(right == 1 || down == 1 || up == 1 || left == 1) {
root <- sample(x,1,replace=TRUE,prob);

}
}
mat[which(modified==1)] <<- NA;

29

output <- matrix(c(root,tosscounter),2,1);
return(output);

}

simulation runs f a specified number of times, returning the probability
The root node is a 1, the standard deviation, and the average number of
Tosses used to get a draw

simulation <- function(lambda,trials=10000,k=4) {
x <- c(0,1);
prob <- c(1/(lambda+1),lambda/(lambda+1));
PVector <- rep(0,trials);
TVector <- rep(0,trials);
for (i in 1:trials) {
mat <<- matrix(nrow = k, ncol = k);
tosscounter <<- 0;
run <- f(sample(x,1,replace=TRUE,prob),lambda,1,1,k=dim(mat)[1]);
PVector[i] = run[1];
TVector[i] = run[2];

}
results1 <- (PVector == 1) + 0;
print(lambda);
return(c(mean(results1),sd(results1)*trialsˆ(-1/2),mean(TVector)*kˆ2));

}

results runs simulation for a vector or different lambdas

results <- function(lambdas,trials=10000,k=4) {
output <- matrix(NA,nrow=3,ncol=length(lambdas));
for(i in 1:length(lambdas)) {
output[,i] = simulation(lambdas[i],trials,k);

}
return(output);

}

check1 determines the number of independent sets with a given number of
1’s for all possible 4x4 lattices

check1 <- function(k=4) {
list1 <- list(0:1);
tmp <- expand.grid(rep(list1,kˆ2));
count <- rep(0,kˆ2);
Vhardcore <- rep(0,kˆ2);
for (i in 1:dim(tmp)[1]) {
hardcore <- 1;
dummymat <- matrix(tmp[i,],k,k);
dummymat2 <- t(dummymat);
for(j in 1:(kˆ2-k)) {
if(dummymat[[j]]==1 && (dummymat[[j]]==dummymat[[j+k]])){
hardcore <-0;

}
if(dummymat2[[j]]==1 && (dummymat2[[j]]==dummymat2[[j+k]])) {
hardcore <-0

}
}
if(hardcore == 1) {
count[sum(dummymat==1)] <- count[sum(dummymat==1)] + 1;

30

if(dummymat[[1]] == 1) {
Vhardcore[sum(dummymat==1)] <- Vhardcore[sum(dummymat==1)] + 1;

}
}
}

output <- matrix(data=NA, 2,kˆ2);
output[1,] = count;
output[2,] = Vhardcore;
return(output);
}

This function gives the exact probability the root node is a 1 for each value
of lambda

pred.fun <- function(lambdas,k=4) {
x <- check1(k);
x1 <- x[1,];
x2 <- x[2,];
output <- rep(0,length(lambdas));
z <- 0 + 1;
The one accounts for the 0 matrix which isn’t counted in check1()
pr <- 0;
for(j in 1:length(lambdas)) {
z <- 0 + 1;
pr <- 0;
lambda <- lambdas[j];
for(i in 1:length(x1)) {
z <- z+x1[i]*lambdaˆ(i);
pr <- pr+x2[i]*lambdaˆ(i);

}
output[j] = pr/z;
}

return(output);
}

A.3 CFTP on Lattice Code

step takes a single step in the bounding chain for the Dyer-Greenhill Chain
(Algorithm 4)

step <- function(X, lambda, U, d1, d2, pswap) {
if(U>(lambda/(lambda+1))) {X[d1,d2] <- 0}
else {
if(d1>1) {up <- X[d1-1,d2]}
else {up <- 0}
if(d2>1) {left <- X[d1,d2-1]}
else {left <- 0}
if(d1<dim(X)[1]) {down <- X[d1+1,d2]}
else {down <- 0}
if(d2<dim(X)[2]) {right <- X[d1,d2+1]}
else {right <- 0}

if(sum(up,left,down,right, na.rm = TRUE) > 1) {X[d1,d2] <- 0}
Case 3

if(sum(is.na(c(up,left,down,right))) == 0 && (up == 0 && left == 0 && right == 0 && down == 0)) {X[d1,d2] <- 1}
##Case 1

if(sum(is.na(c(up,left,down,right))) == 0 && (sum(up,left,down,right, na.rm = TRUE) == 1)) {

31

##Case 2
if(U>(pswap*lambda/(lambda+1))) {X[d1,d2] <- 0}
else {
if(up == 1) {

X[d1,d2] <- 1;
X[d1-1,d2] <- 0;

}
else if(down == 1) {

X[d1,d2] <- 1;
X[d1+1,d2] <- 0;

}
else if(left == 1) {

X[d1,d2] <- 1;
X[d1,d2-1] <- 0;

}
else if(right == 1) {

X[d1,d2] <- 1;
X[d1,d2+1] <- 0;

}
}

}
if((sum(is.na(c(up,left,down,right))) > 1) && (sum(up,left,down,right, na.rm=TRUE) == 0)) {X[d1,d2] <- NA}

##Case 6
if((sum(is.na(c(up,left,down,right))) == 1) && (sum(up,left,down,right, na.rm=TRUE) == 0)) {

##Case 4
if(U>(pswap*lambda/(lambda+1))) {X[d1,d2] <- NA}
else {
if(is.na(up) == 1) {
X[d1,d2] <- 1;
X[d1-1,d2] <- 0;

}
else if(is.na(down) == 1) {
X[d1,d2] <- 1;
X[d1+1,d2] <- 0;

}
else if(is.na(left) == 1) {
X[d1,d2] <- 1;
X[d1,d2-1] <- 0;

}
else if(is.na(right) == 1) {
X[d1,d2] <- 1;
X[d1,d2+1] <- 0;

}
}

}
if((sum(is.na(c(up,left,down,right))) >= 1) && sum(up,left,down,right, na.rm=TRUE) == 1) { ##Case 5
if(U>(pswap*lambda/(lambda+1))) {X[d1,d2] <- NA}
else {
if((is.na(up)== FALSE) && (up == 1)) {

X[d1,d2] <- NA;
X[d1-1,d2] <- NA;

}
else if((is.na(down)== FALSE) && (down == 1)) {

X[d1,d2] <- NA;
X[d1+1,d2] <- NA;

}
else if((is.na(left)== FALSE) && (left == 1)) {

32

X[d1,d2] <- NA;
X[d1,d2-1] <- NA;

}
else if((is.na(right)== FALSE) && (right == 1)) {

X[d1,d2] <- NA;
X[d1,d2+1] <- NA;

}
}
}

}
return(X);
}

This is the CTTP Algorithm for the above bounding chain algorithm. (Algorithm 5)

CFTP <- function(t, k, lambda, pswap) {
UVector <- runif(t);
d1Vector <- sample(1:k, t, replace = TRUE, rep(1/k, k));
d2Vector <- sample(1:k, t, replace = TRUE, rep(1/k, k));
tosscounter <<- tosscounter + 3*t;
X <- matrix(NA,nrow=k,ncol=k);
for(i in 1:t) {
X <- step(X, lambda, UVector[i], d1Vector[i], d2Vector[i], pswap);

}
if(length(which(is.na(X))) == 0) {
return(X);

}
else {
X0 <- CFTP(2*t, k, lambda, pswap);
X <- X0;
for(j in 1:t) {
X <- step(X, lambda, UVector[j], d1Vector[j], d2Vector[j], pswap);

}
return(X);
}

}

simulation runs the above algorithm a specified number of times, returning
the probability the root node is a 1, the standard deviation, and the
number of uniforms required to get a draw

simulation <- function(lambda,pswap,t,k,trials=10000) {
PVector <- rep(0,trials);
TVector <- rep(0,trials);
for(i in 1:trials) {
tosscounter <<- 0;
run <- CFTP(t,k,lambda,pswap);
PVector[i] <- run[1,1];
TVector[i] <- tosscounter;

}
return(c(mean(PVector),sd(PVector*trialsˆ(-1/2)),mean(TVector)));

}

results repeats simulation for a vector or lambdas

results <- function(lambdas,pswap,t,k,trials=10000) {
output <- matrix(NA,nrow=3,ncol=length(lambdas));

33

for(i in 1:length(lambdas)) {
output[,i] <- simulation(lambdas[i],pswap,t,k,trials)

print(lambdas[i]);
}
return(output);

}

34

	Claremont Colleges
	Scholarship @ Claremont
	2013

	Sampling from the Hardcore Process
	William C. Dodds
	Recommended Citation

