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Abstract 

Due to the potential of oil sorbents for oil spill clean-up, hydrophobic silica-based aerogel 

thin films have been synthesized and characterized by various methods. Aerogels were 

prepared using a two-step acid/base sol-gel process and functionalized with 

trimethylchlorosilane in hexane, followed by drying in ambient conditions. After film 

deposition by spin-coating, samples were characterized by scanning electron microscopy, 

nitrogen adsorption analysis (BET surface area = 377.66 m2/g), and variable-angle 

spectroscopic ellipsometry (thickness of 287.00 ± 0.85 nm, refractive index of 1.08, porosity 

of 80.9%). Unlike previous studies with aerogel films, quartz crystal microbalance with 

dissipation monitoring (QCM-D) was applied to preliminarily measure the oil absorbing 

capacity of the fabricated aerogels. Upon exposure to hexadecane, aerogel films retained the 

model oil with an estimated Sauerbrey mass of ~970.6 ng/cm2. These initial investigations 

suggest that oil adsorption-desorption studies with hydrophobic aerogel thin films can be 

further explored with QCM-D. 
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1. Introduction  

After an estimated 172 million gallons of oil gushed into the Gulf of Mexico, the BP 

oil spill of 2010 has replaced the Exxon Valdez oil spill of 1989 (10.8 million gallons) as the 

largest accidental oil spill in the history of the petroleum industry.1 Oil spills pose an 

environmental threat to various ecosystems. Moreover, the long-term effects of 

environmental pollution have demonstrated the need to advance efforts to protect coastline 

and marine environments.2 In the attempt to salvage marine and wildlife habitats, a wide 

range of materials have been utilized, though not always successfully, for oil spill clean-up 

and recovery.2

Common materials used during oil recovery include booms, skimmers, absorbents, 

dispersants, and solidifiers.2 Booms are floating barriers that physically confine the oil to a 

specific area for recovery or prevent it from entering a given area.2 Once the booms corral a 

specific site, skimmers attempt to mechanically extract the oil layer from the water surface 

for disposal or reuse. This method does not completely separate oil from water. Absorbents, 

however, collect and separate oil from water by absorption. Rather than separating oil from 

water, dispersants accelerate the dispersal of floating oil into the water column by forming 

water-soluble micelles.2 With sufficient wave action, smaller oil droplets may form and 

scatter over a larger volume of water, where biodegradation may be enhanced.2 Solidifiers 

can also be used to transform the oil into a solid. These dry, granular hydrophobic polymers 

react with the oil to form a tight, cohesive mass that stays afloat and can be easily removed.

 Future response strategies should therefore apply oil recovery methods that 

aim to eliminate or reduce the short- and long-term consequences of oil pollution. This 

begins by improving oil treatment processes that aim to contain and clean up oil-impacted 

areas. 

3 
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A disadvantage of solidifiers is their tendency to non-selectively cross-link with other 

hydrocarbons in the vicinity, including weeds and other organic matters.3  

Compared to other materials, absorbents are advantageous for oil remediation 

because of their potential to collect and completely extract oil from the spill site.2 Aside from 

being recyclable and biodegradable, the ideal adsorbent would exhibit hydrophobicity and 

oleophilicity, maximize uptake capacity and rate of uptake, increase retention over time, and 

recover oil.2 The various types of oil-sorbents can be classified into three categories: 

inorganic mineral products, synthetic organic products, and organic vegetable products.2 

Inorganic materials encompass zeolites, graphite, silica, and sorbent clay.2 Synthetic organic 

products include polypropylene and polyurethane foams, both of which are the most widely 

used commercial oil-sorbents.2 A downside to these hydrophobic and oleophilic polymeric 

materials is that they degrade more slowly in comparison to mineral or vegetable products.2 

Additionally, these materials are not as sustainable in nature or as naturally occurring as 

inorganic mineral products. Vegetable products, which include natural fiber, straw, and peat 

moss, have demonstrated poor buoyancy, low oil uptake capacity, and low hydrophobicity.4

Silica exhibits several properties associated with the ideal oil-sorbent material. When 

turned into hydrophobic silica aerogels, these inert, non-toxic, and sustainable products have 

potential commercial applications in oil spill clean-up operations,

 

When we consider the overall impact of clean-up methods, inorganic mineral products seem 

to possess the greatest potential as effective oil-sorbents for ecological recovery.    

5,6

 

 The purpose of this study 

is to synthesize and monitor hydrophobic aerogels as possible absorbent materials for oil 

removal from contaminated water systems.  
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1.1. Silica Aerogels 

Discovered by Kistler7 in 1931, silica aerogels are low-density (3 kg/m3), highly 

porous (~99%) solid networks of a gel that are typically derived from sol-gel chemistry.8 

These mesoporous (2-50 nm pores) foams filled with air have unique properties, including 

low refractive indices (<1.1), low dielectric constants (<1.7), low thermal conductivity (0.01-

0.015 W/mK), and low sound velocities (<100 m/s). As a result, aerogels have been used in 

a wide range of industrial applications, including heat-storage, thermal insulation, acoustics, 

and catalysis.9,10,11

1.2. Mechanism of Sol-Gel Reaction 

  

Silica gels are produced using the sol-gel method through three reactions: hydrolysis, 

water condensation, and alcohol condensation (Figure 1). During hydrolysis, a silicon 

alkoxide reacts with water to form silicic acid, Si(OH)4 in the presence of a mutual solvent:  

 
                   Si(OR)4 +  4H2O ↔  Si(OH)4 + 4ROH                        [1] 

R denotes an alkyl, vinyl, or aryl group.2,7 An alcohol (ROH) is often the preferred solvent 

for circumventing transesterification reactions. A mineral acid (e.g. HCl) or base (e.g. 

NH4OH) is generally used as a catalyst to enhance the extremely slow rate of reaction from 4 

× 10-6 L mol-1 s-1 at neutral pH to 6 × 10-3 L mol-1 s-1at pH 1.2.12

 

 The reactive silanol groups 

will form a siloxane bridge (Si-O-Si) either with each other or an alkoxide (Si-OR) group by 

releasing water or alcohol: 

      2Si(OR)4 ↔ (OR)3Si − O − Si(OR)3 + H2O     [2]        

    (OR)3Si − OR + HO − Si(OR)3  ↔  (OR)3Si − O − Si(OR)3 + ROH      [3] 
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Since the tetravalent silicon atom can form up to four siloxane bridges, further 

polycondensation will occur. As shown in Figure 1, a network of silica nanoparticles (SiO4-

tetrahedra) will eventually form throughout the sol.2 Silicon atoms with a terminal hydroxyl 

group or alkoxide group will cover the surface of the network. When enough nanoparticles 

span the liquid medium, a porous gel forms and viscosity increases considerably.13

 

  

Figure 1. Sol-gel reactions during silica network formation: hydrolysis, condensation, and 
polymerization. 

 
Sol-gels are synthesized according to the type of properties desired. The porosity and 

density of the synthesized aerogel depends on various parameters, including temperature, pH, 

and catalysts.2 Sol-gels can be produced by a single-step (“one-pot”) or a two-step method. 
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The final form of silica gels is largely influenced by the pH of the solution.5 In the first 

method, either an acid or a base catalyst is incorporated into the silica precursor-alcohol-

water mixture. At low pH (highly acidic), silica particles tend to undergo hydrolysis by 

forming straight chains with low cross-link density.5 An acid catalyst will therefore produce a 

soft gel that is easy to re-solubilize. At high pH (highly basic), polymerization increases and 

the number of cross-links between polymers increases as well.5 A basic catalyst would 

promote polymerization and expand the silica network. Compared to the one-step process, 

the two-step method increases the rate of condensation and reduces gelation time. During the 

two-step acid-base catalyzed sol-gel process,14

Single-step and two-step aerogels possess slightly different properties. Although 

single-step aerogels are mechanically stronger, two-step aerogels are optically clearer due to 

their narrower pore size and pore distribution.

 a pre-polymerized silica alkoxide (e.g. 

tetraethoxysilane, TEOS) is prepared under acidic conditions and re-dissolved under basic 

conditions.  

15  Once a gel develops, pore impurities (i.e. 

catalyst, solvent, water) can be extracted through multiple washings in pure solvent. In most 

cases, the solvent is an alcohol. During the purification process, the alcogel may undergo 

further chemical reactions. This process of aging stiffens and strengthens the silica 

skeleton.16

1.3. Surface Functionalization of Silica Aerogels 

  

 To complete the aerogel process, liquid must be removed from the pores without 

collapsing the silica skeleton. After gelation, the alcogels contain a number of unreacted 

silanol groups on their surface. When liquid molecules contained within the pores volatilize, 

liquid volume decreases, increasing surface tension at the solid-liquid interface. Large 
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capillary forces induce gel shrinkage and gel cracking.17

1.3.1. Supercritical Drying Method 

 Since surface tension will pull 

against any structures adhering to the liquid, we must eliminate these compressive forces. 

The liquid enclosed within the pores can be extracted through two methods: 1) supercritical 

drying, and 2) solvent evaporation.2  

The process of supercritical drying is a common method used to remove the liquid 

trapped in a gel’s pores without inducing gel shrinkage.2 During this process, the alcogel is 

subcritically dried in an autoclave.6 Kistler created the first aerogels by initially raising the 

pressure and then the temperature above the liquid’s critical point.7 Beyond this point, the 

liquid behaves more like a fluid, and the liquid-vapor interface ceases to exist.18 Capillary 

forces are eliminated.2 As the system cools, the fluid is expelled from the aerogel and 

replaced by a low density gas such as carbon dioxide. Although supercritical drying is 

effective against capillary stress, the extreme conditions are not suitable for thin film 

deposition.19

1.3.2. Solvent Evaporation Method 

   

In comparison, solvent evaporation is a cost-effective, safe, and continuous method of 

drying.2,17 Brinker developed an ambient pressure drying method that reduces surface tension 

through the chemical modification of the hydrophilic gel surface.20  These wet aerogels can 

be functionalized with non-polar groups to inhibit further reactions with water vapor in the 

air. Hydrophobic reagents, including β-diketonates, alcohol amines and carboxylic acids, will 

replace the H from a surface silanol (Si-OH) group with a non-polar alkyl or aryl group 

(Figure 2).19 When using solvent extraction, the functionalized gel can be dried without 

significant shrinkage because the interior surface of the pores will no longer be predisposed 
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to condensation reactions. Any drying-related shrinkage during the final stage of aerogel 

synthesis is essentially reversible in the absence of capillary stress, allowing the porosity of 

the film to expand, or spring-back, to its wet size.21

a)

 

 

 

b) 

 

 
Figure 2. Mechanism for surface silylation with trimethylchlorosilane (TMCS):  
a) nucleophilic oxygen in alcohol group attacks the silicon atom in TMCS, b) silanol group is 
functionalized and hydrochloric acid is the leaving group. 
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1.4. Methods of Characterization 

The physical properties of the aerogel can be characterized with the use of various analytical 

techniques.22

1.4.1. Scanning Electron Microscopy (SEM) 

  

Scanning electron microscopy (SEM) can be used to study the microstructure of 

aerogels. The SEM emits a high-energy beam of electrons that interacts with atoms on or 

near the surface of the sample. The various signals produced can provide quantitative 

information about an aerogel’s topography, including its cracking behavior, relative thickness 

and pore size distribution.2   

1.4.2. Ellipsometry 

 Variable-angle spectroscopic ellipsometry (VASE) is another technique often used to 

determine film thickness. The ellipsometer measures the change in polarization after a 

polarized laser beam strikes the sample surface. Due to the weak mechanical strength and 

light scattering of aerogels, SEM is often the preferred method of characterization.23 

Ellipsometry can also be employed to measure the refractive index of the films.24

    

π =  �
1.455 − 𝑛𝐷
1.455 − 𝑛𝐴

� 

       

 Based on 

the relationship between porosity (π) and index of refraction (n),21 the porosity of the silica 

aerogel films can be calculated as follows: 

 
where 1.455 is the theoretical index of refraction for SiO2, nD is the measured refractive index 

of the porous film, and nA is the refractive index of air (nA  = 1.000).  

 

 

[4] 
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1.4.3. Gas-Phase Adsorption 

The specific surface area of the aerogel can be determined by gas-phase adsorption.25 

During this process, an inert gas, such as nitrogen gas, is adsorbed onto the surface of a solid 

material. For porous aerogels, the adsorbate will cover the surface of the pores as well. 

Various models have been proposed to account for this phenomenon. Langmuir first 

developed a simple, yet effective model in 1916. The Langmuir adsorption isotherm 

expresses the relationship between the pressure of the gas and the moles of gas adsorbed onto 

a solid surface.26

The Langmuir model for monolayer coverage is invalid at high gas pressures (i.e. at 

high surface coverage).

 The model assumes that the gas molecules form a monolayer on the 

adsorbent at saturation and that a strong interaction exists between the molecules and the 

adsorbent. Based on the Langmuir relation, the surface area of the aerogel can be determined.  

27

 Developed by Brunauer, Emmett, and Teller (BET) in 1938, the BET theory takes 

into account multi-layer gas adsorption and the interaction between binding sites.27 It is an 

extension of the Langmuir theory.  

 Under these conditions, the initial adsorbate layer can act as the 

new substrate surface, allowing additional adsorption to occur beyond saturation. A more 

advanced model must therefore be applied to factor in multi-layer adsorption.  

 
 Θ =  

𝑛
𝑛𝑚𝑜𝑛

=
𝑐𝑧

{(1 − 𝑧)[1 − (1 − 𝑐)𝑧]} 

 
Θ = fraction of total coverage, n = number of moles of adsorbed gas, nmon= number of moles 

of gas required to form a monolayer, c = constant,  p* = vapor pressure of the gas, z = p/p* 

and p = partial pressure of the gas.  

[5] 
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 In the limit of low pressure (p = 1), the BET isotherm simplifies to the Langmuir 

isotherm if we equate constant c to equilibrium constant K multiplied by p*.  A linear form of 

the BET equation can be obtained and tested by the method of least squares: 

 
𝑧

(1 − 𝑧)𝑛
=

1
𝑐𝑛𝑚𝑜𝑛

+ �
𝑐 − 1
𝑐𝑛𝑚𝑜𝑛

� 𝑧 
 

 
 By determining nmon from the linearized BET isotherm plot, the specific surface area 

(S) of the aerogel can be calculated from the following relation:   

 
𝑆 = 𝑛𝑚𝑜𝑛σ𝑁𝐴 

 
        
where σ = molecular cross-section for the gas and NA = Avogadro’s number. The pore size 

distribution in the aerogel can also be determined from the BET isotherm.20 It is important to 

note that BET theory does not provide an accurate reflection of the true surface area. 

However, it is easy to use and widely accepted. 

1.4.4. Quartz Crystal Microbalance with Dissipation (QCM-D) 

Quartz crystal microbalance with dissipation monitoring (QCM-D) could prove 

useful for the characterization of aerogel films. Sauerbrey’s work in 1959 first recognized the 

possibility of using quartz crystal microbalance (QCM) technology to monitor mass uptake in 

vacuum.28

QCM consists of a piezoelectric quartz crystal sandwiched between a pair of 

electrodes. Upon the sensor’s connection to an oscillator and AC voltage, the quartz crystal 

will oscillate at its resonance frequency (f). The frequency of the oscillating crystal decreases 

with adsorption of material. Based on the linear relationship between a decrease in frequency 

 The acoustic sensing technique can detect very small changes in the amount of 

material that is either adsorbed or desorbed from a surface.  

[6] 

[7] 
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(∆f) and mass adsorbed (∆m), the Sauerbrey relation can be used to determine the adsorbed 

mass of thin and rigid films.28  

 

∆𝑚 = −
𝐶⋅ ∆𝑓
𝑛

 

 
C = 17.7 ng Hz-1 cm-2 is the sensitivity factor for a 5 MHz quartz crystal and n = 1,3,5,… is 

the overtone number. 

The Sauerbrey relation becomes invalid when the film is not rigid. In such cases, the 

Sauerbrey relation would underestimate the mass of the adsorbing film. We would need to 

apply a viscoelastic model to determine the structural properties of the soft film. Unlike 

conventional QCMs, QCM-Ds are capable of fully characterizing floppy, non-rigid films. 

They are not restricted to the gas phase but can be applied to liquid mediums. Aside from 

measuring changes in frequency, QCM-Ds account for the energy loss of the oscillator, or 

dissipation (D). Changes in the dissipation parameter (∆D) provide viscoelastic information 

about the adsorbed films.29

As a powerful tool for studying nanoscale interactions on different surfaces, QCM-D 

is potentially useful for characterizing aerogel thin films. At present, however, the 

investigation of aerogel thin films using QCM-D has not been exploited. QCM-D work in 

this field has been limited to monitoring the adsorption and evolution of vesicles on xerogel 

thin films.

  

30

1.5. Oil Absorption Studies  

 

Previous studies have done extensive work on the oil absorption properties of silica 

aerogels in bulk. Reynolds and co-workers determined that a supercritically dried CF3-

aerogel absorbed 40 to 140 times more oil than a non-functionalized silica aerogel in 

[8] 
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simulated oil-spill clean up conditions.31 When an oil to aerogel ratio of 3.5 was maintained 

in an oil and salt-water mixture, the CF3-aerogel separated the oil from the water. Additional 

oil absorption and desorption studies with superhydrophobic aerogels demonstrated that these 

materials had a very high uptake capacity, were removable from the contaminated system, 

and reusable without inducing structural changes.32

A less studied phenomenon is the absorption and desorption of oils in hydrophobic 

aerogel thin films. Coronado et al has demonstrated the selective absorbance of oil from 

water by solid support materials, such as fiberglass, alumina, and cotton wool, when coated 

with CF3-modified aerogel films.

 Rao et al determined that the rate of 

absorption was a function of the density and the surface tension of the organic liquid, 

whereas the rate of desorption relied upon the vapor pressure and the surface tension of the 

respective liquid. His team used transmission electron microscopy to image microstructural 

changes in the aerogel sample before and after absorption of organic liquids. 

33 Silylation can also occur with trimethylchlorosilane 

(TMCS). Lee and his team developed an ambient drying process that utilizes a solvent 

exchange/modification agent consisting of isopropyl alcohol (IPA), TMCS and n-Hexane to 

produce superhydrophobic aerogels.34 Prakash has also derivatized silica films in TMCS and 

hexane.19 Maximum film porosity was optimized in hydrophobic silica films that were 

prepared at ambient pressure and heated to 450°C to yield refractive indices between 1.006-

1.036 (equivalent porosity 98.5%-91%) with thicknesses varying from 0.1 to 3.5 µm, 

depending on the concentration of the sol and dip-coating rate.19 Other studies have also 

applied pyrolysis at 450°C to enhance porosity of silica-based aerogel thin films from 60% to 

more than 90%.20 These films were deposited onto silicon wafers by dip-coating and spin-

coating processes.  
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1.6. Purpose 

The aim of this study is to extend previous work on the preparation of silica-based 

aerogel thin films and develop a model system for investigating the oil absorbing capabilities 

of synthesized silica thin films using QCM-D. This model system will utilize oil-water 

emulsions and pure oil to simulate basic conditions during oil spills.  

Emulsions often contain an emulsifier that stabilizes the interface between oil and 

water droplets.  Surface-active agents (surfactants), which constitute one class of emulsifiers, 

can be used to increase the kinetic stability of the oil-water droplets over time by 

incorporating hydrophobic molecules into surfactant micelles.35

The QCM-D can monitor the interaction between the aerogels and the emulsions. 

Unlike other analytical tools, QCM-D can provide time-resolved mass changes in the film. 

These systems, however, traditionally rely on AT-cut quartz crystal sensors that limit thin-

film monitoring to below approximately 300ºC.

 Poly(oxyethylene)sorbitan 

monolaurate (Tween 20), a nonionic surfactant, has been used to lower the interfacial tension 

between hexadecane and water.35  

36

 

 Since the piezoelectric constant of quartz 

drops sharply above this temperature, the synthesized films cannot undergo supercritical 

extraction or pyrolysis. It is therefore necessary to fabricate a hydrophobic silica aerogel film 

that not only fits the criteria for QCM analysis but also proves effective in oil-contaminated 

water.  
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2. Experimental  

Over the course of this study, a series of aerogels were synthesized both indirectly 

and directly (Figure 3). Each batch of aerogels will be referred to by “generation.”  Aerogels 

were initially prepared indirectly, or prior to thin film deposition. The experimental protocol 

was slightly modified to accommodate the direct synthesis of a thin film aerogel.  

All silicate sols were derived using a two-step acid/base catalyzed reaction. In the 

initial step, a stock solution of TEOS, ethanol, H2O, and HCl was combined in the molar 

ratio 1.0:11.3:17.2:1.4×10-3 and refluxed at 60°C for 90 minutes. The stock solution was 

prepared with ultrapure Milli-Q water with resistivity > 18 MΩ-cm (Milli-Q-plus system, 

Millipore, Bedford, MA). In the second step, 0.5 M NH4OH, stock solution, and ethanol were 

added in a volume ratio that varied with generation.  

2.1. Indirect Synthesis and Characterization of Aerogel Films 

During indirect synthesis, silica aerogel thin films were prepared in bulk.  

2.1.1. Generation 1 

Sample Preparation 

Two batches of sol-gels were prepared during Generation 1 (G1). In the second step 

of sol-gel synthesis, a mixture of 0.5 M NH4OH, stock solution, and ethanol reacted in the 

volume ratios 1:10:33 and 1:10:44. G1 gels formed and aged at 50°C for 48 hours, followed 

by a daily pore fluid-exchange of 100% ethanol, ethanol/hexane (3:1 v/v), ethanol/hexane 

(1:1 v/v), ethanol/hexane (1:3 v/v), and 100% hexane, respectively. These gels were then 

functionalized with 5 wt % TMCS in hexane at 60°C for 12 hours. After sonication with 

ultrasound for 1 hour, the functionalized gels were partially re-liquefied. 1 ml aliquots were 

spin-coated onto luster Al pin mounts (SPI Supplies) and silica sensors (Q-Sense) at a speed 
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of 2000 rpm for 15 seconds. The coated films were subcritically dried in hexane at room 

temperature for 12 hours, then analyzed using SEM.  

Substrate Preparation 

Aluminum pin mounts (12.7 mm in diameter) and silica sensors (0.2 cm2 in area, 50 

nm thick) were treated prior to film deposition. Silica sensors contain an active SiO2 surface 

and are coated with an Au electrode (100 nm thick) on the opposite side. The AT-cut 

piezoelectric quartz crystals operated at 5 MHz and were optically polished with a root-

mean-square roughness less than 3 nm. Aluminum stubs and sensors were oxidized by UV-

Ozonation for 10 minutes, treated in 2 vol % Hellmanex solution (Hellma Co.) for 30 

minutes, rinsed with de-ionized (DI) water, blown dry with air, and treated again with UV-

Ozonation for 10 minutes.   

SEM Preparation & Use 

Before surface characterization by SEM, prepared silica sensors were mounted on 

specimen pin stubs with conductor tape. All samples were then pre-pumped at least 24 hrs 

before SEM use. Once the samples were clean and dry, they were inserted into the vacuum 

chamber for analysis.  

A LEO 982 field emission scanning electron microscope (FE-SEM, Carl Zeiss SMT 

Inc., Peabody, Massachusetts) was used for surface characterization. Accelerating voltage 

was set at 5.0 kV for G1 films. The images were taken with a magnification of 50000× at 

working distances of 2 mm to 4 mm. As a side note, subsequent generations were imaged at 

4.0 kV.   
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Figure 3. General experimental protocol for indirect (left) and direct (right) synthesis of 
silica aerogel thin films. 

 

Reflux TEOS, ethanol, water, HCl in 
molar ratio 1.0:11.3:17.2:1.4 × 10-3

at 60°C for 90 min 

Combine 1:10:44 of 0.5 M NH4OH, 
stock, ethanol

Indirect Synthesis:
Transfer sol to a sealed 

container

Age in oven for 50°C for 24 hrs

Pore-fluid solvent exchanges: 
gradually replace ethanol with 

hexane

Derivatize with 5 wt % TMCS in 
hexane (×2) within 48 hrs

Exchange modified aerogel into 
fresh hexane (×2)

Sonicate aerogel in hexane until re-
solubilized

Spin-coat 1 ml onto substrate at 
2000 rpm for 15 s

Dry in hexane at room temperature

Direct Synthesis:
Spin-coat 1 ml onto substrate at 

2000 rpm for 15 s
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2.1.2. Generation 2 

Two sets of bulk aerogels were produced during Generation 2 (G2). In the second 

step of sol-gel formation, 0.5 M NH4OH, stock solution, and ethanol were added in volume 

ratios of 1:10:22 and 1:10:44. Unlike G1 conditions, G2 solvent washings occurred twice in 

one day when aerogels were transferred into a new solvent. These gels were then 

functionalized with 5 wt % TMCS in hexane for 12 hours at room temperature. G1 

conditions for ultra-sonication and film deposition were repeated for G2 samples. Only sols 

formed with 44 ml ethanol were characterized using SEM.  

2.1.3. Generation 3 

G3 aerogels were prepared according to the protocol for G1 and G2 aerogels.  In the 

second step of sol-gel formation, 0.5 M NH4OH, stock solution, and ethanol were added in 

ratios of 1:10:33 and 1:10:44. G3 samples underwent the same number of solvent exchanges 

as G2 samples. Films were analyzed using SEM. 

2.1.4. Generation 4 

Sample Preparation 

Based on the protocol for G2 aerogels, G4 samples were prepared with minor 

changes. The sols formed in 44 ml ethanol during two-step synthesis underwent two 

derivations with 4 wt % TMCS in hexane. These functionalized aerogels were exchanged 

into fresh hexane and placed in an ultra-sonic bath for 2 hours. The solutions were vigorously 

stirred and ultra-sonicated for another 30 minutes. Unlike previous generations, G4 sols were 

spin-coated onto octadecanethiol-functionalized Au QCM-D sensors (Q-Sense) and CZ p-

Si<100> wafers (Virginia Semiconductor), placed in a partially closed container of hexane to 
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dry, and later characterized. Excess sol was also dried and stored in ambient conditions. The 

resulting aerogel was gently heated at 50ºC for 24 hours to induce “spring-back.”19  

Substrate Preparation 

Gold sensors and silicon wafers were cleaned prior to use. Like the silica sensors used 

for G1 films, gold sensors (0.2 cm2 in area, 50 nm thick) were AT-cut quartz crystal disks 

operating at 5 MHz and optically polished with a root-mean-square roughness less than 3 nm. 

These crystals, however, lacked a SiO2 coating, leaving the Au electrode exposed to the 

analyte. Sensors were oxidized by UV-Ozonation for 10 minutes, treated with 1:1:5 30% 

hydrogen peroxide/concentrated ammonium hydroxide/water solution for 5 minutes, rinsed 

with water, blown dry with air, and thereafter decontaminated with UV-Ozonation before 

use. After the pre-cleaning procedure, Au sensors were immersed in a 10 mM 

octadecanethiol (ODT) / chloroform solvent overnight. ODT-gold crystals were subsequently 

soaked in ethanol, rinsed with pure water, and dried with air before QCM-D runs. Single-side 

polished silicon wafers (25.4 mm ± 0.3 mm in diameter, 250 µm ± 25 µm thick, resistivity ≤ 

0.01 Ω-cm) were treated with the cleaning protocol used for aluminum stubs and silica 

sensors.  

Ellipsometry 

A Stokes Ellipsometer (Gaertner Scientific, Skokie, Illinois) was used to measure 

film thickness and refractive index. Measurements were taken at a shallow angle of incidence 

of 45º.37

 

  Five measurements were made for each sample. Refractive index of the silicon 

substrate was factored into spectroscopic calculations. 
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Gas-Phase Adsorption 

With the help of students from the Advanced Physical Chemistry course, gas-phase 

adsorption was used to characterize the silica-based aerogel. A sample of 0.55 g was 

manually crushed and baked in the oven prior to the experiment. A vacuum line was 

calibrated and used to measure the amount of nitrogen gas adsorbed by the aerogel. Nitrogen 

gas adsorption occurred in incremental steps until the aerogel became saturated. Adsorption 

was then measured as a function of pressure, and the data was fit to a BET isotherm.   

Emulsion Preparation 

To simulate basic oil-contaminated water conditions, G4 films were exposed to one 

of two emulsions: w/o, a water-in-oil emulsion, and o/w, an oil-in-water emulsion.38

QCM-D 

 The w/o 

emulsion was prepared from 80 wt % hexadecane and 20 wt % (1 wt % Tween 20) aqueous 

solution; the o/w emulsion was prepared from 20 wt % hexadecane and 80 wt % (1 wt % 

Tween 20) aqueous solution. These mixtures were ultra-sonicated for 7 minutes.  

QCM-D (E4, Q-Sense, Gothenburg, Sweden) was used to collect real-time frequency 

and dissipation data. Cell temperature was set at 20°C for all QCM-D runs. Each flow cell 

was initially exposed to DI water as an internal control. After a stable baseline was 

established, the cell was introduced to either the w/o emulsion or o/w emulsion (Figure 4). 

The cell was flushed with DI water in the final step.  

2.1.5. Generation 5 

The protocol for fabricating G4 samples was repeated for G5 aerogels. One exception 

was that 5 wt % TMCS was used to derivatize the hydrophobic aerogel.  
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a) 

 

b) 

 

Figure 4. QCM-D experimental set-up for emulsions flowing through functionalized silica 
aerogel thin films deposited on a gold quartz sensor: a) o/w emulsion with 20 wt % 
hexadecane and 80 wt % (1 wt % Tween 20) aqueous solution, b) w/o emulsion with 80 wt 
% hexadecane and 20 wt % (1 wt % Tween 20) aqueous solution.  
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QCM-D Preparation & Use 

Hydrophobic gold crystals were prepared as a control for QCM-D runs. Hexadecane, 

a major component of fuel oil, was the model oil for the QCM-D experiments. ODT-gold 

crystals were flushed with an anionic surfactant solution to remove possible contaminants. 

Surfactant sodium dodecyl sulfate (SDS) was re-crystallized in ethanol and then prepared in 

Milli-Q water at 10 mM SDS, a concentration well above its critical micelle concentration 

(CMC = 8.2 mM at 25°C).  

After the surfactant was introduced and the system equilibrated, the control sensor 

was rinsed with water, hexadecane, and again with water. Although control conditions were 

repeated for the experiment, Tween 20 (1 wt % in pure water) was used.  

2.2. Direct Synthesis of Aerogel Films 

2.2.1. Isolated Module 

Since the experimental conditions for indirect synthesis are not suitable for direct 

synthesis of a thin film sol-gel, we modified the protocol. During direct synthesis of aerogel 

films, we wanted to expose the sensor surface but protect the electrode. In essence, we 

wanted to mimic the set-up of a QCM-D standard flow cell. We therefore designed an 

isolated QCM-D module that only exposes the sensor surface to the atmosphere. The module 

itself is made of Delrin, a thermoplastic acetal resin that combines the advantageous 

properties of both metals and plastics.39 As shown in Figure 5, this easily assembled and 

interchangeable module consists of two ends that are secured by three pins. The bottom piece 

contains a groove that fits two O-rings and a sensor. Once the module is assembled, the top 

piece, a hollow tube that encloses the surface of the sensor, forms a well with the bottom 
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piece. This well exposes the surface to approximately 1 ml of liquid. Due to the module’s 

design, individual components can be replaced if necessary.  

2.2.2. Generation 6 

Unlike previous generations, Generation 6 aerogels were prepared directly on the 

substrates. After the two-step acid/base catalytic reaction, sol-gels were immediately spin-

coated onto silicon wafers. Excess sol-gel was reserved and transformed into bulk aerogel via 

the indirect method for nitrogen sorption analysis. Subsequent gelation, aging, and solvent 

exchanges occurred as they had during direct synthesis, albeit on a smaller scale. After aging 

in the oven at 60ºC for 24 hours, wafers were stored in the solvent. Films were exposed to the 

same solvent mixture twice. Pore-fluid exchanges occurred daily. Surface derivatization 

occurred twice with 10 ml of 5 wt % TMCS in hexane. Films were dried in hexane under 

ambient conditions.  

 
 
 
 

 

 

 

 

 

 

Figure 5. Schematic of isolated module. Left: individual components from top: top piece, O-
ring, sensor, O-ring, bottom piece. Right: assembled module.  
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3. Results and Discussion 

3.1. Indirect Synthesis and Characterization of Thin Films 

3.1.1. Generation 1 

Generation 1 (G1) aerogel films were partially synthesized and characterized. Upon 

sonication, neither alcogel from G1 successfully reverted into a sol. The alcogels prepared in 

the volume ratio 1:10:33 were more intact than those prepared in the volume ratio 1:10:44. 

On the mechanistic level, condensation reactions are inhibited as solvent content increases.40

 
(OR)3Si − O − Si(OR)3 + ROH ↔  (OR)3Si − OR + HO − Si(OR)3 

 

As observed in a rearranged version of [3], a newly formed siloxane bond is cleaved during 

alcoholysis to produce a silanol group and an alkoxide group: 

 
Since transesterification inhibits polymerization, the extensive silica network breaks down in 

the presence of increasing volumes of ethanol. Samples synthesized with a greater quantity of 

ethanol were mechanically weaker because they contained a higher liquid content.  

Although silica aerogels contain various pores sizes, including macropores (50-1000 

nm), mesopores (2-50 nm), and micropores (0.2-2 nm), they are primarily mesoporous and 

somewhat microporous.25 G1 pore sizes and porous distribution were both smaller than 

expected. Characterization by SEM illustrated that films synthesized with 44 ml ethanol 

exhibited greater porosity and film consistency than those prepared with 33 ml ethanol.  

Since G1 samples prepared with 44 ml ethanol were less dense, they were more soluble and 

easier to spin-coat onto the substrate. Nevertheless, these films were not particularly 

consistent or mesoporous. While certain regions of a G1 film were quite porous, others were 

not. Macropores and mesopores dominated porous regions of the sample (Figure 6).  

[3a] 
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Figure 6. SEM images of macropores and mesopores observed in G1 samples at 50000× 
magnification. Films were prepared with 44 ml ethanol and spin-coated onto QCM gold 
sensors.  

In regions with few pores, the sample surface was highly striated (Figure 7). 

Striations may have formed during film deposition of partially re-solubilized sol. An uneven 

film results when un-dissolved silica particulates are spin-coated onto the substrate.   

Based on the SEM images, G1 samples lacked an interconnected porous silica 

network. The absence of an open pore network may be due to residual pore impurities. G1 

aerogels underwent minimal solvent exchanges within a short time span. It is possible that 
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during the gradual transition into hexane solvent, impurities such as ethanol remained 

trapped inside the pores. As a result, contaminated pore surfaces may not have undergone 

complete derivation with hydrophobic TMCS. It is possible that the exposed hydrophilic 

pockets reacted with water vapor in the air after silylation. The compression forces that 

ensued would have collapsed the silica network and reduced the porosity of the aerogel. 

 

 

Figure 7. SEM image of a G1 silica aerogel film at 50000× magnification. Film was 
prepared with 44 ml ethanol, spin-coated onto an Al stub, and highly striated.  

 
3.1.2. Generation 2 

The sol-gel process was modified for Generation 2 (G2) films to improve their 

physical properties. Pore-fluid-exchanges increased in frequency. Pore structure of these 

aerogel films was more consistent with typical silica aerogel properties. As observed with G1 

aerogels, a decrease in solvent content (22 ml) resulted in a denser alcogel. After 2 hours of 

ultra-sonication, samples prepared with 22 ml of solvent barely re-liquefied and were not 

used during spin-coating. Alcogels prepared with 44 ml of ethanol were less dense and easier 
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to re-solubilize. Unlike G1 samples, G2 films prepared from this sol-gel had smaller pore 

sizes. The extensive network of mesopores and few micropores observed in these aerogels is 

consistent with the pore sizes found in an ideal silica aerogel (Figure 8). Striations were 

minimal.  

 
 

 

Figure 8. SEM images of G2 aerogel films at 50000× magnification. Films were prepared 
with 44 ml ethanol, spin-coated onto a QCM gold sensor, and mesoporous.  
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3.1.3. Generation 3 

Both thin film deposition and film characterization were not possible for G3 samples, 

which remained as alcogels, even after more than 2 hours of sonication. A possibility is that a 

strong silica network may have formed. Prior to ultrasonication of future generations, gels 

were broken into smaller pieces to promote dissolution in hexane. During ultra-sonication, 

gels were also periodically removed and vigorously stirred to encourage the breakdown of 

the silica network.  

3.1.4. Generations 4 and 5  

Based on preliminary characterization by SEM, ellipsometry, gas-adsorption, and 

QCM-D, G4 samples exhibited properties of silica-based aerogels, which have a porosity 

ranging from 70 - 99%, pore diameters of approximately 50 nm, and a surface area of 600 to 

1000 m2 based on the nitrogen adsorption/desorption BET method.25 G4 aerogels were the 

first samples to be characterized by multiple techniques because of their apparent uniformity 

and film consistency under SEM.  Unlike other generations, G4 films were imaged at a 

magnification of 30000× due to instrument malfunction.  The film surfaces contained 

minimal striation and an inter-porous silica network. Pore diameters ranged from ~40 nm to 

~200 nm (Figure 9).  

According to quantitative measurements made by SEM, thickness ranged from 

approximately 275 to 400 nm. Film thickness could only be crudely measured using SEM 

due to cross-section variability and cracking. The rough edges of the sample possibly formed 

after scoring the wafers. In this case, ellipsometry might be a more reliable technique for 

measuring thickness. Based on the measurement of unscored portions of the film, G4 

aerogels on silicon wafers had a refractive index of 1.08 and a thickness of 287.00 ± 0.85 nm. 
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The refractive index is consistent with literature values (n =1.0 to 1.08).25 Using the porosity-

refractive index relation [4], G4 samples had a film porosity of 80.9%, an intermediate value 

for porosity.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9. A SEM image of a spin-coated G4 silica-based aerogel film at 30000× 
magnification. 

 
Not all methods of characterization were utilized for G5 films. Instead, these were 

prepared primarily for QCM-D experiments. Since we had verified the presence of a 

nanoporous silica network from previous generations of aerogels, SEM was not utilized to 

characterize the porous nature of G5 samples. On the other hand, film thickness and 

refractive index were not measured by ellipsometry because of difficulty obtaining readings. 

This was probably due to the increased light scattering on these thin aerogel film surfaces.23  
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Gas-Phase Adsorption 

Based on intermediate relative pressures (when p* = 1) found in the linear region of 

the BET isotherm, we determined the specific surface area for G4 aerogels. We used [5] to 

obtain a linear BET fit (R2 = 0.995) for relative pressures between 0.16 and 0.32 (Figure 10). 

The y-intercept of the plot was 98.87 and the slope was 159.45. After relating the slope in 

terms of the y-intercept, we found that c = 2.61. The surface area of the G4 aerogel was 

377.66 m2/g, assuming that σ = 0.162 nm2 for a nitrogen gas molecule.  

In a similar study with TMCS-functionalized silica aerogels, Zhou determined 

specific surface areas less than our value.41

If we compare the two synthetic pathways, we can understand the discrepancy in 

surface area. Although we pursued a two-step sol-gel method, Zhou and his colleagues 

prepared their aerogel via a one-step, acid-catalyzed sol-gel process at room temperature.41 

An advantage to the two-step method is that the pre-polymerized sol formed during the reflux 

(T = 60°C) will undergo further condensation reactions in the second step. If handled 

carefully during solvent exchanges and surface functionalization, the aerogels fabricated by 

the two-step method would exhibit a complex, inter-porous network with a high surface area 

and narrow pore size distribution.  

 Zhou et al used a one-step, acid-catalyzed sol-gel 

process, followed by derivatization with varying concentrations of TMCS/hexane solutions. 

He found that increasing the concentration of TMCS (~7.0 – 10.0 wt %) increased the 

specific surface area of the aerogel.41However, when Zhou applied 5 wt % TMCS, the 

surface area (S = 258.35 m2/g) was less than ours (S = 377.66 m2/g).  
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Figure 10. Plot of linearized BET adsorption isotherm for G4 aerogels at relative pressures 
between 0.16 and 0.32.  

 
On the other hand, when we assessed higher BET surface area values (~1000 m2/g) 

found for silica-based aerogels, our sample had a relatively low surface area.25 A possible 

explanation for this difference is that surface silylation may not have reached completion in 

our samples. Unreacted surface silanol groups would be susceptible to condensation 

reactions. If this were the case, we could increase the hydrophobicity of the aerogel to inhibit 

further reactions. Another possibility is to identify the ideal concentration of TMCS (~7.0 – 

10.0 wt %) for maximizing specific surface area.41 Zhou determined that his samples 

achieved the largest surface area after exposure to ~8.6 wt % TMCS. Since our samples 

initially exhibited a different surface area than those synthesized in Zhou’s study, we would 

expect the ideal concentration of TMCS to vary. Other methods for increasing surface area 
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include modifying the composition of the aerogel recipe, particularly the volume of ethanol, 

TEOS, and/or catalyst added.  

QCM-D Oil Uptake  

 During initial QCM-D experiments with the coarse emulsions and pure hexadecane, 

we observed an unexpected positive frequency shift. “Desorption” of unknown material, 

presumably of the aerogel, seemed to occur. To simplify experimental conditions and isolate 

the cause of film “desorption,” we repeated the experiment with pure hexadecane.  

After simplifying the experimental conditions, we expected the following 

observations to occur. Once oil was introduced into the cell, we anticipated a large frequency 

drop. At this point, the alkane molecules would be attracted to the film surface due to the 

strong dispersion forces between the hexadecane molecules and the methyl groups on the 

aerogel surface. The subsequent water rinse should have little effect on the hexadecane 

contained in the pores because of water’s polarity and the aerogel’s non-polarity. Upon 

introduction of the surfactant, we expected an increase in frequency. As amphiphiles, 

surfactants can travel between the oil phase and water phase to extract oily residues. Since 

the hydrophile-lipophile-balance number (HLB) of Tween 20 is quite high (HLB = 16.7), it 

prefers the polar phase to the oil phase.42

 As a control, we exposed a pre-cleaned ODT-functionalized Au sensor to 

hexadecane. Upon exposure to the alkane, we observed a large frequency decrease (∆ f  = -

 HLB numbers > 10 are hydrophilic, while HLB 

numbers < 10 are lipophilic.42 The final water rinse should consequently remove any oil or 

surfactant residues trapped inside the aerogel pores and return the frequency to its initial 

value.     
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240 Hz). In comparison, the frequency decrease was notably less for an aerogel-coated ODT-

Au sensor exposed to the same alkane (∆f  = -53.8 Hz).  

Due to the preliminary nature of the QCM-D experiment, we plotted frequency and 

dissipation shifts at the higher, ninth overtone (Figure 11). Given that frequency is inversely 

related to mass by the Sauerbrey relation [8], we determined a sensed mass of ~970.6 ng/cm2
 

at the 9th overtone. Prior to oil exposure, the film was monitored in water and then in a 

surfactant solution. Tween 20 was used to maintain consistency with past experiments. 

During the wash with 1 wt % Tween 20 surfactant solution, frequency decreased until 

equilibrium was established. The dissipation response, which is sensitive to the viscous, or 

“floppy,” nature of the film, mirrored the frequency response and increased until equilibrium 

was reached. Substrate exposure to the water rinse removed most of the surfactant solution 

and shifted the frequency back to the baseline (~0 Hz).  

Frequency and dissipation values for the resonant and overtone frequencies (n = 1, 3, 

5, 7, 9, and 11) deviated only after the sensor was exposed to hexadecane. The frequency 

shift (∆f = -53.8 Hz) was not nearly as large as the shift observed in the control (∆f  = -240 

Hz).  During the adsorption process, dissipation increased from 0.5 × 10-6 to nearly 28 × 10-6. 

The dissipation values indicate that the oil-aerogel system formed a loose, dissipative 

structure.  The increase in energy dissipated by the film, as depicted by the differences 

among the various harmonics, signify the invalidity of the Sauerbrey relation. In cases where 

the Sauerbrey relation does not apply (∆ D > 1 × 10-6), we must consider the viscoelastic 

properties of the oil-aerogel system. While we recognize the highly viscoelastic nature of the 

system, we have not adjusted the Sauerbrey mass due to the preliminary nature of the 

experiment.  
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Figure 11. Adsorption of hexadecane onto an Au sensor coated with a TMCS-functionalized, 
silica-based aerogel. Time-resolved dissipation- (top) and frequency- (bottom) shifts for the 
9th harmonic, as measured by QCM-D.  
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After the oil-aerogel system neared equilibrium, water was introduced to flush out 

unbound hexadecane molecules. We observed a continued decrease in frequency (∆ f = -15.4 

Hz) beyond the equilibrium level reached with hexadecane. Dissipation continued to 

increase, which indicates that hexadecane had adsorbed onto and into the porous aerogel. 

A slight modification to this experiment would be to re-expose the sensor to the 

surfactant solution and a water rinse after the final step. The observed shifts in frequency and 

dissipation would elucidate information about continued aerogel oil uptake after exposure to 

surfactant solution. The water rinse should flush out oil droplets solubilized by the surfactant. 

If there is no significant frequency shift after film exposure to surfactant and water, then the 

oil has been trapped inside the aerogel pores.  

Film Stability 

 In certain instances, frequency unexpectedly shifted above the baseline upon 

exposure to various fluids. The aerogel may have desorbed from the surface if it did not fully 

adhere to the ODT-gold substrate.  

During film deposition, ODT-gold sensors may have been unevenly coated with the 

re-dispersed sol. The sol was re-liquefied in hexane, the non-polar solvent used to prime the 

sol-gel for surface derivatization with TMCS. According to Ruffner, hexane may not be the 

best solvent to use during spin-coating due to its high volatility.24 During film deposition, 

hexane volatilizes from the surface at different rates as a result of factors such as temperature 

and concentration gradients.24  

Heptane, a solvent with a lower volatility, could serve as a better alternative. 

Compared to the shorter hexane molecule, heptane has a longer carbon chain and a higher 

molecular weight. Heptane would therefore encounter stronger intermolecular forces, mainly 
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London dispersion forces that contribute to its stability as a liquid. Upon exposure to 

hexadecane, minimal, albeit QCM-D detectable, amounts of aerogel near the surface may 

have bound to the viscous, hydrophobic alkane chains. If we continue to observe 

“desorption” of material after replacing the solvent, we would need to investigate the 

robustness of the aerogel film itself.  

A proposed method would be to isolate the effect of each variable QCM-D 

experimental protocol. First, we would monitor the film’s stability in air. Before placing the 

sensor in the QCM-D, we would measure its refractive index using ellipsometry, assuming 

that it can be calculated. We would then flow air through the cell until the system 

equilibrates, remove the sensor, and measure its refractive index. If the refractive index were 

constant before and after the QCM-D run, the isolated variable is probably not responsible 

for the supposed film degradation. To test the effect of water, we would rinse the sensor with 

water, characterize it with ellipsometry, load the sensor into the QCM-D, expose it to water 

until the system equilibrates, and finally remove the sensor for another ellipsometric 

measurement. If the sensor were stable in air and water, we could then repeat the protocol 

with one of three variables: hexadecane, 1 wt % Tween 20, or an emulsion. Depending on the 

outcome of this methodical approach, it may be possible to determine the source of supposed 

film desorption.  

3.2. Future Work with Direct Method 

Aside from minor cases of material “desorption,” a disadvantage of indirect synthesis 

is the notable accumulation of solvent waste, a practice that contradicts our overall goal to 

reduce detrimental environmental impacts of oil recovery techniques. After preliminary 

fabrication of these films, we experimented with the direct synthesis of thin films onto QCM-
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D sensors. Certain challenges would need to be addressed before we can successfully use this 

method to directly fabricate and characterize thin aerogel films. 

One of the advantages of direct synthesis is the significant reduction in solvent waste. 

Although aerogels are easier to manage in bulk, a considerable amount of solvent is required. 

Indirect synthesis reduces waste by ten-fold. Less TMCS, along with ethanol and hexane, 

enters the chemical waste stream. Since there is less surface area for thin films, we could 

strengthen the silica network by increasing the oven temperature during gelation and aging. 

However, if we were to raise the temperature, we would also need to consider the impact of 

using volatile solvents such as hexane.     

Constructing multiple isolated modules would facilitate direct aerogel film synthesis 

onto QCM-D sensors in the future. Since the QCM-D contains four flow cells, these modules 

could be constructed in groups of four or five to ensure that at least four sensors are always 

prepared simultaneously. These modules would need to be modified with an airtight cap to 

ensure that highly volatile solvents remain in the well. Unless the well is tightly sealed from 

the atmosphere, hexane would rapidly volatilize during pore-fluid exchanges. An alternative 

is to use a lower volatility solvent during the washings.  

Additionally, we would need to construct a removable, seal-proof cap to confine the 

solvent inside the isolated module. Future work on direct synthesis of thin films would need 

to consider the high vapor pressure of the solvents used prior to surface modification.  
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3.3 Conclusions 

In this study, we pursued the indirect synthesis and initial characterization of 

hydrophobic silica aerogel films. The specific surface area (377.66 m2/g), refractive index 

(1.08), and porosity (80.9%) were consistent with values in the literature. Using QCM-D, we 

determined that hexadecane, our model oil, adhered to the porous film after a water rinse. 

Since increasing aerogel porosity would maximize the surface area for oil uptake, future 

experiments should strive to produce films with π > 90.0%. By altering the aerogel recipe, it 

is possible to obtain the desired physical and chemical properties. Due to their high porosity 

and low density, aerogel thin films are challenging to characterize with accuracy. It is 

important to recognize that different methods of characterization will yield different 

quantitative values.  Although there are advantages and disadvantages to each method of 

characterization, we have attempted to utilize four widely used analytical techniques.25 By 

improving the stability and reproducibility of the aerogel thin film, we may obtain QCM-D 

information about its oil absorbing capacity and its viscoelastic properties. A potential 

alternative to the indirect method is to explore the direct synthesis of thin films onto QCM-D 

sensors, a promising approach that would reduce the environmental impact of the aerogel 

waste stream. As demonstrated in this study, preliminary QCM-D analysis of synthesized 

hydrophobic aerogel thin films is possible and can be further explored to better understand 

and improve the oil-sorbent capabilities of such unique materials. 
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