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Summary Let a1, a2, . . . , an, b1, b2, . . . , bn be real numbers and the n × n matrix C be defined with entries
ci j = (ai + b j )

k , where k is a positive integer. If n > k + 1, then det(C) = 0, and if n = k + 1, then det(C) is a
product involving two Vandermonde determinants.
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The Fibonacci sequence defined by F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1 is clearly pe-
riodic when reduced modulo an integer m, since there are only finitely many possible
pairs of consecutive elements chosen from Z/mZ (in fact, m2 such pairs) and any such
pair determines the rest of the sequence, both forwards and backwards. What is the
period of this sequence?

An upper bound is m2
− 1 (since the sequence does not have a consecutive pair of

0’s), but the period is often much smaller. As examples, the Fibonacci sequence mod
11 is:

0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, . . .

and has period 10; the Fibonacci sequence mod 7 is:

0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, . . .

and has period 16.
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This problem was first considered by Wall [8] and shortly thereafter by Robinson
[5]. Among other cases, they studied the Fibonacci sequence for prime moduli, and
showed that for primes p that are congruent to 1 or 4 (mod 5) the period length of
the Fibonacci sequence mod p divides p − 1, while for primes p that are congruent
to 2 or 3 (mod 5) the period length divides 2(p + 1). The examples above illustrate
these facts. As we will see, the prime p = 5 is a special case with period 20; the prime
p = 2 is also special in some ways with period 3.

Wall’s proofs use different combinatorial techniques for each of these classes of
primes. Robinson proves these results by appealing to a directed graph of points
formed by multiplication by a Fibonacci matrix. In this paper, we give alternative
proofs of these results that also use the Fibonacci matrix, but unlike Robinson, we
place the roots of its characteristic polynomial in an appropriate splitting field. This
allows us to obtain bounds for the periods of the more general recurrence

En+1 = AEn + B En−1

modulo a prime, which neither Wall nor Robinson consider.
Vella and Vella [7] consider general recurrences, but only in the special case where

the roots of the characteristic polynomial are integers. Using sophisticated methods,
Pinch [3] proves general results about multiple-term recurrences with prime power
moduli, but does not produce specific bounds of the kind that we consider here. Li
[4] reviews prior work on period lengths of general recurrences in the context of a
different problem: determining which residue classes appear in recurrence sequences.

The purpose of our brief paper is to illustrate an accessible, motivated treatment of
this classical topic using only ideas from linear and abstract algebra (rather than the
case-by-case analysis found in many papers on the subject, or techniques from grad-
uate number theory). Our methods extend to general recurrences with prime moduli
and provide some new insights, e.g., Theorem 8, below. And our treatment highlights
a nice application of the use of splitting fields (explained below) that might be suitable
to present in an undergraduate course in abstract algebra or Galois theory.

Eigenvalues of the Fibonacci matrix

Let p be an odd prime.
In accordance with previous literature [5, 8] we define k(p), the period of the Fi-

bonacci sequence mod p, to be the smallest positive index i such that Fi ≡ 0 mod p
and Fi+1 ≡ 1 mod p. In our examples above, k(11) = 10, while k(7) = 16. Following
Robinson [5], we consider the Fibonacci matrix:

U =

[
1 1
1 0

]
.

This is a matrix over some field F that we should be careful to specify. If we choose
F = R, then

U n
=

[
Fn+1 Fn

Fn Fn−1

]
.

And if we choose F = Fp, the finite field of order p (also known as Z/pZ, the integers
mod p) then the entries of U n are elements of the Fibonacci sequence mod p, the
desired objects of study.

It is natural to consider the eigenvalues of the matrix U , which are roots of its
characteristic polynomial x2

− x − 1. If eigenvalues λ, λ̄ exist in Fp and are distinct,
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then U = C DC−1 where D is the diagonal matrix

D =

[
λ 0
0 λ̄

]
(1)

and C is a matrix with the corresponding eigenvectors as columns. Then U k
=

C DkC−1. We see that for k = k(p), we have U k
= I , the identity matrix. There-

fore Dk
= C−1U kC is also I . We observe that the exponent k = k(p) is the smallest

non-zero exponent n such that Dn
= I . Thus:

LEMMA 1. The period k(p) must divide any n that satisfies Dn
= I .

When do the eigenvalues λ, λ̄ exist in Fp? The quadratic formula shows that ax2
+

bx + c has roots in the field Fp as long as the discriminant 1 = b2
− 4ac is a square

in Fp; hence the characteristic polynomial x2
− x − 1 has roots in Fp if and only if

1 = 5 is a square. Quadratic reciprocity [6] shows that if p is an odd prime, then 5 is
a square in Fp if and only if p ≡ 0, 1, 4 mod 5. And as long as p 6= 5, the eigenvalues
are distinct. Hence:

THEOREM 2. If p is an odd prime and p is congruent to 1 or 4 (mod 5), then k(p)
divides p − 1. In particular, k(p) ≤ p − 1.

Proof. The eigenvalues λ, λ̄ of U are non-zero (since U is invertible) and distinct
(since p 6= 5). Since p is prime, Fermat’s (little) theorem implies both λp−1

= 1 and
λ̄p−1
= 1. Hence D p−1

= I and Lemma 1 gives the desired conclusion.

When p = 5, the eigenvalues are not distinct (they are both 3) and D is not diagonal,
so D4

6= I even though λ4
= λ̄4

= 1. One finds that D20
= I and k(5) = 20.

A splitting field for the eigenvalues

The case of remaining classes of odd primes, p ≡ 2, 3 mod 5, requires more work,
because for these primes, the characteristic polynomial x2

− x − 1 is irreducible. It
does not have roots in Fp unless we enlarge the field.

We can do this by a standard construction: to the field Fp, we “adjoin” an element
γ that has the property that γ 2

= γ + 1, and consider the set of linear combinations
of 1 and γ over Fp with the natural arithmetic.

Let’s make this construction more precise. As a set, the enlarged field has p2 ele-
ments:

Fp2 = {a + bγ : a, b ∈ Fp}

We may regard these as formal expressions or as a particular way to write ordered
pairs (a, b). They are added and multiplied as if γ were a number satisfying γ 2

− γ −

1 = 0. Here’s a sample calculation: (1− γ )(γ ) = γ − γ 2
= γ − (γ + 1) = −1. With

these operations, Fp2 is a field. In fact it is the unique finite field of size p2 and some
may recognize it also as the quotient field Fp[x]/(x2

− x − 1), though this insight is
not needed in what follows.

Note that the expressions of the form a + 0γ (with b = 0) form a subfield identical
to Fp itself. In this way we regard Fp as a subfield of Fp2 . We note that this subfield
obeys Fermat’s theorem, so

a p
= a

holds for all a ∈ Fp.
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By construction, γ is automatically a root of x2
− x − 1 in Fp2 . One may check that

γ̄ = 1− γ

is another root, distinct from γ . We will need the fact that γ γ̄ = −1, which follows
from the sample calculation above.

Also by construction, Fp2 has characteristic p: any element a + bγ multiplied by
p (e.g., added to itself p times) is 0, since the coefficients a, b come from Fp. So the
following nifty fact holds, sometimes facetiously called “freshman exponentiation” [1,
p. 422]: if µ, ν ∈ Fp2 , then

(µ+ ν)p
= µp

+ ν p. (2)

This follows from the binomial theorem. When p is prime and k is not equal to 0 or p,
the binomial coefficient

(p
n

)
is divisible by p. Therefore all of the intermediate terms

of the binomial expansion of (µ+ ν)p vanish, and (2) holds.
This is the basis of an important lemma. We briefly consider an arbitrary polynomial

in Fp:

LEMMA 3. If P(x) is an irreducible polynomial in Fp that has a root γ in Fp2 ,
then γ p must be a different root of P(x).

(This is a standard fact in Galois theory: the Frobenius map x → x p transitively
permutes the roots of irreducible polynomials, though we have avoided that language
here to keep this treatment friendly.)

Proof. Let P(x) = an xn
+ · · · + a0 where ai ∈ Fp, and suppose γ is a root. Then

P(γ p) = anγ
pn
+ · · · + a0

= a p
n γ

np
+ · · · + a p

0

= (anγ
n
+ · · · + a0)

p

= 0p
= 0.

The second line follows because Fermat’s theorem (a = a p) holds for elements of Fp,
and the third line follows from freshman exponentiation.

So γ p is a root of P(x). Further, γ p
6= γ , because there are at most p solutions

to the equation x p
= x , and Fermat’s theorem shows they are all the elements of the

subfield Fp. Therefore γ is not a solution, and γ p must be a different root of P(x).

Returning to the case of P(x) = x2
− x − 1, we immediately obtain:

LEMMA 4. If p ≡ 2, 3 mod 5, then

γ p
= γ̄ and γ̄ p

= γ.

Proof. These statements follow from the fact that x2
− x − 1 is irreducible in Fp

when p ≡ 2, 3 mod 5, but has exactly two roots γ and γ̄ in Fp2 .

Now we may determine the desired bound:

THEOREM 5. Let p be an odd prime that is congruent to 2 or 3 (mod 5) then k(p)
divides 2(p + 1). In particular, k(p) ≤ 2(p + 1).

Proof. We appeal to Lemma 1, now viewing the matrices U and D in the prior
discussion with elements from the enlarged field Fp2 . Note that the diagonal entries
λ, λ̄ of D in (1) are then the roots γ, γ̄ of x2

− x − 1.
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Applying Lemma 4 (γ p
= γ̄ ) and the fact that γ γ̄ = −1, we see that

γ 2(p+1)
= (γ p)2γ 2

= γ̄ 2γ 2
= (−1)2 = 1. (3)

By reversing roles of γ, γ̄ we see that γ̄ 2(p+1)
= 1 as well. These conclusions show

that D2(p+1)
= I , as desired in Lemma 1.

As Wall [8] notes, the upper bounds of Theorems 2 and 5 are tight for many
small odd primes p 6= 5 (for p < 100, the only exceptions are 29, 47, and 89). The
bounds appear to be less tight for larger p. Wall also shows for prime powers, k(pt) ≤

pt−1k(p) with equality if k(p2) 6= k(p). It is believed the latter condition always
holds; see [2] for partial results. Combining knowledge of k(pt) with the fact that
lcm[k(m), k(n)] = k(lcm[m, n]), one can obtain a bound on k(m) for each positive
integer m.

The general recurrence

Our methods can be adapted to obtain bounds for the period of the general recurrence

En+1 = AEn + B En−1

modulo a prime p, with E0 = 0 and E1 = 1. Let kA,B(p) be the period of En mod p.
The analog of the Fibonacci matrix becomes

U =

[
A B
1 0

]
,

and the eigenvalues λ, λ̄ are roots of the characteristic polynomial x2
− Ax − B. This

has roots in Fp as long as the discriminant

1 = A2
+ 4B

is a square in Fp (a quadratic residue mod p), and they are distinct if 1 6≡ 0 mod p.
The same arguments as in Theorem 2 will yield:

THEOREM 6. If p is an odd prime and 1 is a non-zero quadratic residue mod p,
then kA,B(p) divides p − 1. In particular kA,B(p) ≤ p − 1.

For example, consider En+1 = 3En + 2En−1 mod 13. Then A = 3, B = 2, and1 =
17. Since 1 ≡ 22 mod 13, 1 is a non-zero quadratic residue mod 13. Our theorem
shows that k3,2(13) ≤ 12 (and, in fact, it is 12).

A curious consequence of our theorem is that the sequence En+1 = En + 2En−1

mod p has small period (that divides p − 1) for every odd prime p except 3 (since
1 = 32 is always a square and the only prime p that divides 1 is 3).

If the discriminant 1 is not a square in Fp, we consider U as a matrix with entries
from Fp2 , the splitting field of x2

− Ax − B obtained by adjoining an element γ that
satisfies γ 2

= Aγ + B. The roots of the characteristic polynomial x2
− Ax − B in Fp2

are then γ and γ̄ = A − γ . The irreducibility of x2
− Ax − B over Fp and Lemma 3

show that

LEMMA 7. If 1 is a quadratic nonresidue mod p, then

γ p
= γ̄ and γ̄ p

= γ.

We can now obtain the following result. Let ord(n) denote the multiplicative order
of n: the smallest positive integer t such that nt

≡ 1 mod p.
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THEOREM 8. If 1 is a quadratic nonresidue mod p, then kA,B(p) is a divisor of
2(p + 1) · ord(B2). In particular,

kA,B(p) ≤ 2(p + 1) · ord(B2).

Proof. We mimic the proof of Theorem 5. In light of Lemma 1, our goal is to show
that

γ 2(p+1)
= γ̄ 2(p+1)

= B2.

But these follow easily by noting γ γ̄ = −B, using Lemma 7, and repeating a similar
calculation as (3).

Note that if B = 1, then the original bound 2(p + 1) still holds. For example, con-
sider En+1 = 3En + En−1 mod 19. Then A = 3, B = 1, and 1 = 13. Since 13 is a
nonresidue mod 19, our theorem shows k3,1(19) divides 40 (and, in fact, it is 40). For
the same sequence mod 11, we find that 13 is a nonresidue mod 11, so k3,1(11) divides
2(11+ 1) = 24 (and, in fact, it is 8).

For a general example where B 6= 1, consider En+1 = 3En + 2En−1 mod 7. Then
A = 3, B = 2, and 1 = 17. Since 17 is a nonresidue mod 7, and B2

= 4 satisfies
43
≡ 1 mod 7, our theorem shows that the period k3,2 divides 2(7+ 1) · 3 = 48 (and,

in fact, is 48).
In general, we note that ord(B2) is at most (p − 1)/2 by Fermat’s theorem, so the

bound in Theorem 8 could be as high as 2(p + 1)(p − 1)/2 = p2
− 1, the bound at

the beginning of this paper. This bound is actually achieved by En+1 = 3En + 2En−1

mod 37, the sequence

0, 1, 3, 11, 2, 28, 14, 24, 26, 15, 23, 25, 10, 6, 1, 15, 10, 23, 15, 17, . . .

which has period 1368 = (37+ 1)(37− 1), and indicates that all possible consecutive
pairs other than 0, 0 appear in this sequence mod 37.
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Summary We consider the period of a Fibonacci sequence modulo a prime and provide an accessible, motivated
treatment of this classical topic using only ideas from linear and abstract algebra. Our methods extend to general
recurrences with prime moduli and provide some new insights. And our treatment highlights a nice application of
the use of splitting fields that might be suitable to present in an undergraduate course in abstract algebra or Galois
theory.
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