
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

1-1-2000

Review: Cake-Cutting Algorithms: Be Fair if You
Can
Francis E. Su
Harvey Mudd College

This Book Review is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for
inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please
contact scholarship@cuc.claremont.edu.

Recommended Citation
Francis Edward Su. Reviews: Cake-Cutting Algorithms: Be Fair if You Can. Amer. Math. Monthly, 107(2):185–188, 2000.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/70974309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu


appeared in: Amer. Math. Monthly, 107(2000), 185-188.

Cake-Cutting Algorithms: Be Fair If You Can. By Jack Robertson and
William Webb. A K Peters, 1998, x + 181 pp., $38.

Reviewed by Francis Edward Su

Many feel that mathematics will receive as much of its direction
and vigor in the future from problems in the social sciences as it
has received in the past from the physical sciences. (p. 2)

As I grow older, I find myself yearning more and more for a connection
between my work and the complex problems facing the world. And unlike
most people, I am in a profession where I have the flexibility to choose what
I do. Should this yearning influence the kind of research that I pursue?
Should it affect how and what I teach my students? At the very least I
should vigilantly ponder these questions.

Because of this yearning, I have taken up the challenge of a problem moti-
vated by the social sciences—the problem of fair division. Mathematically, it
is a very rich subject with many applications and a variety of open questions,
ranging from very deep problems to accessible ones that my undergraduates
can pursue. A very nice survey of the subject can be found in Cake-Cutting
Algorithms, by Jack Robertson and William Webb.

The basic question—how to cut a cake fairly?—is surely an ancient one.
However, Robertson and Webb’s book demonstrates that the subject has
evolved considerably in the fifty years since Steinhaus [10] first posed the
question as a serious mathematical endeavor. Now much more than a collec-
tion of ad hoc results, the subject has matured, exhibited fertile connections
with many areas of mathematics, and proved itself practical in social appli-
cations [4], [8].

The question is loaded with terms that must be made precise. In today’s
theory, “cake” could mean any desirable set of goods (or burdens, or mixtures
of goods and burdens), each with various properties (such as being divisible or
indivisible) and restrictions (such as the number of goods a player may get).
The word “cut” refers to kinds of divisions that can be carried out in practice,
such as discrete procedures or continuous moving-knife schemes for real cakes,
and compensation procedures for the division of estates (using money as a
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divisible medium to negotiate the allocation of indivisible objects). The
question “how?” suggests that we are not only interested in the existence
of solutions, but desire constructive procedures for finding them. And there
are many possible “fairness” notions. Two of the better known examples
are proportional (or simple fair) division, in which each of n players feels
she received at least 1/n of the cake, and the stronger notion of envy-free
division, in which each person feels that no one else received a larger piece.

The main issues in the field are the following:

1. (Existence) Does a division with the desired fairness property exist?

2. (Construction) Is there a discrete or continuous procedure for locating
solutions? If not, can one locate an approximate solution?

3. (Properties) Can one give bounds for the number of steps or cuts re-
quired? What can be accomplished with a limited number of cuts?
What kinds of procedures are provably impossible?

4. (Implementation) Which procedures are useful in applications such as
divorce settlements and estate division? Are they convincingly fair to
each player? Do they induce players to be truthful? Can negotiators,
lawyers, lay people, or even countries use them to resolve conflicts?

As a mathematical survey, Cake-Cutting Algorithms focuses primarily on
issues (1), (2), and (3). The extensive mathematical development of (3) and
the emphasis on cake division distinguish it from an earlier book [3] that takes
a complementary and wider view of the subject by additionally addressing
(4) while scaling back discussion of mathematical issues.

Ideas and techniques for solving fair division questions come from many
different arenas. The following are some of my favorite examples.

Measure Theory Let C denote the cake to be divided. A natural model
for a player’s valuation of the cake is a probability measure on subsets of C.
Thus µi(A) represents the value of subset A to player i as a fraction of the
whole cake. The cake-cutting problem becomes non-trivial and interesting
only when the player valuations differ; however, one lesson of the subject,
noted by Steinhaus and developed further by Robertson and Webb, is the
“serendipity of disagreement”. Players can often get away with more if there
are differences in player opinions.
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As an example, consider the following nice result of Barbanel [1]. A divi-
sion of a cake is super envy-free if every player feels all other players received
strictly less than 1/n of the total value of the cake. Clearly super envy-free
implies envy-free. Barbanel [1] proved that super envy-free divisions exist if
and only if the player measures are linearly independent!

This result shows only existence. Robertson and Webb show how to
construct a super envy-free division by using a set of pieces that “witness”
the linear independence of the measures.

Graph Theory Hall’s famous marriage theorem can be used to develop a
discrete proportional cake-cutting algorithm, as Robertson and Webb show.

Given pieces of cake X1, X2, . . . , Xn to be assigned to players P1, P2,
. . . , Pn, we may construct a bipartite graph G with the players and objects
as vertices; there is an edge between Pi and Xj if Pi thinks Xj is at least 1/n
of the cake. A perfect matching in G would yield an assignment of pieces to
players that is proportionally fair. In this context, Hall’s theorem says that
there exists a perfect matching if and only if every subset S of pieces satisfies
N(S) ≥ |S|, where N(S) denotes the number of players who find at least one
piece in S acceptable and |S| denotes the size of S.

We can ensure that such subsets of size 1 exist by letting P1 cut the
cake into n pieces equally desirable to her. Using those pieces, Robertson
and Webb show that there exists a smallest subset of pieces T such that
N(T ) = |T | ≥ 1 but all non-empty proper subsets S ⊂ T satisfy the strict
inequality N(S) > |S|. So apply Hall’s theorem to assign pieces in T to the
corresponding N(T ) players. The remaining players (if there are any) do not
desire pieces in T and so are happy to give them away; they can now lump
the unassigned pieces together and divide the lump fairly among themselves
by appealing to induction. This process can be converted to a procedure
using constructive matching algorithms.

Complexity Robertson and Webb survey several algorithms for propor-
tional and envy-free division and compare the number of required cuts.
Brams and Taylor [2] and later Robertson and Webb [7] gave procedures
for envy-free division for n players. Though finite, both these procedures are
unbounded, meaning they could take arbitrarily long to resolve, depending
on player preferences. Whether there exists a finite, bounded procedure for
envy-free cake division is a major open question.
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For proportional division, there do exist bounded procedures for n players;
the “divide-and-conquer” algorithm due to Even and Paz takes O(n log n)
cuts and is the most efficient currently known for general n. Is this best
possible? For specific values of n, other algorithms are more efficient than
the Even-Paz algorithm, and limited evidence suggests that O(n) cuts may
be sufficient. The question is interesting because we know from existence
theorems that n−1 cuts are necessary and sufficient; but what is the minimal
number of cuts guaranteed by a procedure?

Robertson and Webb tabulate known values for this and the dual question
of how much cake can be guaranteed each player by a limited number of cuts.
Readers may enjoy the challenge of improving these bounds for specific values
of n.

Combinatorial Topology Known n-person envy-free procedures involve
a large number of cuts and would, practically speaking, decimate the cake
even for the case of 4 players.

A new development [11], not discussed in the Robertson/Webb book, is
the use of theorems from combinatorial topology to provide approximate solu-
tions in which the number of cuts is minimal. For example, Sperner’s lemma
concerns triangulations of n-balls whose vertices are labelled by n+ 1 labels.
It states that under appropriate boundary conditions, at least one n-simplex
in the triangulation possesses all labels. More importantly, a constructive
proof of Sperner’s lemma surfaced in the 1960s and led to some startling
constructive methods for finding fixed points [12], since the lemma is equiv-
alent to the Brouwer fixed point theorem. Sperner’s lemma relates to cake
division via an extra ingredient not present in the fixed point connection—
the existence of an “owner-labelling” of a triangulated ball—which allows for
the accommodation of the preferences of n different players. Moreover, the
constructive proof of Sperner’s lemma can be converted into an algorithm
for approximate envy-free division.

Related combinatorial theorems, such as Tucker’s lemma, and their con-
structive proofs can be used to generate new algorithms for other fair division
problems. The exciting news is that the connection also runs the other way—
fair division questions now motivate the development of new combinatorial
theorems; see [9].

Robertson and Webb describe many more connections between fair divi-
sion questions and other areas of mathematics.
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Cake-Cutting Algorithms is accessible to a wide mathematical audience.
The language is relaxed and informal, sometimes to the point of being chatty.
However, the friendly style serves to engage the uninitiated reader, and stu-
dents will find it a welcome difference from stiff textbook prose. The book
is effectively divided into two parts: chapters 1-6, which assume a minimal
mathematical background, and chapters 8-11, which are quite technical and
require much more mathematical maturity. These are separated by chapter
7, which summarizes the known cake-cutting algorithms.

By careful selection of topics, one could use material in the first seven
chapters to supplement a math for liberal arts course or a topical freshman
seminar, since the subject of fair division lends itself well to both mathemat-
ical excursions and philosophical discussions about “fairness”. At the other
end of the spectrum, advanced readers will find some important theoretical
results in the final chapters that are primarily the work of the authors: impos-
sibility theorems showing that certain kinds of divisions cannot be achieved
by finite procedures, some very delicate arguments about what can be ac-
complished with a limited number of cuts, and the use of Ramsey partitions
to address the problem of division into unequal shares.

One of the best features of the Robertson-Webb book is the variety of
questions that it poses at all levels. There are exercises and projects at the
end of each chapter as well as questions scattered throughout the text. Some
are suitable for undergraduate projects, while others are tantalizing open
problems that may take years to resolve.

For the past two years, I have had my undergraduate research students
focus on fair division questions. I am happy to report that the Robertson-
Webb text provided mathematical background as well as many launching
points for their research; they pursued problems in envy-free chore division
(in which players desire the smallest, rather than largest, piece) [5], examined
cake division into unequal ratios, and implemented fair division algorithms
on the Internet [6].

In summary, Cake-Cutting Algorithms will engage and challenge both
veteran and novice mathematicians. Those who wish to develop their own
approaches to the subject will find the book an indispensable guide to past
work on the problem of cake-cutting. Mathematicians in other fields may
find that the book stimulates them to think about the connections between
their own work and contemporary problems in the social sciences.
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