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1. INTRODUCTION. The Borsuk-Ulam theorem and the Brouwer fixed point 
theorem are well-known theorems of topology with a very similar flavor. Both are 
non-constructive existence results with somewhat surprising conclusions. Most 
topology textbooks that cover these theorems (e.g.> [4], [5], [6]) do not mention the 
two are related- although, in fact, the Borsuk-Ulam theorem implies the Brouwer 
Fixed Point Theorem. 

The theorems themselves are often proved using the machinery of algebraic 
topology or the concept of degree of a map. That one theorem implies the other 
can therefore be established once one understands this machineiy, but this 
requires background. Moreover, such proofs tend to be indirect, relying on the 
equivalence of these existence theorems with corresponding non-existence theo- 
rems. For instance, Dugundji and Granas [3] show that the Borsuk-Ulam theorem 
is equivalent to the statement that no antipode-preserving, continuous map f: 
sn 3 sn can be homotopic to a constant map. From this one can see that the 
Brouwer fixed point theorem is a special case, because it can be shown equivalent 
to the statement that the identity map id: Sn > Sn (which is antipode-preserving) 
is not homotopic to a constant map. 

However, such an indirect approach is not really necessary, and perhaps a more 
direct proof would give insight as to how the two theorems are related. The 
purpose of this note is to provide a completely elementary proof that the Borsuk- 
Ulam theorem implies the Brouwer theorem by a direct construction, in which the 
existence of antipodal points in one theorem yields the asserted fixed point in the 
other. 

2. THE THEOREMS. Let Sn denote the unit n-sphere in llRnflS i.e., all points at 
distance one from the origin. Two points are antipodal if they lie opposite each 
other on the sphere i.e., {x, -x} for some x. 
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The Borsuk-Ulam Theorem. Let f Sn Rn be a continuous map. There exists a 

pair of antipodalpoints on Sn that are mapped by t to the same point in Rn. 

This theorem was conjectured by S. Ulam and proved by K. Borsuk [1] in 1933. 
In particular, it says that if t = (tl f2 . . . f tn) iS a set of n continuous real-valued 
functions on the sphere, then there must be antipodal points on which all the 
functions agree. For instance, one interpretation for the case n = 2 is that there is 
always a pair of antipodal points on the earth's surface with the same temperature 
and barometric pressure (assuming, of course, that temperature and pressure vary 
continuously). 

Let Bn denote the unit n-ball in Rn. A fiuced point for a map t from a space 
into itself is a point y such that f(,y) = y. The following theorem, due to L.E.J. 
Brouwer, is one of the most celebrated theorems in topology: 

The Brouwer Fixed Point Theorem. Every continuous map f:Bn Bn possesses a 

fiJced point. 

Brouwer proved the case n = 3 in 1909, and Hadamard followed in 1910 with a 
proof for all dimensions. Brouwer gave a different proof in 1912 [2]. See [3] for 
more historical notes and a survey of fixed point theory. 

In dimension three, the Brouwer theorem is often interpreted as follows: no 
matter how you slosh around the coffee in a coffee cup (as long as you do it 
continuously), some point is always in the same position it was before the sloshing 
took place (although it might have moved around in the meantime). Moreover, 
should you try to move this point out of its original position, you will unavoidably 
move some other point back into its original position. 

3. THE IDEA. As motivation we first briefly sketch a construction that shows how 
the Borsuk-Ulam theorem implies the Brouwer fixed point theorem. 

We choose to think of Bn as [-1, l]n, the "n-cube" in Rn. Similarly, we choose 
to think of Sn as the boundaxy of the (n + 1)-cube [ - 1, l]n + l in Rn + l 

sn = {xlx= (xl,x2,...,xn+l), lxzl ' landmaxlxil = 1}. 

The "cubical" n-sphere is homeomorphic to the usual n-sphere via the rays from 
the origin. In fact, this is an antipode-preserving homeomorphism, so the Borsuk- 
Ulam theorem holds for maps on cubical n-spheres. We choose to work with 
cubical n-spheres and n-balls because constructing and describing functions on 
such objects is easier in rectangular coordinates. 

Given t: Bn < Bn, we would like to construct a map g: Sn X Rn that encodes 
t in such a manner that the existence of Borsuk-Ulam antipodal points for g 
implies the existence of a Brouwer fixed point for f. 

The idea is as follows: on the cubical n-sphere, the "top" and "bottom" faces of 
the cube are homeomorphic copies of Bn. These are separated by an "equatorial" 
band, consisting of the other faces. Our task is to define a continuous function g 
on these three regions of sn. On the top face, we define g in such a way that a 
zero of g implies a fixed point for f. We then define g on the bottom face so that 
the image of each point there is the negative of the image of its antipode on the 
top face. Such map is called antipode-preservinmeaning g( - x) = -g(x). If we 
can patch-in the equatorial region with a map that is also antipode-preserving but 
never zero, then the Borsuk-Ulam Theorem guarantees the existence of antipodal 
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points that get mapped by g to the same point. Because g is antipode-preserving, 
these antipodal points must get mapped to zero, which by construction cannot 
occur in the equatorial band. A zero for g on the top or bottom face then implies 
a fixed point for f. 

4. THE CONSTRUCTION. We seek to construct a map g = (g1, g2, . . ., gn) 
sn > i8n that is continuous and antipode-preserving, i.e., g(-x) = -g(x). 

We first construct g on the "top" and "bottom" faces. Note that each face, on 
which some coordinate xk = + 1, is an n-cube. When xn+1 = + 1 we obtain: 

Stop = {x Ix = (x1, x2, . . ., xn, 1)} and SbOt = {x Ix = (x1, x2, * *, xn, -1)}, 

which denote the top and bottom faces of the cubical sn. See Figure 1. Let 
p : i8n + 1 > i8n be defined by p(x) = (xl, . . ., xn), i.e., p ignores the last coordi- 
nate. 
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Figure 1. Top, bottom, and equator of the cubical n-sphere (here n = 2). An example of antipodal 
points is indicated. 

For all x in StnOp, define g(x) =p(x) - f(p(x)). For all x in SbnOt, define g(x) = 
p(x) + f(-p(x)). 

Since p(-x) = -p(x), one may check that g(-x) = -g(x). Thus g is, so far, 
antipode-preserving. It is continuous, since f and p are. If g(x) = 0 then p(x) is a 
fixed point for f. 

Now we want to define g on the "side" faces of the cubical n-sphere so that it 
matches up continuously with g on StnOp and SbnOt and is still antipode-preserving, 
but is never zero on the sides. The latter is the tricky part. 

One might try to extend the values of g linearly from top to bottom, but this 
does not guarantee that g + 0 on the sides. However, the following lemmas show 
that if we define g suitably on the equator, we can linearly extend the values from 
the equator to top and bottom without creating a new zero for g. 

Lemma 1. Let F be a "side" face of the cubical sn. That is, there exists some k, 
1 < k < n, such that for all x in F, Xk is constant and equal to + 1 or - 1. Then for 
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all x in F n (Sbnot U Stnop) the coordinate function gk(X) is either O or has the same 
stgn as Xk. 

Proof: By the definition of g, on F rl Stnop X gk(X) = Xk-fk( p(X)) and on F n Sbnot X 
gk(x) = xk + fk(-p(x)). Since f is a map to an n-cube, | fk | < 1. Hence, if xk = 1, 

then gk(x) 2 0 for all x E F n (Sbnot U StnOp). If xk = - 1, then gk(X) < O for all 

x E F n (Sbot U Stop) s 

Now letSenq denote the "equator" of sn, i.e., {x E Sn lx = (x1, . . ., xn, O)}. For 

all x E Senq, define g on Senq by 

g( Xl S . . . X Xn, -1) + g( X1, * * *, Xn, 1) ( 1) 

and observe that g is now antipode-preserving on the equator. 

Lemma 2. For all X E SenqX if | Xk | = 1, then the coordinate fi>nction gk(X) is not O 
and has the same sign as Xk. 

Proof: Lemma 1 shows that if Ixk | = 1, gk has the same sign as xk on the top and 

bottom faces if it is not zero. Therefore, using (1) and pk(X) = Xk = _ 1, we see 

that gk(X) is non-zero on the equator and has the same sign as Xk. 

To define g on the equator we have "averaged" the values of the corresponding 

points on StnOp and SbnOt and then "lifted" that average by p(x) (which equals xk in 

if xk is positive if xk is negative 
+s +s 

gk(x) %/e C\\E gk(x) 

-w n n n 
SbOt Seq Stop 

l l | Xn+l I | > Xn+ 

SbOt Seq Stop < / 

_T _ t 

Figure 2. Extending the values of gk linearly from the equator to top and bottom. Graphs show a 
cross-section of gk values along on "longitude" of the cubical n-sphere on the faces determined by 
Xk = +1,-1. 

the k-th coordinate) to pull it away from possibly being zero. See Figure 2. 

We now define g continuously on the rest of Sn by extending it linearly from 

the equator to the values on SbnOt and StnOp. That is, for O < xn+1 < 1, let 

g(x) = xn+lg(xlv * * * X XnX 1) + (1 Xn+l)g(Xlv * * * X Xnx °) (2) 

For - 1 < xn + 1 < O, let 

g(x) Xn+lg(XlX * * * X XnX 1) + (1 + Xn+l)g(Xlv * * * X Xnx O) (3) 
Refer to Figure 2 again. Note that g is continuous and antipode-preserving. 
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Furthermore, it can achieve O only on StnOp or SbOt, because of 

Lemma3. It Ixn+ll<l, theng(x)+O. 

Proof: Since lxn+l 0 < 1, we are on a side face and therefore there exists some k, 
1 < k < n, for which xk = + 1. We shall show that g(x) cannot be zero by 
showing that the coordinate function gk(X) is non-zero. 

Consider (2) and (3). By Lemmas 1 and 2, gk(XlSX2S...Xn+ 1) and 
gk(x1, x2, . . ., xn, O) have the same sign as Xk, and the latter is non-zero. More- 
over, (1 - xn + 1 ) and (1 + xn + 1 ) are strictly positive because | xn + 1 1 < 1. Equations 
(2) and (3) now imply that gk(X) is non-zero and, in fact, has the same sign as Xk. 

. 

Now that g is defined evetywhere on sn, the Borsuk-Ulam Theorem implies 
that there exists a pair {x, - x} such that g(x) = g( - x). But g(x) = -g( - x), since 
g is antipode-preserving. Therefore g(x) = g(-x) = O which, by Lemma 3, implies 
that one of the pair {x, -x} is in Stop. Without loss of generality, suppose it is x. 
Then g(x) = p(x) - f(p(x)) = O on Stop implies that for y = p(x) E Bn, we have 
f(y) = y, which proves the Brouwer Fixed Point Theorem. 
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