Claremont Colleges Scholarship @ Claremont

All HMC Faculty Publications and Research

HMC Faculty Scholarship

8-1-2001

An Inverse Function Theorem via Continuous Newton's Method

Alfonso Castro Harvey Mudd College

J. W. Neuberger University of North Texas

Recommended Citation

Castro, Alfonso and J. W. Neuberger. "An inverse function theorem via continuous Newton's method", Nonlinear Analysis 47 (2001), pp. 3223-3229.

This Article - postprint is brought to you for free and open access by the HMC Faculty Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

Nonlinear Analysis 47 (2001) 3223-3229

www.elsevier.nl/locate/na

An Inverse Function Theorem via Continuous Newton's Method

Alfonso Castro and J.W. Neuberger

Dept. of Mathematics, University of Texas, San Antonio, TX 78249 Dept. of Mathematics, University of North Texas, Denton, TX 76203

Abstract

We prove an inverse function theorem of the Nash-Moser type. The main difference between our method and that of [4] is that we use continuous steepest descent while [4] uses a combination of Newton type iterations and approximate inverses. We bypass the *loss of derivatives problem* by working on finite dimensional subspaces of infinitely differentiable functions.

Key words: Inverse Function Theorem Continuous Newton's Method

1 Introduction

Inverse function theorems have long had a prominent role in analysis, particularly in the study of differential equations. In [4] there is an inverse function theorem whose proof uses a form of conventional Newton's method. In the present note we use a version of continuous Newton's method to give a new inverse function theorem. Our hypothesis is suggested from [4] but a direct comparison has not yet been established. We believe, however, that the present result covers a substantial portion of the cases covered by the hypothesis in [4].

Suppose each of H and K is a Banach space, r > 0 and F is a C^1 function from the open ball $B_r(0)$ in H, centered at 0, so that F(0) = 0. We intend to give a condition on a member g of K so that there exists $\gamma > 0$ such that $tg \in R(F)$ if $0 \le t \le \gamma$. In intended applications, H may be the Sobolev space $H^{1,2}(\Omega)$ for some region Ω in a Euclidean space and K may be $L_2(\Omega)$. The function F then may be a nonlinear differential operator.

0362-546X/01/\$ - see front matter © 2001 Published by Elsevier Science Ltd.

PII: S0362-546X(01)00439-4

For a motivating example we essentially follow [4] by choosing F defined by

$$F(u) = u_1 \text{ for } u \in H^{1,2}(\Omega)$$
(1)

where here $\Omega = [0, 1]^2$ and the subscript on u indicates partial differentiation in the first argument of u. Some reflection yields that the range of F can not be all of $L_2(\Omega)$ since many members g of that space lack sufficient smoothness to be in that range. For some members g of $L_2(\Omega)$, namely those members of $L_2(\Omega)$ which are also in $H^{1,2}(\Omega)$, there is a solution u to

$$F(u) = g$$

which is in $H^{1,2}(\Omega)$. To be more specific, suppose r > 0 and H' is a subset of $H^{1,2}(\Omega)$, uniformly bounded in the norm of that space. Observe that there is $\gamma > 0$ so that if $0 \le t \le \gamma$ and $g \in H'$, then there is

$$u \in H^{1,2}(\Omega) \text{ with } ||u||_{H^{1,2}(\Omega)} \le r$$

so that

$$F(u) = tg.$$

2 An Inverse Function Theorem

Return to the general setting of the introduction, that is suppose r > 0,

$$F: B_r(0) \subset H \to K,$$

F is so that F(0) = 0 and F is C^1 .

Theorem 1 Suppose $g \in K$ and there is a function h with domain $B_r(0) \subset H$ which is Lipschitz continuous so that

$$F'(x)h(x) = g \text{ for } ||x||_H \le r.$$

Then there is $\gamma > 0$ so that if $0 \le t \le \gamma$, there is $u \in B_r(0)$ so that

$$F(u) = tg.$$

Proof: Under the hypothesis of the theorem, denote by γ a positive number so that there is a unique solution z on $[0, \gamma]$ to

$$z(0) = 0$$
 and $z'(t) = h(z(t))$ with $||z(t)|| \le r$ for $t \in [0, \gamma]$ (2)

(that there is such a number γ follows from the basic existence and uniqueness theorem for ordinary differential equations). Then

$$F'(z(t))z'(t) = F'(z(t))(h(z(t)) = g,$$

i.e.,

$$(F(z))'(t) = g \text{ for } t \in [0, \gamma].$$

Hence,

$$F(z(t)) = tg \text{ for } \in [0, \gamma],$$

and the argument is complete.

Note that we have not required uniqueness of solution $k \in H$ to

$$F'(x)k = g (3)$$

for any $x \in B_r(0)$, but rather that solutions to 3 for various $x \in B_r(0)$ can be fit together in a smooth enough way in order to provide a function h satisfying the hypothesis of the theorem.

3 Discussion

Here we attempt to justify calling the above process a version of continuous Newton's method. Suppose here that F is a function from H to K so that F(0) = 0 and $(F'(x))^{-1}$ exists and is in L(K, H) for each $x \in H$. Suppose furthermore that $(F'(\cdot))^{-1}$ is locally Lipschitz. Given $g \in K$, conventional continuous Newton's method for finding $u \in H$ such that F(u) = g might consist of first finding $z : [0, \infty) \to H$ so that

$$z(0) = 0$$
 and $z'(t) = -(F'(z(t)))^{-1}(F(z(t)) - g)$ for $t \ge 0$ (4)

and then seeking

$$u = \lim_{t \to \infty} z(t)$$

so that F(u) = q.

Assuming we have z satisfying (4), we then have

$$F'(z(t))z'(t) = -(F(z(t)) - g) \text{ for } t \ge 0,$$

and consequently

$$(F(z) - g)'(t) = -(F(z(t)) - g) \text{ for } t \ge 0.$$

Hence we have

$$F(z(t)) - g = e^{-t}(F(z(0)) - g) \text{ for } t \ge 0.$$
 (5)

Using 5 and the fact that F(z(0)) = 0 we substitute in 4 to obtain an alternate expression

$$z(0) = 0$$
, $z'(t) = e^{-t} (F'(z(t))^{-1} g \text{ for } t \ge 0$.

Deleting the exponential factor in the above just changes the time scale from $[0,\infty)$ to [0,1), which leaves us with

$$z(0) = 0$$
, $z'(t) = (F'(z(t)))^{-1}g$ for $t \in [0, 1)$.

This provided motivation for the process 2 in which it is not assumed that $(F'(x))^{-1}$ for $x \in B_r(0)$, exist, but rather that for a fixed $g \in K$ and any $x \in B_r(0)$, there is $k \in H$ such that

$$F'(x)k = g$$

(and these solutions k for $x \in B_r(0)$ can be fit together to make a function h as in the hypothesis of the theorem).

4 Application: range of the sum of two maximal monotone operators

Finally we consider the semilinear boundary value problem

$$-\Delta u + f(u) = g$$
 in Ω , $u(x) = 0$ for $x \in \partial \Omega$, (6)

where Ω is a smooth bounded region in \mathbb{R}^n with n > 2, and $f : \mathbb{R} \to \mathbb{R}$ is a monotonically increasing function with supercritical growth (i.e.,

$$\liminf_{|t| \to \infty} f(t)/t^{\rho} > 0$$

for some $\rho > (n+2)/(n-2)$) and has a locally Lipschitzian derivative. For the sake of simplicity in the calculations we assume that f(0) = 0. Due to the growth of f, the sum of the maximal monotone operators defined by $-\Delta$ and f is not maximal monotone (see [1]) and general theory does not provide adequate information on its range. However letting $p > \min\{1, n/2\}$ and taking H to be the Sobolev space $H_0^{2,p}(\Omega)$ of functions having second order derivatives in $L^p(\Omega)$ and vanishing on the boundary of Ω , and K the space $L^p(\Omega)$ we see that for each $u \in H$, $g \in K$ the equation

$$-\Delta v + f'(u)v = g \text{ in } \Omega, \quad u(x) = 0 \text{ for } x \in \partial\Omega, \tag{7}$$

has a unique solution v = h(u) (see Thoerem 9.15 of [3]). In order to apply Theorem 1 we prove the following result.

Lemma 1 The function $h: H \to H$ given by h(u) = v, where u, v are as in (7), is bounded on bounded sets and locally Lipzchitzian.

Proof: Let B be a bounded subset of H. By the Sobolev imbedding theorem (see Corollary 7.11 of [3]), without loss of generality we may assume that $||u||_{\infty} \leq 1$ for $u \in B$. Let t > ((n-2)p-n)/n be an odd positive integer. Multiplying (7) by v^t , and using that $f' \geq 0$ and Holder's inequality we have

$$\int_{\Omega} \nabla v^{(t+1)/2} \cdot \nabla v^{(t+1)/2} \, dx \leq \frac{(t+1)^2}{4 \, t} \int_{\Omega} g v^t \, dx$$

$$\leq \frac{(t+1)^2}{4 \, t} \|g\|_s \|v\|_{(t+1)n/(n-2)}^t, \tag{8}$$

where $s = (t+1)n/(n+2t) \le n/2$. Let C > 0 (see again Corollary 7.11 of [3]) be a constant such that

$$\left(\int_{\Omega} |w|^{2n/(n-2)} dx\right)^{(n-2)/(2n)} \le C\left(\int_{\Omega} \nabla w \cdot \nabla w dx\right)^{1/2},\tag{9}$$

for all $w \in H_0^{1,2}$. Taking $w = v^{(t+1)/2}$ and using (8) we see that

$$||v||_{n(t+1)/(n-2)} \le \frac{C^2(t+1)^2}{4t} ||g||_s.$$
 (10)

Since $s \le n/2 < p$, we see that there exists a constant M such that

$$||v||_p \le M||g||_{n/2}. \tag{11}$$

Thus $||g - f'(u)v||_p \le ||g||_p + M_1||v||_p$, where $M_1 = \le ||u||_{\infty} + 1$. Therefore by a priori estimes for elliptic boundary value problems (see Theorem 9.15 of [3]) we infer $||v||_H \le M_2$, with M_2 depending on M_1, Ω , and p. Thus h is bounded in bounded sets.

Let $u_1, u_2, v_1, v_2 \in H$ be such that

$$-\Delta v_i + f'(u_i)v_i = g \tag{12}$$

for i = 1, 2, with $||u_1 - u_2||_H \le 1$. An elementary algebraic manipulation shows that $-\Delta(v_1 - v_2) + f'(u_1)(v_1 - v_2) = (f'(u_2) - f'(u_1))v_2$. From Lemma 9.17

of [3], there exists a positive constant C_q for each $q \in (1, \infty)$ such that if

$$-\Delta w + f'(u_1)w = y \tag{13}$$

with $y \in L^q(\Omega)$ then $w \in H_0^{2,q}(\Omega)$ and

$$||w||_{H_0^{2,q}(\Omega)} \le C_q ||y||_q. \tag{14}$$

Also by the Sobolev imbedding theorem there exists a constant \bar{C} such that

$$||z||_{\infty} \le \bar{C}||z||_{H},\tag{15}$$

for all $z \in H$. Therefore

$$||v_{1} - v_{2}||_{H} \leq C_{p} ||(f'(u_{1}) - f'(u_{2}))v_{2}||_{K} \leq AC_{p} ||u_{1} - u_{2}||_{\infty} ||v_{2}||_{K}$$

$$\leq AC_{p}M_{2}||u_{1} - u_{2}||_{\infty} \leq AC_{p}M_{2}\bar{C}||u_{1} - u_{2}||_{H},$$
(16)

where A is a Lipschitz constant for f' on $[-\bar{C}(\|u\|_{\infty}+1), \bar{C}(\|u\|_{\infty}+1)]$. This proves that h is a locally Lipschitzian function, which proves the lemma.

Now combining Lemma 1 and Theorem 1 we prove that for any $g \in K$ the equation (6) has a solution.

Theorem 2 Under the above assumptions, for each $g \in K$ the equation (6) has a solution.

Proof: Let $F: H \to K$ be the operator defined by $F(u) = -\Delta u + f \circ u$. Let z(t) be as in (2). Multiplying the equation F(z(t)) = tg by $|f(z(t))|^{p-2} f(z(t))$ we see that

 $\int\limits_{\Omega} |f(z(t))|^p dx \le t \int\limits_{\Omega} |g| |f(z(t))|^{p-1} dx.$

Hence, by Holder's inequality, we see that $||f(z(t))||_K$ is bounded on bounded intervals of $[0, \infty)$. Thus, by Theorem 9.15 of [3], $||z(t)||_H$ is bounded on bounded intervals. Since h is defined on all of H it follows that z is defined on $[0, \infty)$. In particular F(z(1)) = g, which proves the theorem.

References

[1] H. Brezis, Opératerus Maximaux Monotones et Semi-groupes de Contractions dan les Espaces de Hilbert, North Holland, Mathematics Studies No. 5 (1973).

- [2] A. Castro and J. W. Neuberger, An Inverse Function Theorem, Contemporary Mathematics, Vol. 221 (1999), 127-132.
- [3] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Berlin, New York, Springer-Verlag (1983).
- [4] J. Moser, A Rapidly Convergent Iteration Method and Non-Linear Differential Equations, Ann. Scuola Normal Sup. Pisa, 20 (1966), 265-315.