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Abstract

We prove an inverse function theorem of the Nash-Moser type. The main difference
between our method and that of [4] is that we use continuous steepest descent while
[4] uses a combination of Newton type iterations and approximate inverses. We
bypass the loss of derivatives problem by working on finite dimensional subspaces
of infinitely differentiable functions.
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1 Introduction
Inverse function theorems have long had a prominent role in analysis, partic-

ularly in the study of differential equations. In [4] there is an inverse function
theorem whose proof uses a form of conventional Newton’s method. In the
present note we use a version of continuous Newton’s method to give a new
inverse function theorem. Our hypothesis is suggested from [4] but a direct
comparison has not yet been established. We believe, however, that the present
result covers a substantial portion of the cases covered by the hypothesis in

[4].

Suppose each of H and K is a Banach space, » > 0 and F is a C? function
from the open ball B,(0) in H, centered at 0, so that F(0) = 0. We intend
to give a condition on a member g of K so that there exists v > 0 such that
tg € R(F)if 0 <t < ~.In intended applications, H may be the Sobolev space
H2(Q) for some region 2 in a Euclidean space and K may be Ly(€). The
function F’ then may be a nonlinear differential operator.
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For a motivating example we essentially follow [4] by choosing F* defined by
F(u) = uy for u € HY(Q) (1)
where here 2 = [0, 1]? and the subscript on u indicates partial differentiation
in the first argument of u. Some reflection yields that the range of F' can not
be all of Ly(2) since many members g of that space lack sufficient smoothness

to be in that range. For some members g of Lo(€2), namely those members of
Ly(€2) which are also in H%?(Q), there is a solution u to

Fu) = g
which is in H%2(Q). To be more specific, suppose r > 0 and H’ is a subset of
H2(Q), uniformly bounded in the norm of that space. Observe that there is
v >0 so that if 0 <t <~y and g € H', then there is

u € HY*(Q) with |lullme@ <7

so that
F(u) = tg.

2 An Inverse Function Theorem

Return to the general setting of the introduction, that is suppose r > 0,
F: B.(0)CcH—K,
F is so that F(0) =0 and F' is C.

Theorem 1 Suppose g € K and there is a function h with domain B,(0) C H
which is Lipschitz continuous so that

Fl(z)h(z) = g for ||z|la <
Then there is v > 0 so that if 0 < t <y, there is u € B.(0) so that
F(u) = tg.
Proof: Under the hypothesis of the theorem, denote by v a positive number
so that there is a unique solution z on {0,7] to

z(0) =0 and 2'(t) = h(z(t)) with ||z(¢)|| < r for t € [0, 7] (2)
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(that there is such a number 7 follows from the basic existence and uniqueness
theorem for ordinary differential equations). Then

F'(z(1)2'(t) = F'(z(0)(h(2(t)) = g,

ie.,
(F(2))(t) = gforte0,7].
Hence,
F(z(t)) = tg for €]0,9],
and the argument is complete.

Note that we have not required uniqueness of solution k£ € H to

Fz)k = g (3)

for any = € B,(0), but rather that solutions to 3 for various z € B,.(0) can be
fit together in a smooth enough way in order to provide a function h satisfying
the hypothesis of the theorem.

3 Discussion

Here we attempt to justify calling the above process a version of continuous
Newton’s method. Suppose here that F' is a function from H to K so that
F(0) = 0 and (F'(z))"! exists and is in L(K, H) for each z € H. Suppose
furthermore that (F'(-))™! is locally Lipschitz. Given g € K, conventional

continuous Newton’s method for finding v € H such that F(u) = g might
consist of first finding z : [0,00) — H so that

2(0)=0and 2'(t) = —(F'(z(t)))"(F(z(t)) — g) for t > 0 (4)

and then seeking

w = el

so that F'(u) = g.

Assuming we have z satisfying (4), we then have
F'(z(t)2'(t) = —(F(z(t)) — g) for t > 0,
and consequently

(F(z) = g)'(t) = —(F(2(t)) —g) for t 2 0.
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Hence we have

F(z(t) —g = e (F(2(0)) — g) for t > 0. ()

Using 5 and the fact that F(z(0)) = 0 we substitute in 4 to obtain an alternate
expression

2(0) =0, 2/(t) = e (F'(2(t)) g for t > 0.
Deleting the exponential factor in the above just changes the time scale from
[0, 00) to [0, 1), which leaves us with

20) =0, 2(t) = (F'(2(t)))"g for t € [0,1).

This provided motivation for the process 2 in which it is not assumed that
(F'(z))™! for z € B,(0), exist, but rather that for a fixed ¢ € K and any
z € B,(0), there is k € H such that

Fl(z)k = g

(and these solutions k for z € B,.(0) can be fit together to make a function h
as in the hypothesis of the theorem).

4 Application: range of the sum of two maximal monotone opera-
tors

Finally we consider the semilinear boundary value problem

—Au+ f(u)=9g in Q, u(z)=0 for z €0, (6)

where €2 is a smooth bounded region in R® withn > 2,and f: R— Ris a
monotonically increasing function with supercritical growth (i.e.,

lim inf f(¢)/t* > 0

[t]|—o0
for some p > (n+ 2)/(n — 2)) and has a locally Lipschitzian derivative. For
the sake of simplicity in the calculations we assume that f(0) = 0. Due to
the growth of f, the sum of the maximal monotone operators defined by
—A and f is not maximal monotone (see [1]) and general theory does not
provide adequate information on its range. However letting p > min{l,n/2}
and taking H to be the Sobolev space Hg?() of functions having second
order derivatives in LP(£2) and vanishing on the boundary of €, and K the
space LP() we see that for each u € H, g € K the equation

“Av+ fflujv=g in Q, ulz)=0 for z €N, (7)
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has a unique solution v = h(u) (see Thoerem 9.15 of [3]). In order to apply
Theorem 1 we prove the following result.

Lemma 1 The function h : H — H given by h(u) = v, where u,v are as in
(7), is bounded on bounded sets and locally Lipzchitzian.

Proof: Let B be a bounded subset of H. By the Sobolev imbedding theorem
(see Corollary 7.11 of [3]), without loss of generality we may assume that
lulloo < 1 for u € B. Let t > ((n — 2)p — n)/n be an odd positive integer.
Multiplying (7) by ¢%, and using that f' > 0 and Holder’s inequality we have

2
/vv(t—i—l)/Q VD2 g < (LZTI)_/gvt de
o )

®
(t+1)?
SR a——

where s = (t+ 1)n/(n+2t) < n/2. Let C > 0 (see again Corollary 7.11 of [3])
be a constant such that

([l e=2dz) = < o [ Vw- Vwdz)”, (9)
2 Q

for all w € Hy”. Taking w = v®*1/2 and using (8) we see that

C?(t + 1)?

gl (10)

1vllnges1)/(n—2) <

Since s < n/2 < p, we see that there exists a constant M such that

[vllp < M[gllns2- (11)

Thus |lg — f'(wvlly < llgllp + Mi[jvll,, where M, = < lulleo +
1}. Therefore by a priori estimes for elliptic bounaary vawe problems (see
Theorem 9.15 of [3]) we infer ||v||gy < My, with M, depending on My, §2, and
p. Thus h is bounded in bounded sets.

Let wuy,us,v1,v9 € H be such that
—Av; + f'(u)v; = g (12)

for i = 1,2, with |lu; —uz||g < 1. An elementary algebraic manipulation shows
that —A(vy — ve) + f'(u1)(v1 — ve) = (f'(u2) — f'(u1))ve. From Lemma 9.17
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of [3], there exists a positive constant C, for each ¢ € (1, 00) such that if

—Aw+ f(u)w =y (13)

with y € L9(Q) then w € HZY(Q) and

”wHHg'q(Q) < Callyllq- (14)

Also by the Sobolev imbedding theorem there exists a constant C such that

l2llee < Clizlla, (15)
for all z € H. Therefore

lor = vallg S Cpll(f'(va) — f'(u2))vallx < ACp||lur — ugloollv2ll
(16)
<AC M2||u1 — UQ”OO < AC, MQCHul - UQ”H,

where A is a Lipschitz constant for f' on [—C(||ulleo + 1), C(||u]loo -+ 1)]. This
proves that A is a locally Lipchitzian function, which proves the lemma.

Now combining Lemma 1 and Theorem 1 we prove that for any g € K the
equation (6) has a solution.

Theorem 2 Under the above assumptions, for each g € K the equation (6)
has a solution.

Proof: Let F : H — K be the operator defined by F(u) = ~Au + f o u. Let
z(t) be as in (2). Multiplying the equation F(z(t)) = tg by |f(2(t))[P~2f(2(2))

we see that
/ He |de<t/ gllf )P da.

Hence, by Holder’s 1nequahty, we see that I/ (2(t))||x is bounded on bounded
intervals of [0,00). Thus, by Theorem 9.15 of [3], ||z(¢)||z is bounded on
bounded intervals. Since h is defined on all of H it follows that z is defined
on [0, 00). In particular F(2(1)) = g, which proves the theorem.
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