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ABSTRACT: We prove that a semilinear elliptic boundary value problem has five solutions 

when the range of the derivative of the nonlinearity includes at least the first two eigenvalues. 

We also prove that if the region is a ball the semilinear elliptic problem has two solutions that 

change sign and are nonradial. 
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1. INTRODUCTION 

Let f: k? -+ Iw be a differentiable function such that f(0) = 0, and 

f’(m) = ,vfijmm q E R. (1.1) 

Let R be a smooth bounded region in IW”, and A the Laplacian operator. Let x1 < xZ 5 5 
Xk < be the eigenvalues of -A with homogeneous Dirichlet boundary conditions in 0. 
The solvability of the boundary value problem 

{ 

Au + f(u) = 0 in R 

u=o 011 dR 
(1.2) 

has proven to be closely related to the position of the numbers f'(o), f’(cu) with respect 
to the spectrum of -A. In fact, A. Castro and A. Lazer in [9] showed that if the interval 
(f’(~),f’(m)) u (f’(co),f’(o)) contains the eigenvalues &, ,xj and f’(t) < &+i for all t E W, 
then (1.2) has at least three solutions. The proofs in [9] are based on global Lyapunov- 
Schmidt arguments applied to variational problems. Subsequently K.C. Chang (see [lo]) 
approached the same problems using Morse theory, and H. Hofer (see [12]) obtained the 
existence of five solutions when f’(m) < x1. For other results in the study of this problem 
we refer the reader to [2], [3], [5], [6], [7], [13], [14], and [15], among others. 

This research was partially supported by NSF grant DMS-8905936 and Colciencias grant 168-93 

3651 



3658 Second World Congress of Nonlinear Analysts 

Our first result concerns the existence of multiple solutions of (1.2). 

THEOREM A. If f'(0) < Xi, f’(m) E (Xk,Xk+l) with k > 2, and f’(t) 2 y < &+i for all t E W, 
then (1.2) has at least five solutions. Moreover, one of the following cases occur: 

a) k is even and (1.2) has two solutions that change sign. 
b) k is even and (1.2) has six solutions, three of which are of the same sign. 
c) k is odd and (1.2) has two solutions that change sign. 
d) k is odd and (1.2) has three solutions of the same sign. 

The assumption k L 2 is sharp; Theorem B of [9] gives sufficient conditions for (1.2) to 
have exactly three solutions when k = I.. We prove Theorem A by using Lyapunov-Schmidt 
arguments to reduce the solvability of (1.2) to a finite dimensional problem, and then we 

use degree and index theories applied to critical points. We also use “mountain pass 
arguments” of the type Ambrosetti-Rabinowitz (see [4]). 

Next we state a result for (1.2) where R is the unit ball in J!X” centered at the origin, and 
X1 = X; < X; < . . < Xi < are the eigenvalues of -A acting on radial functions of Ho (0). 

THEOREM B. If f'(0) < Xi, f’(m) E (Xk,Xk+i) with k L 2, f’(t) < y < &+l for all t E W, 
X1 < xk < Xk+l 5 X;, and tf”(t) > 0 Vt # 0, then the boundary value problem (1.2) has at 
least two solutions which are nonradial and change sign. 

In Section 2 we sketch the proof of Theorem A, the details of the proof can be found in 
[8]. Theorem B is new, and its proof will be given in Section 3. 

2. SKETCH OF PROOF OF THEOREM A 

Let H be the Sobolev space H,‘(Q). We say that u E H is a weak solution of (1.2) if for every 

cpeH 

.I 
(Vu.Vp - f(u) p) dz = 0. 

R 

By standard regularity for elliptic operators (see [9]) it follows that weak solutions are 
classical solutions when f is continuous and sublinear. 
Let J: H -+ w denote the functional defined by 

where F(E) = JOE f(s) ds. Since f’(m) E (&,A k+l), f is sublinear. Thus J E C’(H,W) (see [15]) 

and 

(VJ(4, ‘p) = ~C-‘P - f(u) ‘PI dx for p E H. (2.2) 

In particular u is a weak solution of (1.2) if and only if u is a critical point of J. 
Since f(o) = 0, it follows that ~0 E o is a trivial solution of (1.2). Since 0 is an isolated local 

minimum of J we have 
d(VJ, Bo, 0) = 1, 
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where & is a ball centered at zero containing no other critical point (see [l]). 
Using mountain pass arguments, and degree theory we prove the following lemma. 

Lemma 2.1 (see [S]). Under the hypotheses of Theorem A, (1.2) posseses a positive solution 
u+ and a negative solution u-. If the set of positive (respectively, negative) solutions is 
discrete then at least one of them is a critical point of mountain-pass type and its local 
degree is -1. If P is a bounded region containing the positive solutions to (1.2) and no 
other critical point of J then 

d(VJ, P, 0) = -1. 

If N is a bounded region containing the negative solutions to (1.2) and no other critical 
point of J then 

d(VJ, N, 0) = -1. 

By the Lyapunov-Schmidt reduction process we now prove the following lemma. 

Lemma 2.2. There exists uo E H such that VJ(u,,) = 0, and if uo is an isolated critical point 
then 

d (0‘7, v, 0) = (-1y 

in any region v containing u. and no other critical point of J. 

Proof. For each positive integer n let (P,, denote an eigenfunction corresponding to the 
eigenvalue X,. Let X denote the subspace of H spanned by {cpl, cpz, , c,o~}, Y its orthogonal 

complement, and J the functional defined by (2.1). By Lemma 2.1 of [8] it follows that 
there exists a continuous function 1c,: X -+ Y such that 

J(x + @r(x)) = FEi;J(a: + y). 

Moreover, $(z) is the unique member of Y such that 

(VJ(x + ti(x)), Y) = 0 for all 7~ E Y, 

the function J: X --t IR defined by j(x) = ~(a: + $(z)) is of class c’, and 

(VJ(z),a) = (VJb + 11(4), 21) for all x,x1 e X. 

We now claim that for z E X 

J(x) 4 -KJ as llxll + co. 

Because f’(m) E (&, X~+~) there exist b E IR and 7 > xk such that ~(0 2 $ + b. Hence 

J(x) = ~~~x~~2 - b F(x) 5 ~~~x~~2 - ; .I, x2 - b\RI. 
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Since (z,z) 5 &(z,z)~ f or z E X, where (. , .)o denotes the usual imrer product in Lo, we 
obtain 

J(x) 2 ;~lx112 1 - ? - blR[ 
( > 

----CC = ll4l + 03. 

Because j(x) 5 J(Z), we have 

j(x) --t --co as 1141 -+ cFa. 

Since dimx < 00 there exists x0 E x such that 

Taking uo = 20 + $(zo) we have VJ(uo) = 0. Suppose now that z. is an isolated critical point 
of j, hence 2~0 is an isolated critical point of J. Since -5 has a local minimum at x0, taking 

W = {Z E X;,++(z) E V} then d (OS, W,O) = (-1)‘. Therefore (see Lemma 2.1 of [8]) we have 

d(VJ,V,O) = (-l)k, 

and Lemma 2.2 has been proved. 

Suppose k is even, and K, the set of critical points of J, is finite. By Lemma 2.1 we have 

d(VJ,l’,O) = d(VJ,N,O) = -1, 

where P is a bounded region containing the positive solutions to (1.2) and no other critical 
point of J, and N is a bounded region containing the negative solutions to (1.2) and no 
other critical point of J. 
Since f’(a) is not an eigenvalue of -A with zero Dirichlet boundary conditions, the solutions 
of (1.2) are bounded. Because the Leray-Schauder degree of the gradient of a coercive 
functional on a large ball is one (see [l]), we have d(Vj,BR,O) = (-l)k = 1, for a large 
enough value of R. 

If u. $ P u N then by the invariance of the Leray-Schauder degree under the Lyapunov- 
Schmidt reduction method (see [S]), and by the excision and existence properties of the 
Leray-Schauder degree there exists u1 $ (P u N u ~~ u V) such that VJ(ul) = 0, which proves 
that (1.2) has at least five solutions. In this case both ~0 and a1 change sign. 
Suppose now that u. E P u N; without loss of generality we can assume that uo E P. By 
Lemma 2.1 there exists a critical point of mountain-pass type ~1 E P and its local degree 
is -1. By the excision property of the Leray-Schauder degree there exists another solution 
u2 E P. Finally by the excision and the existence properties of the Leray-Schauder degree 
there exists uLg $ (PUN UB~) with V J(Q) = 0. Which shows that (1.2) has six solutions. In 
this case uo, or, 2~~ have the same sign. This completes the proof of Theorem A when k is 
even. Similar arguments prove Theorem A when k is odd. 

3. PROOF OF THEOREM B 

Since the nonlinearity f satisfies the hypotheses of Theorem A, it follows that problem (1.2) 
has at least five solutions. By Lemma 2.1 it follows that there exist a positive solution U+ 
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and a negative solution U- to (1.2). By the so-called moving planes Theorem of [ll] , it 
follows that U+ and U- are radially symmetric. We now prove that there are exactly two 
nonzero radially symmetric solutions to (1.2). We recall that radial solutions to (1.2) are 
solutions to the ordinary differential equation 

i 

u” + 
n-l 
-u’ + f(u) = 0 

r 
(0 < r 5 1) 

u(1) = u’(0) = 0. 
(3.1) 

First, we show that the radial positive solution to problem (1.2) is unique. Let vi > o and 
v2 > o be radial solutions to (1.2) and v = v1 - v2. Therefore, v satisfies 

n-l 
v” + - v1 + f(w) - f(Q) v = o 

r Vl - v2 
(0 < r 5 1) 

v(1) = v’(0) = 0. 

From the mean value theorem, we have 

i 

v” + 
n-l 
--y’ + f’(S) v = 0 (0 < r 5 1) 

v(1) = v’(0) = 0, 

where < E (u~,u~). Let ‘p2 be an eigenfunction corresponding to X5. One sees that cp2 satisfies 

(3.2) 

We now show that v does not change sign. If we suppose that it does, since f’(6) I y < X; 
then by the Sturm comparison Theorem (see [IS]) we see that cp2 has at least 2 zeroes in 

[O,l). This is a contradiction. Without loss of generality we may assume that u1 2 v2. Also, 
since f is convex we have 

f(v1) f(v2) 
->-. 

‘ul - ‘uz 

Note that v1 and v2 satisfy 
n-l 

v;l+- - 
r 

u; + f(lJl) v1 = 0, 
‘ul 

n-l 
v; + - 

r 
v; + fo ‘u2 = 0. 

7J2 

Hence, if v1 # v2, say Q(Z) > ~J~(z) for some z E [0, l), then again by the Sturm comparison 
Theorem we see that v1 has at least one zero in [O,l). This contradicts that v1 > 0, thus 
we have shown that problem (1.2) has a unique positive solution. Similar arguments prove 
that (1.2) has a unique negative solution. 
We now suppose that v is a radially symmetric solution to (1.2) which changes sign. There- 
fore, v satisfies 

i 

n-l 
v” + - v’+fov=o (0 < r 5 1) 

r 

v’(0) Z(1) = 0. 

(3.3) 

By our hypothesis and the mean value theorem, we see that y < x;. Thus, comparing 
(3.2) with (3.3), we see that cp2 has at least 2 zeroes in [O,l). This is also a contradiction, 
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and so it follows that if ‘u is a radially symmetric solution to (1.2) then 2) does not change 
sign. 
We have shown that the problem (1.2) has exactly two nonzero radially symmetric so- 
lutions. Since u” E o is a solution and the problem (1.2) has at least five solutions, the 
remaining two solutions are nonradial and change sign. This proves Theorem B. 
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