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´
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Dedicated to Professor Jean Mawhin with admiration for this leadership role in the

Nonlinear Functional Analysis community

Abstract. In this paper we study the existence of sign-changing solutions to
semilinear elliptic problems in connection with their Morse indices. To this
end, we first establish a priori bounds for one-sign solutions. Secondly, using
abstract saddle point principles we find large augmented Morse index solutions.
In this part, extensive use is made of critical groups, Morse index arguments,
Lyapunov-Schmidt reduction, and Leray-Schauder degree. Finally, we provide
conditions under which these solutions necessarily change sign and we comment
about further qualitative properties.

1. Introduction. We consider the nonlinear Dirichlet problem
⇢

�u+ f(u) = 0 in ⌦,
u = 0 on @⌦,

(1)

where ⌦ ⇢ RN with N � 3 is a smooth bounded domain, and f : R ! R is a
function of class C1. We will also denote by 0 < �1 < �2  · · ·  �k  · · · the
sequence of eigenvalues of �� with zero Dirichlet boundary condition in ⌦, and by
{'k}k2N we denote a corresponding sequence of orthonormal eigenfunctions which
is complete in the Sobolev space H1

0 (⌦). All our results hold in the case N = 2.
However for the sake of brevity, we write all the statements for N � 3, where the
formulae have a uniform notation (see, e. g. Theorem 2.1).

Existence of solutions for this kind of problems and some of their qualitative
properties have been studied by many authors (see [2], [3], [7], [4], [5], [6], [8], [9],
[10], [16], [19], [20], [21], [27], [29], [28], [30]). In this paper we mainly consider
problem (1) when f satisfies either of the asymptotic linearity conditions

(f1) f 0(1) := lim|t|!1 f 0(t) 2 (�k,�k+1) for some k � 2 (non-resonance), or
(f1’) f 0(1) := lim|t|!1 f 0(t) = �k for some k � 2 (resonance).

2010 Mathematics Subject Classification. 35J20, 35J60, 35B38.
Key words and phrases. Semilinear elliptic equation, a priori estimates, Morse index, sign-

changing solutions.
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We present results showing that there exist solutions with relatively large augmented
Morse indices and prove that these solutions must change sign, at least when f 0 is
relatively small on an interval around zero.

Using classical facts of the theory of elliptic PDE’s, we establish an estimate
whose simplified version reads as follows (the precise statement is presented in
Section 2).

Theorem A. Given ✏ > 0, A > 0, and D > 0 there exists a positive constant

B := B(✏, A,D,⌦, N) such that if f satisfies

(E1) f(0) = 0,
(E2) |f 0(t)|  D for all t 2 R,
(E3) f 0(t) � �1 + ✏, for all |t| > A,

and u is either a positive or a negative solution of

⇢
�u+ f(u) = 0 in ⌦,

u = 0 on @⌦,
(2)

then u satisfies

kukL1(⌦)  B. (3)

We point out that hypotheses (E2) and (E3) in Theorem A are much weaker
than conditions (f1) or (f1’), since they allow f to be sublinear. On the other hand,
here f cannot be superlinear as in [7] and [20].

In order to prove the existence of large augmented Morse index solutions to (1),
we apply abstract results contained in [26] and [16]. To be more precise, let us
introduce the functional J : H1

0 (⌦) ! R defined by

J(u) =

Z

⌦

✓
1

2
|ru|2 � F (u)

◆
dx,

where F (⇠) =
R ⇠

0 f(s) ds. Under conditions (f1) or (f1’), J 2 C2 (see [29]) and,
moreover,

DJ (u) v = hrJ(u), vi =
Z

⌦
(ru ·rv � f (u) v) dx, 8u, v 2 H1

0 (⌦), (4)

⌦
D2J (u) v, w

↵
=

Z

⌦
(rv ·rw � f 0 (u) vw) dx, 8u, v, w 2 H1

0 (⌦). (5)

It is well known that solutions to (1) agree with critical points of the functional
J (see [23]). Since some of the techniques require so, from now on we assume the
critical points of J to be isolated. If no such assumption were made, problem (1)
would have infinitely many solutions.

For c 2 R, let us denote by Jc the set

Jc := {u 2 H|J(u)  c}.
When J 2 C1 and u0 is an isolated critical point of J , we define the critical

groups of J at u0 as

Cq(J, u0) := Hq(J
c \ U, Jc \ U \ {u0}),

where U is any neighborhood of u0 that does not contain any other critical point
of J , J(u0) = c and Hq(X,Y ) denotes the q-th relative singular homology group of
the topological pair (X,Y ) taking R as the coe�cient group.
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For J 2 C2 and u0 a critical point of J we define the Morse index of J at u0 as
follows: if there is a nonnegative integer m such that there exists an m-dimensional
subspace of H on which D2J(u0) is negative-definite and m is maximal with respect
to this property, we say that m is the Morse index of J at u0 and we denote it by
m(J, u0), or m(u0) when there is no way of confusion. If such an m does not exist,
we say the Morse index of J at u0 is infinity. We define the augmented Morse

index of J at u0 in a similar fashion, changing the expression “negative-definite” by
“nonpositive-definite”. In this case we use the notation ma(u0, J), or ma(u0) when
there is no way of confusion. A critical point u0 of J is said to be non-degenerate
if D2J(u0) is invertible.

Condition (f1) allows the application of the abstract results contained in [26] to
the functional J . Actually, this is done in [14] and [15] under additional assumptions
on the critical set of J . By applying a convenient version of Lazer-Solimini results
from [26], here we prove the following proposition. Recently, we discovered that a
more general result was proved by Chang, Li and Liu in [17] using similar arguments.
Hence, we claim no originality for it.

Proposition B. Let f satisfy (f1). Then:

(a) There exists a solution u0 of (1) such that Ck(J, u0) 6= {0}. In particular,

m(u0)  k  ma(u0).
(b) If, in addition, f satisfies

(f3) f(0) = 0,
(f4) f 0(0) < �1,
then (1) has at least three nontrivial solutions u+, u� and u0 of (1). Moreover,

u+ > 0 in ⌦, u� < 0 in ⌦, and Ck(J, u0) 6= {0}.

The reader is referred to [4] (Theorem 2.3) where the existence of sign-changing
solutions u with Ck(J, u) 6= {0} is obtained allowing f 0(0) > �1. Unlike the methods
in [4] that use critical point theory on partially ordered Hilbert spaces, our methods
rely on a priori estimates of one-sign solutions (see Section 2 below). See also [12].

Now, since f 2 C1, condition (f1) (alternatively (f1’)) implies the existence of
j � k + 1 so that f 0(t)  ! < �j for all t. Then condition

(f2) there exist � > 0 such that f 0(t)  � < �k+1 for all t 2 R,
is a kind of limit case of (f1) (or (f1’)). Under conditions (f1)-(f2), starting with the
work by A. Castro and A. Lazer in [16], the Lyapunov-Schmidt reduction method
has been used in connection with problem (1). We use some of the arguments and
results of [16] and [8] to obtain solutions of (1) whose augmented Morse indices
are exactly k. More recently (see [27] and its references), the Lyapunov-Schmidt
method has been applied in the resonant case (f1’)-(f2), and here we use some of
the results of [27] to also get the existence of solutions of (1) whose augmented
Morse indices equal k. For doing this, we first prove that the Morse index and
the augmented Morse index are invariant under the Lyapunov-Schmidt reduction
method, which is essentially contained in [16] although not explicitly stated there.

By combining the a priori estimates of Theorem A and the existence of large
augmented Morse index solutions of Proposition B, we prove the following.

Theorem C. Let f : R ! R satisfy (f1) and (f3). Let ✏ > 0, A > 0, D > 0, and
B > 0 as in Theorem A. If

f 0(t) < �k 8t 2 [�B,B], (6)
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then there exists at least one sign-changing solution u⇤ of (1) such that

ku⇤kL1(⌦) > B.

In the limit case given by conditions (f1) and (f2), we have the following

Theorem D. Let f : R ! R satisfy (f1)-(f4). Let ✏ > 0, A > 0, D > 0, and B > 0
as in Theorem A. If

f 0(t) < �k 8t 2 [�B,B], (7)

then there exist at least two sign-changing solutions u⇤ and v⇤ of (1). Moreover,

one of them, let us say u⇤, satisfies

ku⇤kL1(⌦) > B.

See also [4] (Corollary 2.4) for the existence of two sign-changing solutions. In
the resonance case given by conditions (f1’) and (f2), we have:

Theorem E. Let f : R ! R satisfy (f1’)-(f4). Let ✏ > 0, A > 0, D > 0, and B > 0
as in Theorem A. Assume, in addition, that f satisfies

(f5) F (t)� 1
2�k t

2 ! 1 as |t| ! 1.

If

f 0(t) < �k 8t 2 [�B,B] (8)

then there exists at least one sign-changing solution u⇤ of (1) such that

ku⇤kL1(⌦) > B.

We remark that in [10] the existence of sign-changing solutions is proved, regard-
less of resonance, under di↵erent hypotheses and by means of a di↵erent argument.
In [11] it is shown that the solution given by Theorem E is di↵erent from the solution
given by [10] when k � 3.

The body of this paper is organized as follows. In Section 2 we state and prove
the precise form of Theorem A and include Lemmas to be used in Section 4. In
Section 3, we re-state an abstract Lazer-Solimini result in a convenient way, and we
recall the Lyapunov-Schmidt reduction method. In Section 4 we prove Proposition
B, Theorems C, D, and E, and we include some additional results concerning Morse
index, sign-changing solutions, and symmetries.

2. A priori estimates. Throughout this section we assume A, D and ✏ are positive
constants and f satisfies the following hypotheses:

(E1) f(0) = 0,
(E2) |f 0(t)|  D for all t 2 R,
(E3) f 0(t) � �1 + ✏, for all |t| > A.

We define
�m := min

t�0
f(t), (9)

�M := min
t�0

{f(t)� (�1 + ✏)t}, (10)

�K := min
t�0

{t|t|
1

N+1 � f(t)}. (11)

We observe that hypotheses (E2) and (E3), particularly for t � 0, guarantee that
these constants are well-defined. Before continuing, some comments are in order.
First we note that (E2) implies f 0 2 L1(R). Secondly, m  M . Thirdly, as we
shall see, we could have chosen a power of the form 1 + 1

N+µ , µ 2 (0,1), when
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defining �K. For the sake of simplicity we choose µ = 1. Finally, we observe these
constants are bounded in terms of A, D and ✏.

In this section, a positive (respectively negative) solution of (1) is a non-zero
function u 2 C2(⌦) which is non-negative (respectively non-positive) in ⌦ and
satisfies both conditions in (1). Now we state the main result of this section.

Theorem 2.1. Let f : R ! R be a C1
-function satisfying (E1), (E2) and (E3).

There exist positive constants Ci(⌦, N), i = 1, ..., 5, and r > 0, depending only

on ⌦, N and D, such that if u is a positive solution of (1) then

kukL1(⌦)  M1+ 1
N+1 r2�NC1(⌦, N) +K r2�NC2(⌦, N) +mC3(⌦, N) (12)

and

kukL1(⌦)  MDr2�NC4(⌦, N) +mC5(⌦, N). (13)

Note: r is defined by (34) and (39).

Before proving these estimates, we recall some facts we extensively use along the
proof. Given � > 0, denote by ⌦� the set {x 2 ⌦| d(x, @⌦) < �}. For x 2 @⌦, let
us denote by �!n (x) the inward unit normal to @⌦ at x. Because of smoothness of
⌦ (see [22]), the following lemma about the existence of a tubular neighborhood of
@⌦ can be shown.

Lemma 2.1. There exists �0 > 0 such that

(i) if z 2 ⌦�0 there exists a unique (xz, tz) 2 @⌦ ⇥ (0, �0) such that

z = xz + tz
�!n (xz). Moreover, tz = kxz � zk = d(z, @⌦).

(ii) If x 2 @⌦ then, for every t 2 (0, �0), x+ t�!n (x) 2 ⌦.

Secondly, according to the Sobolev embeddings, for j,m 2 N [ {0} and p > 1
the inclusion W j+m,p(⌦) ,! Cj,↵(⌦) is continuous if mp > N > (m � 1)p and
0 < ↵  m� N

p (see [1] for definitions and proofs).

Finally, we recall the Agmon-Douglis-Nirenberg estimates (see [23]):
Let p 2 (1,1). If h 2 Lp(⌦) then

⇢
��u = h in ⌦,

u 2 W 1,p
0 (⌦),

(14)

has a unique solution u0 2 W 2,p(⌦). Moreover, there exists a positive constant C
(independent of u) such that

kukW 2,p(⌦)  Ck�ukLp(⌦) 8u 2 W 1,p
0 (⌦) \W 2,p(⌦).

Proof of Theorem 2.1. We complete this proof in three steps. Given a positive
solution u of (1), in the first step we estimate the integrals

R
⌦ u'1,

R
⌦ u,

R
⌦ u1+ 1

N+1 ,
and

R
⌦ f(u) in terms of K, m and M . In the second step, we demonstrate that if

⇠u 2 ⌦ and kukL1(⌦) = u(⇠u), then the distance from ⇠u to @⌦ is bounded below
in terms of kf 0kL1(R). In the last step, we make use of Green’s function and the
previous estimates to prove the theorem.

STEP 1. Let u be a positive solution of (1). Multiplying the di↵erential equation
in (1) by the eigenfunction '1 and integrating by parts, we get

0 =

Z

⌦
'1�u+ '1f(u) =

Z

⌦
(f(u)� �1u)'1. (15)
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From the definition of M we haveZ

⌦
u'1  M

✏

Z

⌦
'1. (16)

Now, because of classical existence results and the Strong Maximum Principle (see
[23]), there exists a unique solution  > 0 to

⇢
�� = 1 in ⌦,

 = 0 on @⌦.
(17)

As an application of Hopf’s Lemma and comparison arguments between '1 and  
in ⌦, one can prove the existence of positive constants c1 and c2, depending only
on ⌦, such that

c1'1    c2'1 in ⌦ (18)

(we will consider a more general case below). Multiplying the di↵erential equation
in (17) by u and integrating by parts, we obtain

Z

⌦
u =

Z

⌦
f(u) . (19)

As a consequence of (18) and (19), it follows that
Z

⌦
u 

Z

f(u)�0
f(u)  c2

Z

f(u)�0
f(u)'1 = c2

 Z

⌦
f(u)'1 �

Z

f(u)<0
f(u)'1

!
.

From (15), (16) and the definitions of m and M ,
Z

⌦
u  Mc2

✓
�1
✏

+ 1

◆Z

⌦
'1. (20)

Using (20), a combination of Hopf’s Lemma, Sobolev embeddings and Agmon-

Douglis-Nirenberg estimates, allow us to bound
R
⌦ u1+ 1

N+1 . To this end, let us
consider the auxiliary problem

⇢
��! = u

1
N+1 in ⌦,

! = 0 on @⌦.
(21)

Because of Sobolev embeddings and Agmon-Douglis-Nirenberg estimates, there ex-
ists a unique weak solution ! 2 C1(⌦) for this problem. Moreover ! � 0 (see
[23]). Again, Agmon-Douglis-Nirenberg estimates imply the existence of a constant
c3 > 0, depending only on ⌦ and N , such that

k!kW 2,N+1(⌦)  c3ku
1

N+1 kLN+1(⌦). (22)

Thus, from (20) and (22) it follows that

k!kW 2,N+1(⌦)  M
1

N+1

✓
c2

✓
�1
✏

+ 1

◆Z

⌦
'1

◆ 1
N+1

c3. (23)

From the continuity of the embedding W 2,N+1(⌦) ⇢ C1(⌦), there exists c4, de-
pending only on ⌦ and N , such that

k!kC1(⌦)  M
1

N+1

✓
c2

✓
�1
✏

+ 1

◆Z

⌦
'1

◆ 1
N+1

c3c4. (24)

Now we intend to compare ! and '1 in ⌦. We make use of Hopf’s Lemma and
the existence of a tubular neighborhood of @⌦.
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Lemma 2.2. There exists a positive constant c, depending only on ⌦ and M , such

that

!  c'1 in ⌦. (25)

Proof of Lemma 2.2. Let m1 := min@⌦ |r'1|. Observe that Hopf’s Lemma im-
plies m1 > 0. Now let us consider �0 as in Lemma 2.1. Let us denote by �!n (x) the
inward unit normal to @⌦ at x.

Claim 1: There exists � such that 0 < � < �0 and

(a) For every z 2 ⌦�, |r'1(z)| � 1
2m1,

(b) For every x 2 @⌦ and every t 2 (0, �),

r'1(x+ t�!n (x))

|r'1(x+ t�!n (x))| ·
�!n (x) � 1

2
.

This claim comes from the uniform continuity of the function z 7! |r'1(z)| on ⌦,

the uniform continuity of the function (x, t) 7! r'1(x+t�!n (x))
|r'1(x+t�!n (x))| ·

�!n (x) on @⌦⇥ [0, �]

and the fact that r'1(x)
|r'1(x)| ·

�!n (x) = 1 for all x 2 @⌦.
Now, take m2 := min⌦\⌦�

'1 > 0. We observe that m1, �, and m2 depend only
on ⌦. Being motivated by (24), let us pick c > 0 so that

cmin{1
4
m1,m2} � M

1
N+1

✓
c2

✓
�1
✏

+ 1

◆Z

⌦
'1

◆ 1
N+1

c3c4.

Claim 2: If z 2 ⌦ \ ⌦� then !(z)  c'1(z).

Indeed, if z 2 ⌦ \ ⌦�,

!(z)  k!kC1(⌦)  M
1

N+1

✓
c2

✓
�1
✏

+ 1

◆Z

⌦
'1

◆ 1
N+1

c3c4  cm2  c'1(z).

In order to complete the proof of (25), we demonstrate the following

Claim 3: If z 2 ⌦� then !(z)  c'1(z).

To prove this claim, let us write z = x+ t�!n (x), for some x 2 @⌦ and t 2 (0, �),
which is given by Lemma 2.1. Since ! 2 H1

0 (⌦) \ C1(⌦), !(x) = 0. Hence,

!(z) =

Z t

0
r!(x+ s�!n (x)) ·�!n (x) ds 

Z t

0
|r!(x+ s�!n (x))| ds.

On the other hand, from the choice of c and Claim 1, for every s 2 [0, t] it follows
that

|r!(x+ s�!n (x))|  k!kC1(⌦) 
1

4
cm1

 1

2
c|r'1(x+ s�!n (x))|  cr'1(x+ s�!n (x)) ·�!n (x).

Consequently,

!(z) 
Z t

0
|r!(x+ s�!n (x))| ds 

Z t

0
cr'1(x+ s�!n (x)) ·�!n (x) ds = c'1(z).

This is just (25). Finally, observe that c can be taken so that

c = c5M
1

N+1 , (26)

where c5 depends only on ⌦ and N .
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Now we proceed to estimate
R
⌦ u1+ 1

N+1 . Multiplying by u the di↵erential equa-
tion in (21), integrating by parts and using (25), we have

Z

⌦
u1+ 1

N+1 =

Z

⌦
f(u)!  c

Z

f(u)�0
f(u)'1.

Arguing as we did to get (20), from (15) and (16) it follows
Z

⌦
u1+ 1

N+1  Mc

✓
�1
✏

+ 1

◆Z

⌦
'1. (27)

Therefore, from (27) and the definition of K it follows that if b⌦ ⇢ ⌦,
Z

b⌦
f(u) 

Z

⌦
u1+ 1

N+1 +K|⌦|  Mc

✓
�1
✏

+ 1

◆Z

⌦
'1 +K|⌦|. (28)

As a variant of the previous estimate, we observe that because of the Mean Value
Theorem and (E1), f(t)  Dt for all t � 0. Keeping into account this fact, as well
as (20) we get Z

b⌦
f(u)  MDc2

✓
�1
✏

+ 1

◆Z

⌦
'1, (29)

where b⌦ is any measurable subset of ⌦.

STEP 2.

Lemma 2.3. Let f : R ! R satisfy (E1), (E2) and (E3). Then, there exists r0 > 0
depending only on ⌦, N and kf 0kL1(R) such that if u is a positive solution of (1),

then:

8⇠u 2 ⌦ : kukL1(⌦) = u(⇠u) ) d(⇠u, @⌦) � r0. (30)

Proof of Lemma 2.3. Since ⌦ is smooth and bounded, there exists �0 > 0, that
depends only on ⌦, satisfying (i) and (ii) in Lemma 2.1. Let u a positive solution
of (1). Let ⇠u 2 ⌦ such that kukL1(⌦) = u(⇠u). In order to prove the lemma, it
su�ces to consider the case in which ⇠u 2 ⌦�0 (otherwise d(⇠u, @⌦) � �0 and the
result follows).

Let us write ⇠u = x + t�!n (x), with x 2 @⌦ and t 2 (0, �0). As a consequence of
(ii) in Lemma 2.1, function s 7! u(x+st�!n (x)) is well-defined and it is di↵erentiable
in [0, 1]. Because of the Mean Value Theorem, there exists s 2 (0, 1) such that

u(⇠u) = (ru(x+ st�!n (x)) · t�!n (x).

Since ⇠u is a critical point of u, ru(x+ t�!n (x)) = ru(⇠u) = 0. Thus,

u(⇠u) = (ru(x+ st�!n (x))�ru(x+ t�!n (x))) · t�!n (x). (31)

On the other hand, from Sobolev imbeddings and Agmon-Douglis-Nirenberg esti-
mates, there exist positive constants c6 and c7, depending only on ⌦ and N , such
that

kuk
C

1, 1
2(N+1) (⌦)

 c6kukW 2,N+1(⌦)  c7kf(u)kLN+1(⌦). (32)

Applying the Mean Value Teorem to f(u), because of (E1),

kf(u)kLN+1(⌦)  c8kf 0kL1(R)kukL1(⌦), (33)

for some positive constant c8 that depends only on ⌦.
From (31), (32) and (33), it follows that

kukL1(⌦) = u(⇠u)  t1+
1

2(N+1) kuk
C

1, 1
2(N+1) (⌦)
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 c7c8t
1+ 1

2(N+1) kf 0kL1(R)kukL1(⌦).

Because of the previous and the note after Lemma 2.1, we have

(d(⇠u, @⌦))
1+ 1

2(N+1) = |⇠u � x|1+
1

2(N+1) = t1+
1

2(N+1)

� 1

c7c8kf 0kL1(R)
=: r

1+ 1
2(N+1)

0 (34)

and the proof is complete.

Remark: In the case ⌦ is, in addition, convex, there exists r0 that depends only
on ⌦, such that if u is a positive solution of (1), there exists ⇠u 2 ⌦ such that
kukL1(⌦) = u(⇠u) and d(⇠u, @⌦) � r0 (see [21] and [20]).

STEP 3. Now we complete the proof of Theorem 2.1. Using Green’s function
for u in ⌦ (see [23]), we get

u(⇠u) =

Z

⌦

✓
C(N)

kx� ⇠ukN�2
� v(⇠u, x)

◆
f(u(x))dx, (35)

where v(⇠u, .) is a positive harmonic function in ⌦ and C(N) > 0. Observe that
Z

⌦

✓
C(N)

kx� ⇠ukN�2
� v(⇠u, x)

◆
dx � 0

(from applying Green’s function to the solution of (17)). Hence
Z

⌦
v(⇠u, x)dx 

Z

⌦

C(N)

kx� ⇠ukN�2
dx 

Z

BR(⇠u)

C(N)

kx� ⇠ukN�2
dx =: C(N,⌦),

where R = 2diam(⌦). Therefore, from the definition of m
Z

⌦
�v(⇠u, x)f(u(x))dx  C(N,⌦)m. (36)

Now we estimate u(⇠u). Let r 2 (0, r0). Because of (30), Br(⇠u) ⇢ ⌦. Hence, from
(35) and (36),

u(⇠u) 
Z

Br(⇠u)

C(N)f(u(x))

kx� ⇠ukN�2
dx+

Z

⌦\Br(⇠u)

C(N)f(u(x))

kx� ⇠ukN�2
dx+ C(N,⌦)m. (37)

Now we bound the integrals on the right hand side of (37). First, we observe that
by virtue of the Mean Value Theorem, (E1) and the definition of D, it follows

Z

Br(⇠u)

C(N)f(u(x))

kx� ⇠ukN�2
dx  C1(N)D r2u(⇠u), (38)

where C1(N) > 0 is a constant that depends on N . Let us take r > 0 in (0, r0) so
that

0 < r2 <
1

2C1(N)D
. (39)

This choice of r depends only on ⌦, N and D. Moreover, from (37), (38) and (39)
we have

1

2
u(⇠u) 

Z

⌦\Br(⇠u)

C(N)f(u(x))

kx� ⇠ukN�2
dx+ C(N,⌦)m. (40)

Regarding the integral on the right hand side of (40), due to (28),
Z

⌦\Br(⇠u)

f(u(x))

kx� ⇠ukN�2
dx  Mcr2�N

✓
�1
✏

+ 1

◆Z

⌦
'1 +K r2�N |⌦|. (41)
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From (40) and (41) there exist positive constants C1(⌦, N), C2(⌦, N) and C3(⌦, N),
that depend on ⌦ and N , such that

kukL1(⌦)  Mcr2�NC1(⌦, N) +K r2�NC2(⌦, N) +mC3(⌦, N). (42)

As a variant of the previous estimate, using (29) as well as (40) we obtain

kukL1(⌦)  MDr2�NC4(⌦, N) +mC5(⌦, N), (43)

for some positive constants C4(⌦, N) and C5(⌦, N). From (26), (42) and (43) our
result follows.

Similarly we can obtain estimates for the L1(⌦)-norm of negative solutions of
(1).

Corollary 2.1. Let f : R ! R be a C1
-function that satisfies (E1), (E2) and (E3).

There exist positive constants Ci(⌦, N), i = 1, ..., 5, and r > 0, depending only on

⌦, N and D, such that if u is a negative solution of (1) then

kukL1(⌦)  fM1+ 1
N+1 r2�NC1(⌦, N) + eK r2�NC2(⌦, N) + emC3(⌦, N) (44)

and

kukL1(⌦)  fMDr2�NC4(⌦, N) + emC5(⌦, N), (45)

where the constants em,

fM , and

eK are defined by

� em := min
t�0

{�f(�t)}, (46)

� fM := min
t�0

{�f(�t)� (�1 + ✏)t}, (47)

� eK := min
t�0

{t|t|
1

N+1 + f(�t)}. (48)

Note: r is defined by (34) and (39).

Throughout the remaining part of this paper we extensively make use of the
following inequalities coming from the variational characterization of {�j}j : given
k 2 N,

kxk2H1
0 (⌦)  �k

Z

⌦
x2 8x 2 X := span{'1,'2, . . . ,'k } ⇢ H1

0 (⌦), (49)

and

kyk2H1
0 (⌦) � �k+1

Z

⌦
y2 8y 2 Y := X? = {'k+1,'k+2, . . .} ⇢ H1

0 (⌦). (50)

We remark that conditions (E2) and (E3) in the following proposition are purely
technical and can be changed by some condition that ensures J 2 C2.

Proposition 2.1. Let f : R ! R be a C1
-function satisfying (E2) and (E3). Let

us assume u is a solution of (1) and there exists j 2 N0 such that

f 0(t) < �j+1 for all t 2 u(⌦).

Then ma(J, u)  j.
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Proof. From (5),
⌦
D2J (u) v, v

↵
=

Z

⌦

�
rv ·rv � f 0 (u) v2

�
dx.

Thus, if Y := h'j ,'j+1, ...i ⇢ H1
0 (⌦) and v 2 Y \ {0}, from the hypothesis and

the inequality (50), it follows that
⌦
D2J (u) v, v

↵
> 0.

If j = 0 the result is already proven. If j > 1 we argue by contradiction. Suppose
there is a subspace W ⇢ H1

0 (⌦) such that dimW =: p > j�1 y
⌦
D2J (u)w,w

↵
 0

for all w 2 W \ {0}. Let {w1, ..., wp} be a basis for W . Let us define X :=
span{'1,'2, . . . ,'j�1 }. Then, because of the decomposition H1

0 (⌦) = X � Y , we
have w1 = x1+y1, ..., wp = xp+yp, for some x1, ...xp 2 X and y1, ..., yp 2 Y . Given
that p > j� 1, there exist ↵1, ...,↵p 2 R, not all zero, so that ↵1x1+ ...+↵pxp = 0.
Hence, w := ↵1w1 + ...+ ↵pwp 2 W \ Y \ {0}. But this is a contradiction and the
result follows.

To complete this section we state a proposition which will be useful to prove the
existence of sign-changing solutions in Section 4. Let us introduce the following
notations

B+ := M1+ 1
N+1 r2�NC1(⌦, N) +K r2�NC2(⌦, N) +mC3(⌦, N),

b+ := MDr2�NC4(⌦, N) +mC5(⌦, N),

where the right-hand sides are those appearing in (12) and (13). Similarly,

B� := fM1+ 1
N+1 r2�NC1(⌦, N) + eK r2�NC2(⌦, N) + emC3(⌦, N),

b� := fMDr2�NC4(⌦, N) + emC5(⌦, N),

where the right-hand sides are those appearing in (44) and (45).

Proposition 2.2. Let f : R ! R be a C1
-function satisfying (E1), (E2) and (E3).

In addition, suppose f satisfies

f 0(t) < �k 8t 2 [�B�, B+]. (51)

Then, every solution u of (1) whose augmented Morse index is greater than k � 1
is a sign-changing solution and satisfies

kukL1(⌦) > min{B�, B+}.
The same conclusion follows if we change B+ by b+ and/or B� by b� in (51).

Proof. Apply Theorem 2.1, Corollary 2.1, and Proposition 2.1.

3. Abstract results. In this section H denotes a real Hilbert space with inner
product h· , ·i and X and Y will denote closed subspaces of H such that dimX =:
k < 1 and H = X � Y . Given a functional J : H ! R, we recall that J is said to
satisfy the Palais-Smale condition, referred to as (PS), if given a sequence {un}n in
H such that DJ(un) ! 0 and {J(un)}n is bounded, {un}n contains a convergent
subsequence.

We recall the Saddle Point Theorem of P. Rabinowitz (see, for example, [29]).

Theorem 3.1. (Saddle Point Theorem) Let J 2 C1(H,R) be a functional

satisfying the (PS) condition and the following hypotheses

(S1) inf{J(y) : y 2 Y } =: d > �1,
(S2) J(x) ! �1 as kxk ! 1 with x 2 X.

Then J has at least one critical point.
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A. Lazer and S. Solimini in [26] show that, under additional conditions, at least
one of the critical points of J has Morse index equal to dimX. More precisely, they
prove the following lemma.

Lemma 3.1. (Lazer-Solimini) Let J 2 C2(H,R) be a functional satisfying (PS)

condition and hypotheses (S1)-(S2). Assume J has only a finite number of critical

points, all of which are nondegenerate. Then there must exist at least one critical

point whose Morse index equals k = dimX.

A careful reading of the proof presented in [26] makes clear that this lemma
can be reformulated in terms of critical groups instead of Morse index, eliminating
the nondegeneracy hypothesis of critical points. In fact, the proof needs not be
modified at all. Besides, J has just to be assumed of class C1 in this reformulation.
We also point out that the following version of Lazer-Solimini’s result, which will be
very useful for our purposes in Section 4; it is a consequence of infinite dimensional
Morse theory (see, for example, [13], chapter II). Hence, we omit its proof.

Lemma 3.2. Let J 2 C1(H,R) be a functional that satisfies (PS) condition, and

hypotheses (S1)-(S2). Suppose J has only a finite number of critical points. Then

there exists a critical point u0 of J such that Ck(J, u0) 6= {0}. If, in addition,

J 2 C2(H,R) then the critical point u0 is such that m(u0, J)  k  ma(u0, J).

Now we recall a version of the Lyapunov-Schmidt reduction method. We refer
the reader to [16] and [8] for details. We recall that if u0 2 H is a critical point
of a functional J 2 C1 and c = J(u0), then u0 is said to be a critical point of

mountain pass type of J if there exists a neighborhood U of u0 such that, for every
neighborhood V ⇢ U de u0, the set

V \ {u 2 H| J(u) < c}

is neither empty nor path-connected (see [24] and [13]).

Lemma 3.3. Let J : H ! R be a function of the class C2(H,R). Suppose there

exists c > 0 such that

hD2J(u)y, yi � ckyk2H ; 8u 2 H 8y 2 Y. (52)

Then:

(i) There exists a function  : X ! Y , of the class C1
, such that

J(x+  (x)) = min
y2Y

J(x+ y).

Moreover, given x 2 X,  (x) is the unique element of Y such that

hrJ(x+  (x)), yi = 0 8y 2 Y. (53)

(ii) The functional Ĵ : X ! R, defined by Ĵ(x) := J(x +  (x)) for x 2 X, is of

class C2
. Moreover,

DĴ(x)h =
D
rĴ(x), h

E
= hrJ(x+  (x)), hi 8x, h 2 X. (54)

(iii) Given x 2 X, x is a critical point of Ĵ if and only if u = x+ (x) is a critical

point of J .
(iv) If u0 = x0 +  (x0) is a critical point of mountain pass type of J then x0 is a

critical point of mountain pass type of Ĵ .
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(v) If x0 2 X is an isolated critical point of Ĵ then the local Leray-Schauder degree

is preserved under reduction, i.e.

dloc(rĴ , x0) = dloc(rJ, u0).

(vi) If x0 2 X is a critical point of Ĵ then the Morse index is invariant under

reduction, i.e.

m(u0, J) = m(x0, Ĵ)

and

ma(u0, J) = ma(x0, Ĵ).

(vii) If u0 = x0 +  (x0) 2 H is a nondegenerate critical point of J then x0 is a

nondegenerate critical point of Ĵ .

4. Sign-changing solutions, Morse index and further qualitative proper-
ties. Along this section, f will be assumed to satisfy one of the asymptotic linearity
conditions

(f1) f 0(1) := lim|t|!1 f 0(t) 2 (�k,�k+1) for some k � 2, or
(f1’) f 0(1) := lim|t|!1 f 0(t) = �k for some k � 2,

unless otherwise stated. Any of these assumptions automatically guarantee that f
satisfies (E2) and (E3) as in Section 1.

Our starting result is an application of Lemma 3.2 and some previous results
regarding critical groups of critical points of mountain pass type (see [13]). The
first part gives a solution to (1) whose augmented Morse index is bounded below.
This fact will be useful to get sign-changing solutions. For the most part the proof
of the following proposition is well-known (see [17]). We include it here for the sake
of completeness.

Proposition B. Let f satisfy (f1). Then:

(a) There exists a solution u0 of (1) such that Ck(J, u0) 6= {0}. In particular,

m(u0)  k  ma(u0).
(b) If, in addition, f satisfies

(f3) f(0) = 0,
(f4) f 0(0) < �1,
there exist at least three nontrivial solutions u+, u� and u0 of (1). Moreover,

u+ > 0 in ⌦, u� < 0 in ⌦, and Ck(J, u0) 6= {0}.

Proof. a) Due to condition (f1), it is well-known that the functional J , defined in
the introduction, is of the class C2(H1

0 (⌦),R), satisfies condition (PS) and its set of
critical points is bounded in H1

0 (⌦) (see [29], [18], [15]). In order to apply Lemma
3.2, we must verify J satisfies (S1), (S2) and that the set of critical points of J be
finite. This last condition is simply a consequence of the fact that the critical set
of J is bounded, (PS) condition and the assumption of isolation of critical points of

J . Let X := span{'1,'2, . . . ,'k } and Y := X? = {'k+1,'k+2, . . .}.
H1

0 (⌦)

Claim 1: J satisfies (S1).
Indeed, let y 2 Y . because of (f1), there exist a1 < �k+1 and a2 2 R such that

F (s)  a1
2
s2 + a2 8s 2 R.

Thus,

J(y) � 1

2
kyk2H1

0 (⌦) �
a1
2

Z

⌦
y2 � a2|⌦|.
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From (50),

J(y) � 1

2

✓
1� a1

�k+1

◆
kyk2H1

0 (⌦) � a2 |⌦|.

Since a1 < �k+1, J satisfies (S1).

Claim 2: J satisfies condition (S2).
To prove this, let x 2 X. Again, (f1) implies the existence of a3 > �k and a4 2 R

such that
F (s) � a3

2
s2 + a4 8s 2 R.

Hence,

J(x) =
1

2
kxk2H1

0 (⌦) �
Z

⌦
F (x)  1

2
kxk2H1

0 (⌦) �
a3
2

Z

⌦
x2 � a4|⌦|.

From (49),

J(x)  1

2

✓
1� a3

�k

◆
kxk2H1

0 (⌦) � a4 |⌦|.

As a3 > �k, J satisfies (S2).
Consequently, part a) follows directly from Lemma 3.2.

b) Let u0 be the solution coming from part a). The existence of one-signed solu-
tions u+ and u� of (1) is a well-known application of the Mountain Pass Theorem.

By virtue of a result by H. Hofer (see [24] and [13]),

Cq(J, u+) = Cq(J, u�) = �q,1R.
Since k � 2 and Ck(J, u0) 6= {0}, u+ 6= u0 and u� 6= u0. Finally, from hypotheses
(f3), (f4) and Poincar’s inequality, a direct computations shows 0 is an isolated
local minimum of J . Consequently, Cq(J, 0) = �q,0R and u0 6= 0, which proves part
b).

Remark: We observe that Proposition B improves those results presented in [14]
and [15] thanks to the reformulation of Lemma 3.1 in terms of critical groups as in
Lemma 3.2, which gives finer information of u0. On the other hand, if nondegen-
eracy is assumed, the existence of at least four nontrivial solutions is obtained, as
pointed out in [15].

As an application of the estimates of Section 2 and the previous proposition, we
have the following result about existence of sign-changing solutions.

Theorem C. Let f satisfy (f1) and (f3). Let ✏ > 0, A > 0, D > 0, and B > 0 as

in Theorem A. Suppose, in addition, that

f 0(t) < �k 8t 2 [�B,B]. (55)

Then, there exists at least one sign-changing solution u⇤ of (1) such that

ku⇤kL1(⌦) > B.

Proof. Because of (f1), part (a) in Proposition B implies the existence of a solution
u⇤ of (1) whose augmented Morse index is at least k. From Proposition 2.2 the
result follows.

In the remaining part of this section we consider the limit case of condition (f1)
mentioned in the Introduction. From now on, we assume that f satisfies, besides
(f1), condition
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(f2) there exist � > 0 such that f 0(t)  � < �k+1 for all t 2 R,
where k is as in (f1). As we mentioned above, since f 2 C1, condition (f1) forces
the existence of a j � k + 1 so that f 0(t)  ! < �j for all t. So (f1)-(f2) is simply
the case j = k + 1.

In [16], A. Castro and A. Lazer considered the case in which the range of f 0

crosses exactly one eigenvalue. In [8], f 0 is supposed to cross several eigenvalues,
gaining the existence of more solutions. Let us recall a result on multiplicity of
solutions to (1) proved in [8].

Theorem 4.1. ([8]) If f satisfies (f1)-(f4), then, problem (1) has at least five

solutions. Moreover, exactly one of the following cases holds:

(a) k is even and problem (1) has two sign-changing solutions.

(b) k is even and problem (1) has six solutions, three of which have the same sign.

(c) k is odd and problem (1) has two sign-changing solutions.

(d) k is odd and problem (1) has three solutions of the same sign.

Let us denote by ui, i = 1, · · · , 5 the solutions of (1) given by Theorem 4.1.
The solution u1 ⌘ 0 is an isolated local minimum of J . Using the Mountain Pass
Theorem (see [29]) A. Castro and J. Cossio proved the existence of a positive solu-
tion u2 and a negative solution u3. The solution u4 comes from an application of
the Lyapunov-Schmidt reduction method (see Lemma 3.3), and the solution u5 is
obtained by using Leray-Schauder degree arguments.

The following proposition is, somehow, a big remark after a careful reading of
the proof of Theorem 4.1 in [8] and partially complements it by means of the use of
Mountain Pass Theorem and Morse index invariance under the Lyapunov-Schmidt
reduction method. On the other hand, it opens some interesting questions.

Proposition 4.1. Let f : R ! R satisfy (f1)-(f4) where k � 4 is even. Suppose

that the critical points of J are nondegenerate. Then:

(a) m(J, u4) = k.
(b) m(J, u5) is even and m(J, u5)  k.
(c) If m(J, u5) = k, there exist two additional solutions u6 and u7 of (1). More-

over m(J, u6) = k � 1.
(d) If u4 has one sign, there also exist two additional solutions u6 and u7 of (1).

Proof. As in the proof of Theorem 4.1, ma(J, u4) = k. Hence, (a) follows from the
nondegeneracy assumption. Let us prove (b). The inequality m(J, u5)  k follows
from hypothesis (f2) and Proposition 2.1.

In the case u4 changes sign, a review of the proof of Theorem 4.1 makes it clear
that u5 satisfies dloc(rJ, u5) = (�1)k = 1. On the other hand, the nondegeneracy
assumption implies dloc(rJ, u5) = (�1)m(J,u5) (see [25]). Then, m(J, u5) is even in
this case. To complete the proof of (b) we consider the case in which u4 has one sign.
As in the proof of Theorem 4.1, there exists a one sign solution u6. Moreover, the
existence property of the Leray-Schauder degree and the nondegeneracy assumption
imply the existence of solutions u5 and u7 such that dloc(rJ, u5) = 1 = dloc(rJ, u7)
(see [25]). Again, m(J, u5) is even and the proof of (b) is complete. Also, as a by-
product, we have proved (d).

Finally we prove (c). Suppose m(J, u5) = k. Writing u5 as u5 = x5 +  (x5),
Lemma 3.3 guarantees m(Ĵ , x5) = k, so x5 is a local maximum of Ĵ . Thus, x4 and
x5 are points of local minima of �Ĵ . Now we apply the Mountain Pass Theorem to
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�Ĵ . Directly from its definition, Ĵ satisfies (PS) condition since J does it so. The
Mountain Pass Theorem (see [24], [29]) implies the existence of a critical point x6

of mountain pass type for �Ĵ . Since it is nondegenerate, m(�Ĵ , x6) = 1 (see [24]).
Hence, m(Ĵ , x6) = k � 1 � 3. Again, because of Lemma 3.3, u6 = x6 +  (x6) is a
critical point of J whose Morse index is k � 1.

Now we use a degree counting to obtain u7. Let S a sub-region of BR(0) such
that S \ K = {u1, u2, u3, u4, u5, u6}. Then, using dloc(rJ, u5) = (�1)k = 1 and
dloc(rJ, u6) = (�1)k�1 = �1, we have

(�1)k = d(rJ,BR(0), 0)

= d(rJ, S, 0) + d(rJ,BR(0) \ S, 0)
= 1� 1� 1 + (�1)k + (�1)k + (�1)k�1 + d(rJ,BR(0) \ S, 0).

Consequently, d(rJ,BR(0) \ S, 0) = 1 6= 0 and existence property of the Leray-
Schauder degree implies that of u7. We have proved (c) and the result follows.

Remarks:
1. A number of questions naturally arise from Proposition 4.1. To mention just

a couple: what can be said about (b)-(d) when k is odd? and, when k is still even,
how to make true the assumption in part (c)?

2. Parts (c) and (d) in Proposition 4.1 are not true when k = 2. Suppose f
satisfies (f1)-(f4),

(f5) tf 00(t) > 0, for t 6= 0,

and (51) with k = 2. In this particular case, problem (1) has exactly five solutions,
all of which are nondegenerate. This is a consequence of some of the results con-
tained in [10] and Proposition 2.1. A similar result is contained in [16] when the
range of f 0 crosses one eigenvalue.

3. Another natural thing to ask is whether u4 changes sign or not. We give a
partial answer in the following result. It is analogous to Theorem C, but now in the
setting of the limit case given by hypothesis (f2). Its proof has three key ingredients:
the characterization of u4 and u5 in the proof of Theorem 4.1, the invariance of
augmented Morse index under the Lyapunov-Schmidt reduction method in the form
of Lemma 3.3, and the estimates of Section 2.

Theorem D. Let f : R ! R satisfy (f1)-(f4). Let ✏ > 0, A > 0, D > 0, and B > 0
as in Theorem A. If, in addition,

f 0(t) < �k, 8t 2 [�B,B], (56)

then (1) has two sign-changing solutions, u⇤ and v⇤. Moreover, at least one of them,

let us say u⇤, satisfies

ku⇤kL1(⌦) > B.

Proof. Hypotheses (f1)-(f4) allow the use of those arguments leading to Theo-
rem 4.1. We use the same notations. First, we observe that Lemma 3.3 implies
ma(J, u4) = ma(Ĵ , x4). Since x4 is a local maximum of a functional defined on a
k-dimensional space, ma(J, u4) = k. Proposition 2.2 implies u4 := u⇤ changes sign.
As in the proof of Theorem 4.1, solution v⇤ := u5 also changes sign when u⇤ = u4

does it so. The result follows.

In the resonance setting, we use the results of [27], the estimates of Section 2 and
Lemma 3.3, to prove the following theorem also stated in the introduction.
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Theorem E. Let f : R ! R satisfy (f1’)-(f4). Suppose, in addition, f satisfies

(f5)

1
2�k t

2 � F (t) ! �1 as |t| ! 1,

and

f 0(t) < �k, 8t 2 [�B,B]. (57)

Then, there exist a sign-changing solution u⇤ of (1) such that

ku⇤kL1(⌦) > B.

Proof. Because of the results of [27], problem (1) also has at least five solutions
under assumptions (f1’)-(f5), as in the non-resonant case of [8]. One of those so-
lutions, let us say u⇤, is built up as u⇤ = x⇤ +  (x⇤), where  : X �! Y is as in
Lemma 3.3, and x⇤ 2 X is such that Ĵ(x⇤) = maxX Ĵ . Consequently, by virtue
of the invariance of the Morse index under Lyapunov-Schmidt reduction method,
ma(J, u⇤) = ma(Ĵ , x⇤) = k. Then, from Proposition 2.2 the proof follows.

Remark:
If ⌦ is a ball or an annulus centered at 0 and f 2 C2(R) satisfies the hypotheses

in Theorem C for k  N , then, m(J, u⇤)  k and this solution changes sign. On
the other hand, from the results of A. Aftalion and F. Pacella in [2], every radial
sign-changing solution u to (1) satisfies m(J, u) � N + 1. Thus:

Corollary 4.1. Let ⌦ be a ball or an annulus centered at 0. Let f 2 C2
satisfy

(f1), (f3) and (51) with k  N . Then, solution u⇤ in Theorem C is not radially

symmetric.

Under hypothesis (f2), every solution of (1) has Morse index less than or equal
to k. So, the analogue of the previous corollary in reduction setting is:

Corollary 4.2. Let ⌦ be a ball or an annulus centered at 0. let f 2 C2
satisfy

(f1)-(f4) and (57) with k  N . Then, solutions u⇤ and v⇤ in Theorem D are not

radially symmetric.

Of course, an analogous statement holds in the resonant case considered above.
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