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A SEMILINEAR WAVE EQUATION WITH SMOOTH DATA AND

NO RESONANCE HAVING NO CONTINUOUS SOLUTION

José F. Caicedo
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Bogotá, Colombia

Alfonso Castro

Department of Mathematics
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Abstract. We prove that a boundary value problem for a semilinear wave
equation with smooth nonlinearity, smooth forcing, and no resonance can-
not have continuous solutions. Our proof shows that this is due to the non-
monotonicity of the nonlinearity.

1. Introduction. Here we consider the hyperbolic boundary value problem
{

�(u) + g(u) = p(x, t) = p(x, t+ 2π) = p(x+ 2π, t) x, t ∈ R

u(x, t) = u(x, t+ 2π) = u(x+ 2π, t) x, t ∈ R,
(1)

where � denotes the D’Alembert operator ∂tt − ∂xx,

g(t) = τt+ h(t) with τ ∈ (0,∞) − {k2 − j2; k, j = 0, 1, . . .}, (2)

and h : R → R is a differentiable function with support in [0, D] and such that

h(D/2) < −τD/2. (3)

Thus, for some t ∈ (0, D), g′(t) < 0.

The wave operator � subject to the boundary conditions in (1) has discrete
spectrum. It is given by σ(�) = {k2 − j2; k, j = 0, 1, . . .}. All the eigenvalues have
finite multiplicity except for 0 whose eigenspace is spanned by

{αk,k, βk,k, γk,k, δk,k, ; k = 0, 1, 2, . . .}, (4)

where
αk,j(x, t) = sin(kx) cos(jt), βk,j(x, t) = sin(kx) sin(jt),

γk,j(x, t) = cos(kx) cos(jt), and δk,j(x, t) = cos(kx) sin(jt).
(5)

In [2] it was shown that if g is monotone and lim|t|→+∞ g(t)/t = τ , the boundary
value problem











�(u)+g(u) = p(x, t) = p(x, t+ 2π) (x, t) ∈ (0, π) × R

u(0, t) = u(π, t) = 0 t ∈ R

u(x, t) = u(x, t+ 2π), (x, t) ∈ [0, π] × R,

(6)
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has a weak solution in L2([0, π]× [0, 2π]). A related result for systems of equations
is found in [1]. Also in [2] it is shown that if, in addition, there exists ǫ > 0 such
that g′(z) ≥ ǫ > 0 for all z ∈ R then such a solution is of class C∞ when p is
of class C∞. Here we prove that such a result cannot be extended to (1) when g
is nonmonotone. In fact we show that the lack of monotonicity prevents even the

existence of continuous solutions regardless of the smoothness of of p.
Studies of (6) for non-monotone g may be found in [8] and [5] where is it proved

that it has a solution for p in a dense set of L2([0, π] × [0, 2π]). In [4], also for
non-monotone g, sufficient conditions for the existence of a solution in the Sobolev
space H1([0, π] × [0, 2π]) are given in terms of the components of p in the kernel
and range of the operator �. Here H1([0, π] × [0, 2π]) denotes the Sobolev space
of square integrable functions in [0, π]× [0, 2π] having first order partial derivatives
in L2([0, π] × [0, 2π]) and satisfying the boundary condition in (1). Extensions of
this result to cases where the period 2π is replaced by a number such that all the
eigenvalues have infinite multiplicity were are found in [3]. For additional studies
on solvability of equation (6) with multiple eigenvalues of infinite multiplicity the
reader is referred to [7]. For a survey on boundary value problems for semilinear
wave equations we refer the reader to [6].

2. Preliminaries and statement of main result. Throughout this paper Ω =
(0, 2π)× (0, 2π), We denote the norm in Lp(Ω) by ‖ ‖p. We let N denote the closed
subspace of L2(Ω) spanned by {αk,k, βk,k, γk,k, δk,k; k = 0, 1, 2, . . .}, see (4). That
is, N is the null space of the wave operator � subject to the boundary conditions
in (1). We let H denote the Sobolev space of functions u that are 2π-periodic in
both x and t, and such that u as well as its first order partial derivatives belong to
L2(Ω). The norm in H is denoted by ‖ ‖1,2. We let Y denote the subspace of H of
functions y such that

∫

Ω

y(x, t)v(x, t)dxdt = 0 for all v ∈ N. (7)

We say that u = y + v ∈ Y ⊕N is a weak solution of (1) if
∫

Ω

{(ytŷt − yxŷx) − (g(u) − p)(ŷ + v̂)} dxdt = 0, (8)

for all ŷ + v̂ ∈ Y ⊕N . Our main result is:

Theorem 2.1. There exists c0 ≥ 0 such that if |c| > c0, and p(x, t) = c sin(x + t)
then (1) has no continuous weak solution.

Corollary 2.2. There exists c0 ≥ 0 such that if |c| > c0, and p(x, t) = c sin(x + t)
then (1) has no weak solution in H1([0, 2π] × [0, 2π]).

The corollary follows immediately from the theorem since every element u in
H1([0, 2π]× [0, 2π]) may be written as u = y+z with y ∈ Y and z(x, t) = z1(x+t)+
z2(x− t) with z1, z2 ∈ H1([0, 2π]). Since the elements in H1([0, 2π]) are continuous
function, z is continuous. Hence it cannot be a solution to (1).

3. Regularity. Let u = y + v be a weak solution to (1). We write α(x, t) =
sin(x+ t), v = aα+ w, a ∈ R, and w = v̄ + z where

∫

Ω

αwdxdt = 0, and 4π2v̄ =

∫

Ω

vdxdt =

∫

Ω

wdxdt. (9)
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Since z ∈ N we may write z(x, t) = z1(x + t) + z2(x − t) with z1, z2 2π-periodic
functions such that

∫

Ω

z1(x+ t)dxdt =

∫

Ω

z2(x+ t)dxdt = 0. (10)

Lemma 3.1. Under the above assumptions, ‖zi‖∞ ≤ 3‖h‖∞/τ , and |v̄| ≤ ‖h‖∞/τ.

Proof. Taking ŷ = 0 and v̂ = α in (8) we have

∫

Ω

(τaα + h(u))αdxdt =

∫

Ω

cα2dxdt. (11)

This and ‖α‖2 =
√

2π yield

|τa− c| ≤ 2‖h‖∞ (12)

For b positive odd integer, it is easy to see that z̄1(x, t) = zb
1(x + t) and z̄2(x, t) =

zb
2(x − t) are in N . Hence, taking v̂ = z̄1 in (8) we have

τ‖z1‖b+1
b+1 = −

∫

Ω

(h(u(x, t)) + v̄τ − (c− τa)α(x, t))zb
1(x, t)dxdt

≤ 3‖h‖∞|Ω| 1
b+1

(∫

Ω

|z1(x, t)|b+1dxdt

)
b

b+1

,

(13)

which yields

τ‖z1‖b+1 ≤ 4‖h‖∞|Ω| 1
b+1 . (14)

Since b may taken arbitrarily large and ‖z1‖∞ = limb→∞ ‖z1‖b+1 we have

τ‖z1‖∞ ≤ 4‖h‖∞. (15)

Similarly τ‖z2‖∞ ≤ 4‖h‖∞. Since

4π2τ |v̄| = τ |
∫

Ω

w(x, t)dxdt| = |
∫

Ω

h(u(x, t))dxdt| ≤ 4π2‖h‖∞, (16)

the lemma is proven.

Lemma 3.2. There exists K > 0, independent of c such that if u = y+ v ∈ Y ⊕N
is a weak solution to (1) then |y(x, t)| ≤ K‖h‖∞ for all (x, t) ∈ Ω, and ‖y‖1,2 ≤ K.

Proof. Let

y =
∑

k 6=j

akjαk,j + bkjβk,j + ckjγk,j + dkjδk,j and

PY (h(y + v)) =
∑

k 6=j

Akjαk,j +Bkjβk,j + Ckjγk,j +Dkjδk,j .
(17)

Since ‖PY (h(v + y))‖2 ≤ ‖h(y + v)‖2 ≤ 2π‖h‖∞, akj = Akj/(k
2 − j2 + τ), bkj =

Akj/(k
2−j2+τ), ckj = Ckj/(k

2−j2+τ), and dkj = Dkj/(k
2−j2+τ), by Parseval’s
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identity we have

|y(x, t)| =
∣

∣

∣

∑

k 6=j

akjαk,j(x, t) + bkjβk,j(x, t) + ckjγk,j(x, t) + dkjδk,j(x, t)
∣

∣

∣

≤





∑

k 6=j

A2
kj +B2

kj + C2
kj +D2

kj





1/2 



∑

k 6=j

1

(k2 − j2 + τ)2





1/2

≤ 2π‖h‖∞





∑

k 6=j

1

(k2 − j2 + τ)2





1/2

≡ K1‖h‖∞,

(18)

where we used that the last series in (18) converges. Similarly

‖y‖2
1,2 ≤ 2

∑

k 6=j

(k2 + j2)(A2
kj +B2

kj + C2
kj +D2

kj)

(k2 − j2 + τ)2

≤ K2‖h(u)‖2
2

≤ 4π2K2‖h‖2
∞

(19)

Taking K = max{K1, 2π
√
K2} the lemma is proven.

Let D > 0 be as in (3). Now (see (12))

|u(x, t)| = |a sin(x+ t) + v̄ + z(x, t) + y(x, t)|
≥ [(|c| − 2‖h‖∞)| sin(x+ t)| − (9 +K1τ)‖h‖∞]/τ.

(20)

Hence

h(u(x, t)) = 0 if | sin(x+ t)| ≥ τD + (9 +K1τ)‖h‖∞
|c| − 2‖h‖∞

. (21)

Therefore there exists a positive constants c0 and m such that if |c| ≥ c0 then

m{(x, t) ∈ Ω;h(u(x, t)) 6= 0} ≤ m

c
. (22)

Hence ‖h(u)‖2 ≤ m1/2‖h‖∞c−1/2 for |c| ≥ c0. Replacing this in (18) we have

|y(x, t)| ≤ K‖h‖∞c−1/2, (23)

for |c| ≥ c0. Also

τ |v̄| = |
∫

Ω

h(u(x, t))dxdt|

≤ ‖h‖∞m{(x, t) ∈ Ω;h(u(x, t)) 6= 0}

≤ m‖h‖∞
c

.

(24)

Similarly (see (12))

|τa− c| ≤ m‖h‖∞c−1. (25)

For 0 ≤ r ≤ s ≤ 2π, let χ[r,s] be the 2π-periodic function such that χ[r,s](t) = 1
if t ∈ [r, s], and χ[r,s](t) = 0 if t ∈ [0, 2π] − [r, s]. Let φ(x, t) = χ[r,s](x − t),



A SEMILINEAR WAVE EQUATION WITHOUT RESONANCE 657

z̄1(x, t) = z1(x+ t), and z̄2(x, t) = z2(x− t). Using that φ ∈ N and the mean value
theorem for integrals we have

0 =

∫

Ω

φ((aτ − c)α+ τ(z̄1 + z̄2) + v̄ + h(u))dxdt

= 2π(s− r)τz2(s2) +

∫

Ω

φh(u)dxdt + 2πv̄(s− r),

(26)

where s2 ∈ (r, s). Since |
∫

Ωφh(u)dxdt| ≤ ‖h‖∞(r − s)m/c, we conclude

|z2(r)| ≤M‖h‖∞/c, (27)

with M independent of c. Similarly, letting ψ(x, t) = χ[r,s](x + t) and multiplying
(1) by ψ,

0 =

∫

Ω

ψ((aτ − c)α+ τ(z̄1 + z̄2) + v̄ + h(u))dxdt

= 2π(s− r)((aτ − c)α(0, s3) + τz1(s1)) + τ v̄2π(s− r)

+

∫

Ω

ψ(h(u) − h(aα+ z̄1))dxdt +

∫

Ω

ψh(aα+ z̄1)dxdt,

(28)

with s1, s3 ∈ (r, s). Letting s→ r,

0 = 2π((aτ − c)α(0, r) + τz1(r) + h((aα+ z̄1)(0, r)) + v̄)

+

∫ 2π

0

(h(y + v̄ + z̄1 + aα+ z̄2) − h(aα+ z̄1))(x, r − x)dx
(29)

Hence (see (23), (24), (27))

τz1(r) + h(aα(0, r) + z1(r)) = O(c−1/2) (30)

4. Proof of Theorem 2.1.

Proof. Without loss of generality we may assume that c > 0. Since for c large
aα(0, π/2) + z1(π/2) > D and aα(0, 3π/2) + z1(3π/2) < 0, there exists t1, t2 such
that π/2 < t1 < t2 < 3π/2, aα(0, t1) + z1(t1) = D/2, and aα(0, t2) + z1(t2) = 0.
From (30)

τz1(t1) = −h(D/2) +O(c−1/2). (31)

Thus aα(0, t1) = D/2 − z1(t1) = D/2 + (h(D/2)/τ) +O(c−1/2) < 0. On the other
hand, by (30), τz1(t2) = −h(0)+O(c−1/2) which implies that aα(0, t2) = −z1(t2) =
O(c−1/2) > O(c−1/2) + (D/2 + h(D/2)/τ)/2 > aα(0, t1), which contradicts that
t→ α(0, t) defines a decreasing function on [π/2, 3π/2].
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