
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

2-1-1988

A Semilinear Wave Equation with Nonmonotone
Nonlinearity
Alfonso Castro
Harvey Mudd College

Sumalee Unsurangsie
Mahidol University

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Castro, Alfonso and Unsurangsie, Sumalee, "A Semilinear Wave Equation with Nonmonotone Nonlinearity" (1988). All HMC Faculty
Publications and Research. Paper 481.
http://scholarship.claremont.edu/hmc_fac_pub/481

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/70974194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu


Pacific Journal of
Mathematics

A SEMILINEAR WAVE EQUATION WITH NONMONOTONE
NONLINEARITY

ALFONSO CASTRO AND SUMALEE UNSURANGSIE

Vol. 132, No. 2 February 1988



PACIFIC JOURNAL OF MATHEMATICS

Vol. 132, No. 2, 1988

A SEMILINEAR WAVE EQUATION
WITH NONMONOTONE NONLINEARITY

ALFONSO CASTRO AND SUMALEE UNSURANGSIE

We prove that a semilinear wave equation in which the range of the
derivative of the nonlinearity includes an eigenvalue of infinite multi-
plicity has a solution. The solution is obtained through an iteration
scheme which provides a priori estimates.

1. Introduction. Here we study the nonlinear wave equation

(1.1) uίt-uxx + λu = cq(x,t) + r{x,t) + g(u), (x, t) e [0, π] x R,

(1.2) w(0, t) = u(π, t) = 0, u(x, t) = u(x, t + 2π),
{x, t) e [0, π] x R,

where λ € R - {k2 - j 2 : k = 1,2,3,..., j = 0,1,2,...} and g is a
function of class C1 such that

(1.3) lim g'(u) = 0.
\u\-+oo

A main difficulty in studying (1.1)—(1.2) arises when -λ e g'(R).
This causes compactness arguments to fail because 0 is an eigenvalue
of utt - uxx, (1.2) of infinite multiplicity. Recent studies on (1.1)-(1.2)
either: (i) assume that g(u) - λu is monotone (see [B-N], [R], [W]),
or (ii) assume enough symmetry on g, q, and r so that the kernel of
^tt - uxx, (1.2) reduces to {0} (see [Co]), or (iii) use dichotomy on
whether the Palais-Smale condition holds proving existence for values
of cq+r which cannot be given explictly (see [H], [W]). Our main result
(Theorem A below) does not fall in any of the above three classes.

Let Ω = [0, π] x [0,2π]. Let Hι, L2, and L°° denote the Sobolev
spaces Hι(Ω), L2(Ω), and L°°(Ω) respectively. We let || | | b || ||, and
|| ||oo denote the norms in Hι, L2, and L°° respectively. Let

N = lueL2: u = Σ(ak sin(fcx) sin(kt) + bk sin(A:;c)

Let N1 c 1} denote the orthogonal complement to N in L2. Let P de-
note the orthogonal projection onto iV and Q the othogonal projection
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216 ALFONSO CASTRO AND SUMALEE UNSURANGSIE

onto N1. Let φ be a solution to

(1.4) φtt - φxx +λφ = q{x, t), (x, t) e [0, π] x [0,2π],

φ(0, t) = φ(π, t) = 0, φ(x, t) = φ(x, t + 2π).

Throughout the rest of this paper we will assume that

(1.5) rn{{x9i)ey\\φ{x,t)\ < S} -> 0 as δ -> 0

uniformly in γ, where γ is any characteristic of the operator dn - dxx.
Our main result is

THEOREM A. If(P(r))t e L2, φt G L°°, and (1.5) holds, then there
exists CQ such that for \c\ > CQ the problem (1.1)—(1.2) has a weak
solution ueH1 nL°°.

Our proof is based on an iteration argument that resembles the
proof of the inverse function theorem. We give (see §3) estimates in
Hι Π L°° which show the convergence of the scheme. Even though
our arguments and main result suggest applicability of the standard
inverse function theorem, our hypotheses are not enough to guarantee
it.

2. Preliminaries and notations. A direct calculation shows that if
u e N9 then utt - uxx = 0 in the sense of distributions. Let Au =
Utt - uxx. We recall (see [B-N]) that A subject to condition (1.2) is
selfadjoint, the range of A is closed in L2, and R(A) = N1. The eigen-
values of A subject to (1.2) form the set {k2 - j 2 : k = 1,2,3,..., j =
0,1,2,...}. The corresponding eigenfunctions are sin(fcx) sin( jt) and
sin(kx) cos(jt). The operator A~ι is compact from N1- into N1, and
there exists a real number c such that

M"7Hoo<c | | / | | for all feR{A),

7 for all feR(A).

Using Fourier series it is easy to show that if u G Hι, v e N Π Hx then

(2.1) JJ(P(u))tVt = fjutvt,

(2.2) ί {v)2{x,s)ds < ί f {v)2dxdt for all x <Ξ [0,π].
Jo J JΩ
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Let A i denote the operator defined by

sin(kx) cos( jt))

Όkj
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k=\
7=0

oo

-Σ
k=\
7=0

k2-j2+λ

It is easy to see that if / e L2, then w = A\ (/) is a weak solution to
Wtt - Wxx+λw = f. An elementary Fourier series argument shows that
if w = Aι(Q{f)), then

(2.3) [2\(wx)
2(x, t) + (wt)

2(x, t))dt < b2\\Q{f)\\2

Jo
for all Λ: e [0, π].

where b0 = max{(2/π){k2 + j2)/{k2 - j 2 + λ)2: k φ j , k = 1,2,3,...,
j = 1,2,3,...}. In particular

(2.4)

Also it is easy to show that

(2.5)

where

Σ
k=l

1/2

J

We can rewrite (1.1) as the following:

(2.6) uu - uxx +λu = {c/R)Rq{x, t) + r(x, t) + g{u)

where

R = max{2{2)1/2dKλ, 2{2)χl1

}\6d4\\g'\\loλ,

K = bQ%xl2 + b\ and d > 0 is a constant such that ||M||X,4 < flf||«||i and
||w|| < d\\u\\\ for all u e Hι (the existence of d follows the fact that
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the embeddings Hx —> L4 and Hι —• L2 are continuous (see [A])). Let
w = Ru/c and β = Λ/c. Then (2.6) becomes

(2.7) wtt - wxx + λw = Rq(x, t) + β{r(x, t) + g(w/β)).

Inductively we define w0 = 0, Wi as the solution to

(2.8) [wx)tt - (w{)xx + λw{ = β(r(x, t) + g{Rφ/β))>

Wχ (0, t) = wx (π, 0 = 0, wγ (x, t) = wx (JC, ί + 2π),

and wn+x as the solution to

(2.9) (wn+ι)tt-(wn^)xx+λwn+ι=β(r(xj) + g((Rφ + wn)/β))f

wπ + 1(0,0 = wπ + 1(π, ί) = 0, wn+χ(x, t) = wΠ+i(x, ί + 2/i).

3. Estimates. For the sake of simplicity we will assume throughout
the rest of this paper that λ > 0, and c > 0. The case λ < 0, or c < 0
requires only obvious modifications.

LEMMA 3.1. Let {wn}n be defined by (2.8) and (2.9). ϊ/mfer the
assumption of Theorem A, /Aere exists β\ > 0 swc/z ί/jαί //*/? € (0,
then for all n = 1,2,3,... we have

(3.1) K l l i + K H o o ^ l .

Proof. Since for each characteristic y, m{(x, ί) G y: |p(x, ί)| < δ}
0 as (5 —• 0 uniformly in γ then there exists SQ > 0 such that if 0 < ί
J o then

(3.2) m{(x,0ey: |^(x,0l<<5}

for any characteristic y. Because of (1.3) there exists L > 0 such that
for all u e R

(3.3) ^(iι)| < ({ul/e^KRiMov + 1)) + L,

and there exists M > 0 such that if |w| > M then

(3.4) |g'(M)|<A/(64π2

JR(||^| |0 O + 21/2)).

Now we define β\ by

(3.5) βx = min{l/(32(M + {L+ \)nK + AΊ|r||)),

λ/(32π(\\rt\\ +
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Next we prove (3.1) by induction. First we observe that

(3.6) \\g(Rφ/β)\\2 = if {g{Rφ/β))
JJΩ

f {g{Rφ/β))2

Ω

ffRφ/β)2^ /{MπKR{\\φ\\ao + I))2

<4π2L2 + (l/32Kβ)2.

We write HΊ = V] + Z\ with Vj € N and zx e N1. From (2.4), (2.5),
and (2.7) it follows that if β e (0, βx) then

(3.7) ll*illi + ll*il|oo<l/4.

Projecting (2.8) into N, differentiating with respect to t, multiplying
by (vi),, and integrating over Ω we have

if {{vx)t)
2dxdt = β [ί(P(r + g(Rφ/β)))t(vi)tdxdt

JJΩ JJΩ

= β ff' {r + g{Rφ/β)),{vx)tdxdt
JJΩ

= β ff rt(vι),+ ff g'{Rφ/β){Rφt){vx)t
JJΩ JJΩ

= β\\n\\ • ll(vi)/|| ( f f 2 }

Therefore

< (β\\r,\\ +R\\φ,\\oo (fJΩ(g'(Rφ/β))2y) β.

In order to est imate ffa(g'(Rφ/β))2 we define sβ = {(x, t): \Rφ{x, t)\
< Mβ} and Cβ = Ω - Sβ. Since Mβ/R < δ0 we have

m(sβ) <

(see (3.2) and (3.5)); then

1/2 "I 1/2

+ 2π 2 Λ 2 /(64π 2

J R( |M| 0 O + 2 1 / 2 ) ) 2 ] 1 / 2
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Hence if β e (0, βx) then \\{vx)t\\ < 1/8. Since ||v,|| = K | | for all
v eNnHl,we have ||vi|| t < 1/4. Because of (2.2) we have

a t \

((Vi)t)
2(x,s)dsj

1/2 , ft \ 1/2

Therefore

(3.8) llviHi + llvtlloo < 7/12.

Combining (3.7) and (3.8) we have

Suppose now that ||wM||i + H^Hoo < 1. We write wn+i = vn+1 + zn+\
with vn+i € N and zn+i e N1. Again from (2.4), (2.5) and (2.7) we
have

< βK(\\r\\ + \\g((Rφ + wn)/β)\\).

In order to estimate \\g((Rφ + wn)/β)\\ we observe that

ft (g((Rφ + wn)/β))2
(g((Rφ + wn)/β))2

jJ (JJ ή I))2

< 4π2L2 + β^KΛH^Hoo + l)/(64nRK(\\φ\\0O + \))Ϋ/β2-

Therefore if β e (0, βx) then

(3.9)

Now projecting (2.9) into N, differentiating with respect to t, multi-
plying by (vn+ι)t and integrating over Ω we have

(3.10)

= β {IL{rt){Vn+l)t

+ ff g'((R<P + *n
<β\\rt\\ \\(vH+ι)t\\

1 / 2

21/2) yj^g'((Rφ + wn)/β))2((vn+ι)t)2}
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Now we consider

(3.11) /

= / π Γ{g'{{Rφ + Wn)/β))2{{Vn+\)t)2dxdL
Jo Jo

Without loss of generality we can assume that vn+\ = h(x - t) or
(vn+ι)t = -h!{x - ί). Because the integrand in (3.11) is 2π periodic in
t we have

rπ r2π+x

1=1 / (g'((Rφ + wn)(x,t)/β))2(h'(x-t))2dtdx.
Jθ Jx

By defining η = x, ζ = -x + t, γζ = {(s,s + ζ): s € [0, π]} and
^^ = {(x> t) € Ω: \Rφ{x, t)\ < Mβ + 1} we have

(3.12) ^

/= f3* Γ(ι
Jo Jo

= ί2\h\-ζ))2 f
Jo [JyζΓiAβ

(g'((Rφ(η, η + ζ) + wn(η,η + ζ))/β))2dη dζ

iWg'Woo + l)))1

+ (λπ1/2/64

Hence if β^{Q,βx) then

\\{vn+x)t\\ < 1/8.

Imitating the argument in (3.8) we have

(3-13) ||v/j+i||i + ||vn+i| |oo <

Combining (3.9) and (3.13) we have

which proves the lemma.

LEMMA 3.2. If{an} is a sequence of nonnegative real numbers such
that

Λ « + I < τ ( α r t + α«-i)> n = 2,3,4,...,
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then

where k = max{a\fa2}, and cn is the nth Fibonacci number of the
sequence defined by cn+\ = cn + cn-h c2 = 2 and c\ = 0, and [x]
denotes the largest integer less than or equal to x. In particular the
series Σan converges ifτ is small enough.

Proof. We prove the lemma by induction. For « = 2we have

α3 < τ{a2 + ax) < 2τk = (c2 + cχ)τk = c3kτ[2/2].

Suppose that

an<

If n is even we have

< τ(αB + αΛ_,) < τ

Similarly if n is odd we have

an+ι < τ(cM"-ι)/2 +

= Cnkττ^-^l2 + c/J_1fcτ("-1'/2 < {cn +cn^)kτ^2\

which proves Lemma 3.2.

4. Proof of Theorem A. For n = 1,2, 3,... we write wn = vn + zn

where vnG N and zn G Λ^1. Let n > 2. From the Sobolev imbedding
theorem and (2.4) and (2.5) we have

(4.1) \\zn+ι-zn\\2<d2\\zn+ί-zn\\2

< (dκβ)2

= (dK)2 fjΩ(g'((Rφ + O/β))2(">n-l - Wn

< 2{dK)2 [ff^s'HRψ + C)/β))2(vn - vn-,

where ζ € [wn(x, t), wn_x(x, ή] u [wn_ι(x, t), wn(x, ή]. Since vn and
vn_i e N, imitating the argument in (3.11)—(3.12) we see that

ζ)/β))2(vn-vn_ι)
2
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Thus

(4.2) 2{dK)2

< 2{dK)2 I / ^ (g'((Rφ + ζ)/β))2(vn - vn_!

J JQ—Aβ

<2(dK)2[(λ/32πR(\\φt\\

oo + 2ι/2))2]\\vn - vn_x

21/2))2||vn - vn_,||2.

where we also have used that \(Rφ + ζ)/β\ > M for (x, t) e Ω - Aβ
(see (3.4)). On the other hand we have

(4.3)

< 2{dK)2 \JJA (g'((Rφ + ζ)/β))2{zn - zM_

+ if {g

<2{dK)2\\\g'\\2

oofj^zn-zn_ι)
2

ζ)/β))2{zn-zn_λ)
2

2χl2))2\\zn - zn^

< 2{dK)2\\\g'\\2

ooff^χAβ{zn - zn_x)

< 2{dKγ
1/2 i/2

+(λ/64π2R(\\φt\\oo + 2 1/ 2)) 2 | |zn -

< 2(dK)2[\\g>\\2

ooλd2\\zn - zn_x\\2β2πR{\\g'\\oo

2"2))2\\zn - zn^
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where we have used that by the Sobolev imbedding theorem (see [A])
\\zn - zn-χ\\L4 < d\\zn — -zrΛ—iHi- Also since g1 is bounded,

\\β{g{9 + *n)/β) - g{(9 + *n-l)/β)\\ < lls'l|oo|K_l - fVπ.2||l-

This, (4.2) and (4.3) give

(4.4) 2(dK)2 if (g'((Rφ + Q/β))2(zn - zn.xγ
JJΩ

< 2{dK)2[\\g'\\lλ(dK)2\\wn.ι - wn_2||
2/32i?(||^||oo + 21/2)

Combining (4.2) and (4.4) we have

(4.5) \\zn+x-zn\\<2V2dKλ\\wn-wn_λ\\

Also

~ Vn\\2 < if (g'((φ + ζ)/β))2{Wn ~ Wn-l)2

JJΩ

-2ILi8>iiφ + ζ)/β))2[{Vn ~ v"-ι)2 + {Zn ~ z"-ι

Using now (4.2) and (4.4) we have

A2 | |vn + 1-vM | |2

+ 2[\\g'\\loλ(dK)2\\wH.ι - wn_2 | |2/32i?(| |^| |o o + 21/2)

+ (λ\\zn-zn_ι\\/64R(\\φt\\

Hence

(4.6)

Combining (4.5) and (4.6) and using the definition of R we have

IK+i - wn\\ < {\\w» - wΛ_j|| + | K _ i - wB_2||)/8.

Hence by Lemma 3.2 we have

\\wn+ι-wn\\<k2n(l/S)W2\ n = 2,3,4,....
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Hence Σ £ U \\wn - wn-.\\\ converges. Thus the sequence {wn = (wn -
wn-χ) + (wn-ι - wn_2) + '- + (w2-Wι) + (wι- w0)} converges in L2 to
some w G L2. Since {wn} is bounded in Hι n L°° we see that w also
belongs to Hx nL°°. Hence by (2.11) we see that w + Rφ is a solution
to (1.2), (2.7). Hence u = c(w + ity) is a solution to (1.1)—(1.2) which
proves the Theorem.

REMARK. Double checking the proofs it is easily seen that Theorem
A also holds when the limits in (1.3) are allowed to be in some interval
of the form (s, s), with s depending on the distance from λ to {k2 -
7 2 : A: = 1,2, 3,..., i = 0,1, 2, 3,...}.
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