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AVERAGE-CASE LOWER BOUNDS FOR NOISY BOOLEAN
DECISION TREES∗

WILLIAM EVANS† AND NICHOLAS PIPPENGER‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 433–446

Abstract. We present a new method for deriving lower bounds to the expected number of queries
made by noisy decision trees computing Boolean functions. The new method has the feature that
expectations are taken with respect to a uniformly distributed random input, as well as with respect
to the random noise, thus yielding stronger lower bounds. It also applies to many more functions
than do previous results. The method yields a simple proof of the result (previously established
by Reischuk and Schmeltz) that almost all Boolean functions of n arguments require Ω(n logn)
queries, and strengthens this bound from the worst-case over inputs to the average over inputs. The
method also yields bounds for specific Boolean functions in terms of their spectra (their Fourier
transforms). The simplest instance of this spectral bound yields the result (previously established
by Feige, Peleg, Raghavan, and Upfal) that the parity function of n arguments requires Ω(n logn)
queries and again strengthens this bound from the worst-case over inputs to the average over inputs.
In its full generality, the spectral bound applies to the “highly resilient” functions introduced by
Chor, Friedman, Goldreich, Hastad, Rudich, and Smolensky, and it yields nonlinear lower bounds
whenever the resiliency is asymptotic to the number of arguments.

Key words. fault-tolerance, reliability, noisy computation, error-correction

AMS subject classifications. 68M15, 68P10, 68R05

PII. S0097539796310102

1. Introduction. We shall deal in this paper with dynamic decision trees for
computing Boolean functions. A dynamic decision tree is a binary tree in which each
internal node N is labelled with an argument index α(N) ∈ {1, . . . , n}, each child
M of an internal node N is labelled with a Boolean value β(M) ∈ {0, 1} that might
be assumed by this argument (with siblings being labelled with distinct values), and
each leaf L is labelled with a Boolean function value φ(L) ∈ {0, 1}. Such a dynamic
decision tree computes a Boolean function f of n Boolean arguments x1, . . . , xn in
an obvious way: start at the root; when at an internal node N , query the argument
xα(N) and proceed to the child M of N such that β(M) = xα(N); when at a leaf
L, announce the function value f(x1, . . . , xn) = φ(L). For such a dynamic decision
tree, we may speak of the worst-case cost (the maximum over argument values of the
depth of the leaf that announces the function value) or the average-case cost (the
average with a uniform distribution over argument values of the depth of the leaf that
announces the function value).

We shall be interested in the situation in which dynamic decision trees are noisy,
that is, in which each internal node independently passes control to the incorrect
child (that is, the child M of the internal node N such that β(M) = ¬xα(N)) with
some fixed probability 0 < ε < 1/2. We shall say that such a tree (ε, δ)-computes a
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434 W. EVANS AND N. PIPPENGER

Boolean function f if, for all x1, . . . , xn ∈ {0, 1}, the probability that control reaches
an incorrectly labelled leaf (that is, a leaf L labelled φ(L) = ¬f(x1, . . . , xn)) is at
most δ < 1/2. For such a noisy dynamic decision tree, we may again speak of the
worst-case or average-case cost (where we may maximize or average over argument
values but always average over noise).

An alternative to the error model we have adopted is to assume that errors oc-
cur with probability at most ε, rather than exactly ε. This alternative model gives
stronger upper bounds. Our interest in this paper is in lower bounds, for which the
model we have adopted gives stronger results.

To describe the history of our results, we shall need to refer to two additional
computational models. The first of these is the static decision tree, which we may
regard as a dynamic decision tree in which the argument queried by an internal node
does not depend on the outcomes of previous queries (and thus depends only on the
depth of the node in the tree), and in which all leaves appear at the same depth. The
cost in this case is simply the common depth C of the leaves. It is not hard to see
that we may ignore the tree structure, and simply focus on the number of queries
Ci to each argument xi. We then have C1 + · · · + Cn = C. Furthermore, we may
ignore the sequence of answers to the queries to a given argument and focus on the
number Di of affirmative answers among answers to the Ci queries to xi. We then
have 0 ≤ Di ≤ Ci for 1 ≤ i ≤ n. While a noisy static decision tree might announce
distinct function values for the same values of D1, . . . , Dn, it is not hard to see that
these announcements can be replaced by a consistent announcement φ(D1, . . . , Dn),
without increasing the probability of an incorrect announcement in any situation.
Thus we may describe a static decision tree by specifying the numbers C1, . . . , Cn
and the labelling φ(D1, . . . , Dn) for 0 ≤ D1 ≤ C1, . . . , 0 ≤ Dn ≤ Cn.

Our final computational model is the circuit with noisy gates. We shall not de-
scribe this model in detail but merely remark that a lower bound to static decision
tree cost yields a lower bound to the size (number of gates) of a circuit with noisy
gates.

Work on reliable computation in the presence of noise was begun by von Neumann
[14], who argued (although he did not give a rigorous proof) that a computation that
can be performed by a noiseless network with L gates could be reliably performed
by a noisy network with O(L logL) gates. Dobrushin and Ortyukov [4] provided a
rigorous proof of this result, and [3] claimed the following matching lower bound: a
noisy network that reliably computes a function f must have Ω(S logS) gates, where
S is the sensitivity of f (the maximum over inputs x1, . . . , xn of the number of indices
i such that f(x1, . . . , xi−1,¬xi, xi+1, . . . , xn) 6= f(x1, . . . , xn)). Since there are many
functions (for example, the disjunction, conjunction, or parity of n arguments) that
have sensitivity S = n and can be computed by noiseless networks with O(n) gates,
this result shows that the logarithmic ratio of noisy to noiseless gates is necessary for
certain functions.

There are, however, several errors in the proof of the lower bound of Dobrushin
and Ortyukov [3]. These were pointed out by Pippenger, Stamoulis, and Tsitsiklis [16],
who gave a proof of the weaker result that a noisy network that reliably computes
the parity function of n arguments must have Ω(n log n) gates. The full strength
of the lower bound in terms of sensitivity was regained by Gál [9] (see also Gács
and Gál [10]) and by Reischuk and Schmeltz [17]. An important consequence of
this stronger result is that a noisy network that reliably computes the disjunction
(or conjunction) of n arguments must have Ω(n log n) gates. All of these lower bound
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arguments apply to static decision trees as well as to circuits. For noisy static decision
trees, lower bounds of Ω(n log n) are best possible, since any Boolean function of n
arguments can be computed by a noisy static decision tree with O(n log n) queries
(with 2 log(n/δ)

/
log
(
1/4ε(1− ε)) = O(log n) queries, it is possible to determine a

single argument with error probability at most δ/n).
Noisy dynamic decision trees were considered by Feige et al. [6, 7], who showed

that there are noisy dynamic decision trees that reliably compute the disjunction or
conjunction of n arguments with O(n) queries. Since we have seen that noisy static
decision trees require Ω(n log n) queries, this exhibits a clear separation between the
two models. For noisy dynamic decision trees, Feige et al. [6, 7] showed that Ω(n log n)
queries are needed to compute the parity or majority of n arguments, and Reischuk
and Schmeltz [17] showed that Ω(n log n) queries are needed for almost all Boolean
functions of n arguments. (This last result contrasts with results of Muller [13] and
Pippenger [15] for circuits, to the effect that for almost all Boolean functions of
n arguments, Ω(2n/n) noiseless gates are necessary and O(2n/n) noisy gates are
sufficient.) The lower bound proofs of both Feige et al. and of Reischuk and Schmeltz
depend on locating particular sets of inputs that are difficult for a dynamic decision
tree, and thus they yield lower bounds for the worst-case over inputs but not for
the average-case over inputs (and clearly no proof that applied to disjunction or
conjunction could give a nontrivial lower bound for the average over inputs).

The present paper gives a new method of establishing lower bounds for noisy
dynamic decision trees. The gist of the method is to argue that for certain Boolean
functions there cannot be even one leaf in the decision tree that has both a small
depth and a small probability of error (conditional on control reaching the leaf). The
Boolean functions to which the method applies are difficult to compute for all inputs
rather than just for certain inputs. This implies that lower bounds established by
the method apply to the average case over inputs rather than just the worst case.
(It also implies of course that the method is powerless to deal with functions such
as disjunction, conjunction, and majority that have inputs such as x1 = · · ·xn = 1,
x1 = · · ·xn = 0, or both for which it is easy to reliably determine the function value.)
These strengths and weaknesses of our new method are embodied in a new complexity
measure for Boolean functions, which we call “noisy leaf complexity.” In section 2
we shall define noisy leaf complexity and relate it to noisy dynamic decision tree
complexity described above.

Our method considers the situation in which control has arrived at a leaf L.
Arrival at L conditions the uniform prior distribution on the input x to a posterior
distribution. Our method is based on the fact that, if the depth of L is small, this
posterior distribution must be spread over a large range of possible input values. In
section 3 we shall calculate this posterior distribution and derive quantitative versions
of the assertion that it is spread over a large range.

Section 4 deals with random Boolean functions and establishes a lower bound of
the form Ω(n log n) for the noisy leaf complexity of “almost all” Boolean functions of
n arguments. Specifically, we show that if L is a leaf of cost

C ≤ n logE(n/2)− n logE log
(
2n2/(1− 2δ)2

)
,

where E = (1−ε)/ε, then the probability is at most 2e−n
2

that L has error probability
(conditional on arrival at L) at most δ for a random Boolean function of n arguments.
This strengthens (from the worst-case over inputs to the average-case over inputs) the
lower bound of Reischuk and Schmeltz [17].
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Section 5 establishes a lower bound of the form Ω(n log n) for the noisy leaf
complexity of the parity function of n arguments. Specifically, we show that if a leaf
with cost C has conditional error probability at most δ for the parity function of n
arguments, then

C ≥ n logE n− n logE log
(
1/(1− 2δ)

)
,

where E = (1 − ε)/ε. This strengthens (from the worst-case over inputs to the
average-case over inputs) the lower bound of Feige et al. [6, 7] for the parity func-
tion. The proof of our lower bound uses the Fourier transform of the parity function,
which has a particularly simple form. Other examples of the use of the Fourier trans-
form to derive lower bounds to the computational complexity of Boolean functions
are given by Brandman, Orlitsky, and Hennessy [1] (noiseless decision trees) and
by Linial, Mansour, and Nisan [12] (bounded-depth circuits). It would be possible
to rephrase this proof so as not to refer to the Fourier transform. Indeed, Fourier
analysis on finite groups such as the Boolean n-cube is tantamount to linear alge-
bra in finite-dimensional vector spaces. Fourier analysis lends this linear algebra a
certain suggestive terminology, however, that provides a vivid intuition to guide the
manipulations. This intuition was valuable in discovering the more general results of
section 6.

A general class of Boolean functions to which our method applies is the class of
“highly resilient” functions. If a Boolean function is significantly “biased” (that is,
if it assumes the values 0 and 1 with significantly unequal probabilities under the
uniform input distribution), then even a leaf at depth 0 can announce the function
value with a probability of output error significantly less than 1/2. This suggests we
focus our attention on “unbiased” functions, which assume the values 0 and 1 each
with probability 1/2. Extending this reasoning, we see that if a Boolean function can
be significantly biased by substituting constants for a small number of arguments,
then a leaf with small depth can achieve a probability of output error significantly
less than 1/2. This suggests we focus our attention on functions that are unbiased
and which remain unbiased even when constants are substituted for some number
t of arguments. Such functions are called “t-resilient” by Chor et al. [2]. Though
defined combinatorially, the highly resilient functions have natural characterizations
in terms of their “spectra,” either in the sense of their Fourier transforms or in the
sense of the eigenvalues of the adjacency matrix of the Boolean hypercube. These
characterizations are discussed by Friedman [8].

Section 6 establishes a lower bound for the noisy leaf complexity of t-resilient
Boolean functions. Specifically, we show that if f is t-resilient and a leaf with cost C
has conditional error probability at most δ for f , then

C ≥ (t+ 1) logE
t+ 1

n
2H

(
t+1
n

)
+ log 1

1−2δ

,

where E = (1− ε)/ε, and H(η) = −η log η− (1−η) log(1−η) for 0 < η < 1, extended
by continuity to H(0) = H(1) = 0. The most resilient function of n arguments is
the parity function, which is (n − 1)-resilient. Thus we recover the lower bound of
section 5 in this special case. There are, however, many highly resilient functions that
are not parity functions. For these functions, our method yields a nonlinear lower
bound whenever t ∼ n, that is, whenever the resiliency is asymptotic to the number
of arguments.
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2. Noisy leaf complexity. Let f be a Boolean function of n arguments x1, . . . , xn.
Let T be a decision tree and let L be a leaf of T . By the cost of L we shall mean the
number of queries along the path from the root of T to L. Suppose now that the input
x is chosen at random with the uniform distribution (with each possible input having
probability 2−n). Suppose further that the tree T is applied to the input x with query
error probability ε > 0 at each internal node. We shall say that L is (ε, δ)-good for f
if the probability Pr(φ(L) = ¬f(x) | L) of output error at L, conditional on control
reaching L, is at most δ < 1/2. It is clear that whether or not a leaf L is (ε, δ)-good
for f depends only on the numbers C1, . . . , Cn of queries to the arguments x1, . . . , xn,
and on the numbers D1, . . . , Dn of affirmative responses to these queries, and not on
the rest of T . By the (ε, δ)-leaf complexity of a Boolean function f , we shall mean
the smallest possible cost of a leaf that is (ε, δ)-good for f .

Proposition 2.1. Suppose that the noisy dynamic decision tree T (ε, δ)-computes
the Boolean function f with expected cost C averaged over both inputs and noise. Let
δ′ be such that δ < δ′ < 1/2. Then f has (ε, δ′)-leaf complexity at most C ′ =
C/(1− δ/δ′).

Proof. Let the input x be chosen with the uniform distribution. For each leaf L in
T , let pL = Pr(L) denote the probability that control reaches L, let δL = Pr(φ(L) =
¬f(x) | L) denote the probability of error conditional on control reaching L, and let
CL denote the cost of L. Let A denote the set of leaves L such that δL > δ′. If A is
nonempty we have

δ′
∑
L∈A

pL <
∑
L∈A

pLδL ≤
∑
L

pLδL = δ,

and if A is empty we have

δ′
∑
L∈A

pL = 0 < δ,

so in any case we have ∑
L∈A

pL < δ/δ′.

Let B denote the set of leaves L such that CL > C ′. If B is nonempty we have

C ′
∑
L∈B

pL <
∑
L∈B

pLCL ≤
∑
L

pLCL = C,

and if B is empty we have

C ′
∑
L∈B

pL = 0 < C,

so in any case we have ∑
L∈B

pL < C/C ′.

These inequalities yield ∑
L6∈A∪B

pL > 1− δ/δ′ − C/C ′ = 0.

Thus with positive probability control arrives at a leaf L such that δL ≤ δ′ and
CL ≤ C ′, which shows that the (ε, δ′)-leaf complexity of f is at most C ′.
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3. The posterior distribution. Suppose that we choose an input x at random
with a uniform distribution: Pr(x) = 2−n. Then suppose that we apply a noisy
dynamic decision tree T with query error probability ε > 0 and arrive at a leaf L.
We shall calculate the posterior probability distribution on x, given arrival at L:
Pr(x | L).

Suppose that along the path from the root of T to L the input xi is queried
Ci times, with Di affirmative responses (and thus Ci −Di negative responses). The
event of arrival at L is the conjunction of n events L1, . . . , Ln, where Li specifies a
particular sequence of responses of the Ci queries to xi. The prior distribution of xi
is Pri(xi) = 1/2. The conditional probability Pri(Li | xi) of Li given xi is

Pri(Li | 0) = εDi(1− ε)Ci−Di ,
Pri(Li | 1) = εCi−Di(1− ε)Di ,

and thus

Pr(Li) =
εDi(1− ε)Ci−Di + εCi−Di(1− ε)Di

2
.

Thus the posterior distribution Pri(xi | Li) of xi, conditioned on Li, is

Pri(0 | Li) =
εDi(1− ε)Ci−Di

εDi(1− ε)Ci−Di + εCi−Di(1− ε)Di ,(3.1)

Pri(1 | Li) =
εCi−Di(1− ε)Di

εDi(1− ε)Ci−Di + εCi−Di(1− ε)Di .(3.2)

Finally, since the xi and the responses to the queries given the xi are all independent,
we have

Pr(x | L) =
∏

1≤i≤n
Pri(xi | Li).(3.3)

Formulas (3.1), (3.2), and (3.3) give the desired posterior distribution of x.
It will be convenient to have bounds for Pri(xi | Li) that are independent of Di.

If we divide the numerator and denominator of (3.1) by the numerator, we obtain

Pri(0 | Li) =
1

1 + E2Di−Ci ,

where E = (1 − ε)/ε (and E > 1, since ε < 1/2). The right-hand side is maximized
when Di = 0, so we have

Pri(0 | Li) ≤ 1

1 + E−Ci
.

Similar reasoning from (3.2) yields an expression that is maximized when Di = Ci, re-
sulting in the same bound for Pri(1 | Li). Thus if we set Pi = max{Pri(0 | Li),Pri(1 |
Li)}, we have

Pi ≤ 1

1 + E−Ci

=
ECi

ECi + 1

= 1− 1

ECi + 1

≤ 1− 1

2ECi
.(3.4)
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This is the desired bound.

4. Random Boolean functions. Throughout this section, f will denote a ran-
dom Boolean function of n arguments, for which f(x) is equally likely to be 0 or 1,
independently for each value of x. Our strategy will be to consider a leaf L of small
depth and bound the probability that L is (ε, δ)-good for f . Our main result is the
following.

Theorem 4.1. Let L be a leaf of cost

C ≤ n logE(n/2)− n logE log
(
2n2/(1− 2δ)2

)
,

where E = (1 − ε)/ε. Then L is (ε, δ)-good for a random Boolean function of n

arguments with probability at most 2e−n
2

.
This result easily yields a lower bound for the noisy leaf complexity of almost all

Boolean functions.
Corollary 4.2. For all sufficiently large n (depending on E = (1 − ε)/ε > 1

and δ < 1/2), the fraction of all Boolean functions of n arguments having (ε, δ)-leaf

complexity at most (n/2) logE(n/2) is at most 2e−n
2/2.

Proof. For all sufficiently large n, we have

C = (n/2) logE(n/2) ≤ n logE(n/2)− n logE log
(
2n2/(1− 2δ)2

)
,

so we may apply Theorem 4.1 to any leaf of cost at most C. But such a leaf is
determined by specifying (1) which of the n arguments is queried at each of the C
queries and (2) the response (affirmative or negative) to each query. Thus there are
at most (2n)C leaves, and thus the probability that some leaf is (ε, δ)-good for f

is at most 2e−n
2

(2n)(n/2) logE(n/2). For sufficiently large n, this bound is at most

2e−n
2/2.

It will be convenient to work not only with the Boolean function f but also with
the rescaled real-valued function F (x) = 1 − 2f(x), which is equally likely to be +1
or −1, independently for each value of x. Similarly, it will be convenient to work
not only with the probability of error δL associated with a leaf L but also with the
correlation ξL = 1 − 2δL between the rescaled label Φ(L) = 1 − 2φ(L) of L and the
rescaled function F (x). If δL ≤ δ < 1/2, then ξL ≥ 1−2δ > 0. Thus if L is (ε, δ)-good
for f we have

1− 2δ ≤ ξL = Exx
(
Φ(L)F (x)

)
= Φ(L)

∑
x

Pr(x | L)F (x).

Since Φ(L) = ±1, this implies

(4.1) 1− 2δ ≤
∣∣∣∣∣∑
x

Pr(x | L)F (x)

∣∣∣∣∣ .
The terms Pr(x | L)F (x) are independent random variables that assume the values
±Pr(x | L) each with probability 1/2. Thus, to estimate the probability that (4.1)
holds, it will suffice to use an estimate for the probability of large deviations for sums
of independent, but not necessarily identically distributed, random variables. The
following result of Hoeffding [11, Theorem 2] suits our purpose.

Proposition 4.3 (see [11]). If Ax are independent random variables with mean
0 and range |Ax| ≤ ∆x, then

Pr

(∑
x

Ax ≥ T
)
≤ exp(−T 2/2S),
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where

S =
∑
x

∆2
x.

Since the random variables Pr(x | L)F (x) are distributed symmetrically about 0,
the probability that (4.1) holds is just twice the probability that

(4.2) 1− 2δ ≤
∑
x

Pr(x | L)F (x)

holds. We can bound this using Proposition 4.3 by taking Ax = Pr(x | L)F (x), so
that ∆x = Pr(x | L), and T = 1− 2δ. Thus we seek an estimate for

S =
∑
x

Pr(x | L)2.

We observe that by virtue of (3.3) we have

S =
∑
x

Pr(x | L)2 =
∏

1≤i≤n

(
Pri(0 | Li)2 + Pri(1 | Li)2

)
.

Since

u2 + (1− u)2 = 1− 2u(1− u) ≤ max{u, 1− u},
we have

S ≤
∏

1≤i≤n
Pi,

with Pi = max{Pri(0 | Li),Pri(1 | Li)} as defined in section 3. Using (3.4) we have

S ≤
∏

1≤i≤n

(
1− 1

2ECi

)
.

Since 1− u ≤ exp(−u), we have

S ≤
∏

1≤i≤n
exp

(
−1

2
E−Ci

)

= exp

−1

2

∑
1≤i≤n

E−Ci

 .

Since Eu = expE u is a convex function of u, we have

S ≤ exp

−n
2

expE

− 1

n

∑
1≤i≤n

Ci


= exp

(
− expE

(
logE

n

2
− C

n

))
.

Thus if

C ≤ n logE(n/2)− n logE log
(
2n2/(1− 2δ)2

)
,

we have S ≤ (1− 2δ)2/2n2. Proposition 4.3 then implies that (4.2) holds with prob-

ability at most e−n
2

, so (4.1) holds with probability at most 2e−n
2

. This completes
the proof of Theorem 4.1.
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5. The parity function. In this section we shall derive a lower bound for the
(ε, δ)-leaf complexity of the parity function:

f(x1, . . . , xn) = x1 + · · ·+ xn (mod 2).

Our result is the following.

Theorem 5.1. If the leaf L with cost C is (ε, δ)-good for the parity function f
of n arguments, then

C ≥ n logE n− n logE log
(
1/(1− 2δ)

)
,

where E = (1− ε)/ε.
The proof of this theorem depends on the notion of the Fourier transform of a

Boolean function. This notion has already been applied to the computational com-
plexity of Boolean functions by circuits (see Linial, Mansour, and Nisan [12]) and
noiseless dynamic decision trees (see Brandman, Orlitsky, and Hennessy [1]), but the
present paper appears to mark its debut for the complexity of noisy computation.

Let F : Bn → R be a real-valued function of n Boolean arguments. By the
Fourier transform of F we shall mean the function F̂ : Bn → R defined by

F̂ (y) =
1√
2n

∑
x

(−1)x·yF (x),

where x·y =
∑

1≤j≤n xjyj denotes the inner product of x and y. (The factor (−1)x·y is

the specialization of the usual Fourier kernel e2πix·y/m to m = 2.) The normalization
factor 1/

√
2n has been chosen to make the transform an involution: we have

ˆ̂
F (z) =

1√
2n

∑
y

(−1)y·zF̂ (y)

=
1√
2n

∑
y

(−1)y·z
1√
2n

∑
x

(−1)x·yF (x)

=
1

2n

∑
x

F (x)
∑
y

(−1)x·y+y·z

= F (z),

since

∑
y

(−1)x·y+y·z =

{
2n if x = z,

0 otherwise.

(The general Fourier transform is not an involution, but rather has period four, and
the effect of applying the transform twice is to reverse the function by negating its
argument. But in B, regarded as an additive group of order two, every element is its
own negative, so each function is its own reversal.)

The key result we shall need is the Parseval identity∑
y

F̂ (y) Ĝ(y) =
∑
y

F (y)G(y),
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which says that the Fourier transform is an isometry of the Hilbert space RBn . This
follows from a calculation similar to the one above:∑

y

F̂ (y) Ĝ(y) =
∑
y

1√
2n

∑
x

(−1)x·yF (x)
1√
2n

∑
z

(−1)z·yG(z)

=
1

2n

∑
x

∑
z

F (x)G(z)
∑
y

(−1)x·y+z·y

=
∑
x

F (x)G(x).

For the proof of Theorem 5.1, we take F (x) = 1− 2f(x) to be the rescaled parity
function. As in the preceding section, we have

1− 2δ ≤
∣∣∣∣∣∑
x

Pr(x | L)F (x)

∣∣∣∣∣ .
Setting G(x) = Pr(x | L) and applying the Parseval identity, we have

(5.1) 1− 2δ ≤
∣∣∣∣∣∑
y

Ĝ(y)F̂ (y)

∣∣∣∣∣ .
For F the rescaled parity function, a simple calculation yields F̂ :

F̂ (y) =

{√
2n if y = (1, . . . , 1),

0 otherwise.

Substituting this formula into (5.1) yields

1− 2δ ≤
√

2n |Ĝ(1, . . . , 1)|.
From the definitions of G and Ĝ, this reduces to

(5.2) 1− 2δ ≤
∣∣∣∣∣∑
x

(−1)|x| Pr(x | L)

∣∣∣∣∣,
where |y| = ∑1≤i≤n yi denotes the number of i such that yi = 1.

To estimate the right-hand side of (5.2), we observe that∑
x

(−1)|x| Pr(x | L) =
∏

1≤i≤n

(
Pri(0 | Li)− Pri(1 | Li)

)
=

∏
1≤i≤n

(
1− 2Pri(1 | Li)

)
.

Since

|1− 2u| = 2 max{u, 1− u} − 1,

we have

1− 2δ ≤
∣∣∣∣∣∑
x

(−1)|x| Pr(x | L)

∣∣∣∣∣
=

∏
1≤i≤n

(2Pi − 1),
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with Pi = max{Pri(0 | Li),Pri(1 | Li)} as defined in section 3. Using (3.4) we have

1− 2δ ≤
∏

1≤i≤n

(
1− 1

ECi

)
.

Since 1− u ≤ exp−u, we have

1− 2δ ≤
∏

1≤i≤n
exp

(−E−Ci)

= exp

− ∑
1≤i≤n

E−Ci

 .

Since Eu = expE u is a convex function of u, we have

1− 2δ ≤ exp

−n expE

− 1

n

∑
1≤i≤n

Ci


= exp

(
− expE

(
logE n−

C

n

))
.

Thus we obtain

C ≥ n logE n− n logE log
(
1/(1− 2δ)

)
.

This completes the proof of Theorem 5.1.

6. Resilient Boolean functions. A Boolean function f of n arguments is un-
biased if ∑

x

F (x) = 0,

where F (x) = 1−2f(x) is the rescaled real-valued function as in the preceding section,
and the sum is over all 2n values of x. Thus a function is unbiased if it assumes the
values 0 and 1 for equal numbers of inputs.

A Boolean function f is t-resilient if every function obtained from f by substi-
tuting constants for at most t arguments is an unbiased function of the remaining
arguments. Thus a function is 0-resilient if and only if it is unbiased. Our main result
in this section is the following.

Theorem 6.1. If f is t-resilient and the leaf L with cost C is (ε, δ)-good for f ,
then

C ≥ (t+ 1) logE
t+ 1

n
2H

(
t+1
n

)
+ log 1

1−2δ

,

where E = (1− ε)/ε, and H(η) = −η log η− (1− η) log(1− η) for 0 < η < 1, extended
by continuity to H(0) = H(1) = 0.

The projection functions, of the form f(x1, . . . , xn) = xi, are 0-resilient but not 1-
resilient. The parity functions, of the form f(x1, . . . , xn) = x1 + · · ·+xn+c (mod 2),
are (n − 1)-resilient, which is the maximum possible for a function of n arguments.
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Theorem 5.1 applies to many other functions however. If g and h are t-resilient
functions of k arguments, then

f(x1, . . . , xk+1) =

{
g(x1, . . . , xk) if xk+1 = 0,
h(x1, . . . , xk) if xk+1 = 1,

defines a t-resilient function of k+1 arguments. Since there are two distinct t-resilient
parity functions of t+ 1 arguments, and this scheme allows us to square the number
of functions by adding one argument, we conclude that there are at least 22n−t−1

t-resilient functions of n arguments.
Our proof of Theorem 5.1 will exploit a characterization of resilient functions in

terms of their Fourier transforms. Friedman [8] has observed that this characteriza-
tion is implicit in the work of Chor et al. [2], although the terminology of Fourier
transforms is not used there.

Proposition 6.2 (see [2]). Let F̂ be the Fourier transform of F (x) = 1− 2f(x)
for some Boolean function f of n arguments. Then for t ≥ 0, f is t-resilient if and
only if F̂ (y) = 0 for all y such that |y| ≤ t.

In particular, a function f is unbiased if and only if F̂ (0, . . . , 0) = 0, and the parity
functions are the only functions for which F̂ (y) = 0 for all y except y = (1, . . . , 1).

We shall also need the following standard estimate for sums of binomial coeffi-
cients.

Lemma 6.3. If l ≥ n/2, then∑
k≥l

(
n

k

)
≤ exp

(
nH
(
l/n
))
.

Proof. For ξ ≥ 1 we have∑
k≥l

(
n

k

)
≤ ξ−l

∑
k

(
n

k

)
ξk = ξ−l(1 + ξ)n.

Taking ξ = l/(n− l), so that ξ ≥ 1 follows from l ≥ n/2, we obtain∑
k≥l

(
n

k

)
≤ nn

ll(n− l)n−l = exp
(
nH(l/n)

)
,

as claimed.
As in the preceding, section we have

(6.1) 1− 2δ ≤
∣∣∣∣∣∑
y

Ĝ(y)F̂ (y)

∣∣∣∣∣ ,
where Ĝ is the Fourier transform of G(x) = Pr(x | L). Since f is t-resilient, we have
F̂ (y) = 0 for |y| ≤ t, and thus we have

1− 2δ ≤
∑
y

|y|≥t+1

|Ĝ(y)||F̂ (y)|.

Using Cauchy’s inequality we obtain

(6.2) (1− 2δ)2 ≤

 ∑
y

|y|≥t+1

Ĝ(y)2


 ∑

y
|y|≥t+1

F̂ (y)2

 .
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Since F (x) = ±1, Parseval’s identity yields∑
y

|y|≥t+1

F̂ (y)2 ≤
∑
y

F̂ (y)2 =
∑
x

F (x)2 = 2n.

Thus from (6.2) we obtain

(6.3) (1− 2δ)2 ≤

 ∑
y

|y|≥t+1

Ĝ(y)2

 2n.

We have

∑
y

|y|≥t+1

Ĝ(y)2 ≤
(

max
y

|y|≥t+1

Ĝ(y)2

) ∑
y

|y|≥t+1

1


≤
(

max
y

|y|≥t+1

Ĝ(y)2

) ∑
k≥t+1

(
n

k

)
≤
(

max
y

|y|≥t+1

Ĝ(y)2

)
exp

(
nH

(
t+ 1

n

))
.

Thus from (6.3) we obtain

(1− 2δ)2 ≤
(

max
y

|y|≥t+1

Ĝ(y)2

)
exp

(
nH

(
t+ 1

n

))
2n.

We have

Ĝ(y)2 =
1

2n

(∑
x

(−1)x·yPr(x | L)

)2

.

The sum on the right-hand side can be estimated in the same way as the sum in (5.2):
if |y| = k ≥ t+ 1, the sum factors into a product of k factors, and the final result is

Ĝ(y)2 ≤ 1

2n
exp

(
−2 expE

(
logE k −

C

k

))
,

so that

max
y

|y|≥t+1

Ĝ(y)2 ≤ 1

2n
exp

(
−2 expE

(
logE(t+ 1)− C

t+ 1

))
.

Thus from (6.3) we obtain

(1− 2δ)2 ≤ exp

(
−2 expE

(
logE(t+ 1)− C

t+ 1

))
exp

(
nH

(
t+ 1

n

))
.

This yields

C ≥ (t+ 1) logE
t+ 1

n
2H

(
t+1
n

)
+ log 1

1−2δ

,

which completes the proof of Theorem 6.1.
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