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"Unless your positional voting procedure is essentially the Borda 

count you should not be surprised if the outcome disagrees with that 

of any voting procedure that relies solely on pairwise information. 
" 

Borda Meets Pascal 
Marie K. Jameson, Gregory Minton, and Michael E. Orrison 

University of Wisconsin and Harvey Mudd College 

Every so often (especially in mathematics), unforeseen 

connections between different ideas arise and beg expla 
nation. This happened to us when, in an effort to gener 

alize the voting procedure known as the Borda count, we 

began to see vectors of the form (-1,1), (1,-2,1), (-1,3,-3,1), 

(1, -4, 6, -4, 1), and so on. As you might imagine, we were 

instantly intrigued by this unanticipated relationship with Pas 

cal's triangle, and we quickly set out to find an explanation. 
This article describes some of our initial findings. 

The Borda Count 
The Borda count is an extremely well-known and well 

studied voting procedure. It works by first asking each voter to 

rank the candidates in an election from most preferred to least 

preferred, i.e., from first to last. Then, letting n be the number 

of candidates, each candidate is given n-l points for each 

first place vote, n - 2 points for each second place vote, n - 3 

points for each third place vote, and so on. The candidate who 

receives the most points is then declared the winner. 

The Borda count is a specific example of a positional vot 

ing procedure, where candidates receive points based on the 

position they occupy on a voter's ballot. Each such procedure 
for n candidates is defined by its weighting vector w = (wx,..., 

wn), where being placed in position / means that a candidate 

receives wt points. For example, the weighting vector associ 

ated with the Borda count is (n 
- 

1, n - 2,..., 1,0). 

A particularly attractive feature of positional voting is that 

results may be realized as matrix-vector products. For exam 

ple, suppose there are three candidates A, B, and C. Further 

more, suppose there are 15 voters with the following prefer 
ences: 3 voters prefer A to B to C; 4 voters prefer A to C to B; 
2 voters prefer B to C to A; and 6 voters prefer C to B to A. We 

can encode this information in a profile vector 

~3~\ABC 

4 ACB 
0 BAC 
2 BCA 
0 CAB 

6J CBA 

where, for ease of understanding, we have written the corre 

sponding preferences which index the entries to the right. In 

this case, the result of the election with respect to the weight 

ing vector (wj, w2, w3) is given by the product 

'3\ ABC 
r 1 4 ACB r - - 1 

wx w. w9 w0 7w, + 8w, ^ 
0 

' 
n 

2 3 1 1 3 2 
2 

1 2 3 

_w3 w2 w3 w2 Q ^ |_6wi+6w2 +3w3JC 

_6J 

For example, if we use the Borda count where (wx, w2, w3) 
= 

(2, 1, 0), then the result would be (14, 13, 18), meaning that 

candidate C wins. On the other hand, if we use the weighting 
vector (1, 0, 0) (i.e., everyone is asked to "vote for your 

favorite"), then the result would be (7,2,6), meaning that can 

didate A wins. As these simple examples might suggest, being 
able to explain how and why different voting procedures can 

lead to different outcomes for a fixed set of preferences is one 

of the reasons voting theory is such a fascinating subject. 

Why is the Borda Count Special? 
The Borda count has many interesting properties. The one 

we will focus on here is the fact that the results of a Borda 

count election can be recovered from the results of the so 

called pairwise map. This map counts the number of times that 

each candidate beats each other candidate. For example, with 

three candidates A, B, and C, it tells us how many times A was 

ranked above B, B was ranked above A, A was ranked above C, 
and so on. 

Once again, all of this can be encoded as a matrix-vector 

product. For example, if we consider the election with 15 

voters described above, the result of the pairwise map is the 

product 

"110 0 1 0l[3l^C [~7~U# 
1 1 1 0 0 0 4 ACB 1 AC 
0 0 110 10 BAC _ 8 BA 
1 0 1 1 0 0 2 BCA~ 5 BC 
0 0 0 1 1 1 0 CAB 8 CA 
0 10 0 1 lJ[6JC&4 [lOjCB 
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To see the connection to the Borda count, note that the score 

awarded to each candidate by the Borda count election can be 

recovered from the result of the pairwise map by simply 

adding the entries in which that candidate beat another candi 

date. For example, A beat B 7 times, and A beat C7 times, so 

A's Borda count score is 14. This makes sense, though! After 

all, if A is ranked first out of 3 candidates, then A will beat B 

and A will beat C. In other words, A wins 2 head-to-head com 

petitions. If A is ranked in the middle between B and C, then A 

will only win 1 head-to-head competition, and if A is ranked 

last, then she will win 0 head-to-head competitions. Hence we 

get the weighting vector (2,1,0)! 
In general, we may think of the Borda count as aggregating 

pairwise information, and its associated weighting vector 

(n-l, n-2, 1,0) as corresponding to a simple counting 

question: If a candidate is ranked by a voter in the /th position, 
then how many other candidates will she be ranked above? 

The answer, of course, is / - 1, which leads us to the weighting 
vector associated with the Borda count. 

Before we say any more about the Borda count, it will be 

helpful to introduce some notation and a definition. We denote 

the pairwise map by P2:Rnl D. Next, let U, V, and W be 

real vector spaces, and let T: U->V and T : U ?>W be linear 

transformations. We say that T is recoverable from T if there 

exists a linear transformation R : V?> W such that T- R ? T. As 
an aside, this is equivalent to saying that the kernel of T is a 

subset of the kernal of T, which can be useful when actually 

trying to determine when one linear transformation is recover 

able from another. 

Suppose there are n candidates in an election, and that w = 

(wj,..., wn) eRnisa weighting vector. We will denote the lin 
ear transformation corresponding to the positional voting pro 
cedure for w by Tw : Rnl ->Rn. Let bx 

= (1,..., 1) e Rn be the all 
ones vector, and let b2 

= (n -1, n -2, 1, 0) e Rn be the 

weighting vector for the Borda count. The following theorem 
is a nice example of why the Borda count is so special: 

Theorem 1. Let n > 2 and let w e Rn be a weighting vector. The 

map Tw is recoverable from the pairwise map P2 if and only if 
w is a linear combination of bY and b2. 

This theorem is particularly interesting to voting theorists 
because there are many voting procedures (e.g., the well 

known Copeland method) that are essentially based on the 
results of the pairwise map P2. This theorem may therefore be 
seen as a first step to realizing that, unless your positional vot 

ing procedure is essentially the Borda count (since b} only 
contributes to ties and will therefore never distinguish one can 

didate from another), you should not be surprised if the out 
come disagrees with that of any voting procedure that relies 

solely on pairwise information. 

Generalizing the Borda Count 
Viewing the Borda count in light of Theorem 1 immediate 

ly suggests a possible generalization. Instead of focusing on 

information about pairs, what if we considered information 

about triples, quadruples, and so on? Since the Borda count is 

related to pairs information by counting the number of times a 

candidate was ranked above some other candidate, we might 
look at candidates being ranked above subsets of other candi 

dates. 

For example, we could ask: How many times was each can 

didate ranked above a (k 
- 

l)-element subset of other candi 

dates? This question can be answered easily by using the 

weighting vector 

b jrn-i-\r?-2} 
( i u o 

y 
lv^~lj yk-\) \k-\j \k-\jj 

since it would assign points to a candidate based on the num 

ber of (k 
- 

l)-sized subsets of candidates ranked below her. 

For example, if n = 5, then 

b1 
= 

(l,l,l,l,l),b2=(4,3,2,l,0),b3=(6,3,l,0,0), 

b4=(4,l,0,0,0),b5=(l, 0,0,0,0). 

We can also generalize the pairwise map P2 to create the k 

wise map Pk ; Rn] ?> R^k where 

(n)k 
= n(n-l)(n-2)--(n-k + l) 

is "n falling factorial The map Pk counts the number of 
times each ordered A:-tuple of candidates is actually ranked in 

that order by a voter. For example, if a voter chooses the order 

ABCD for four candidates, and k = 3, then this voter would 

contribute to the totals for the following ordered 3-sets: ABC, 

ABD, ACD, and BCD. 

Note that P1 just gives each candidate a score that is equal 
to the total number of voters, and that Pn is the identity map. 
Furthermore, it is easy to see that Tb is recoverable from Pk, 
and that Pj is recoverable from Pk whenever j < k. These facts, 

together with some technicalities (which are slightly beyond 
the scope of this article), lead to the following generalization 
of Theorem 1: 

Theorem 2. Let n > 2 and let w e Rn be a weighting vector. The 

map Tw is recoverable from the &-wise map Pk if and only if w 

is a linear combination of bl,..., b^. 

With Theorem 2 in mind, we say that a weighting vector is k 
Borda if it is a linear combination of b1?..., bk. Thus, if j < k, 
then every y-Borda weighting vector is &-Borda, giving us a 

natural hierarchy of weighting vectors. 
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Connection to Pascal's Triangle 
When it comes to doing computations, it can often be con 

venient to replace a given basis of vectors with an orthogonal 
basis. In our case, it makes sense to orthogonalize the basis 

bj,..., b? beginning with bx, then b2, then b3, and so on. 

If we call the resulting vectors q,..., cw, here is what we get 
for a few small values of n. For n = 2, we get cx = (1, 1) and 

c2=(-l, l).For? = 3,we getCj = (1,1, l),c2 
= (2,0,-2), and 

c3=(l,-2, 1). For n = 4, we get cx = (1, 1, 1, l),c2 
= (3, 1, 

-1 -3), c3 
= 

(3, -3, -3,3) and c4 
= 

(-1,3, -3,1). 

With respect to these vectors, there are two ideas we want 

to highlight right away. First, you would almost certainly not 

want to use many of these vectors by themselves as the weight 

ing vector for a positional voting procedure. For example, 
when n = 4, c3 = (3, -3, -3,3) assigns more points for coming 
in last than in second! It is therefore important to keep in mind 

that these vectors cl5 cn are useful precisely because they 
form a useful orthogonal basis. 

Second, consider the last vector in each list. These vectors 

are(-l, l),(l,-2,1), and (-1,3,-3, l).This seems to suggest 
that a weighting vector for n candidates is (n 

- 
l)-Borda if and 

only if it is orthogonal to the nth row of Pascal's triangle with 

alternating signs! 
Indeed, this is the case, and this connection between our 

generalization of the Borda count and Pascal's triangle became 

crystal clear to us once we realized that our weighting vectors 

bx,..., bn are related to what are called Pascal matrices. 

For n candidates, the particular Pascal matrix in which we 

are interested is the lower triangular n X n matrix whose 
entries consist of the entries in Pascal's triangle up to level n. 

For example, if n = 5, then we are interested in the following 
Pascal matrix: 

"l 0 0 0 o" 

110 0 0 
12 10 0. 

13 3 10 
I 4 6 4 1_ 

One of the most interesting things about a Pascal matrix is that 

its inverse looks just like itself but with alternating signs! For 

example, the inverse of the matrix above is 

" 
1 0 0 0 o" 

-110 0 0 

1-2 1 0 0. 

-13-310 

1 _4 6 -4 1_ 

How do Pascal matrices help us understand the appearance of 

those weighting vectors in our study? First of all, it is clear 

Continued on page 21 
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C~ Sunlight ^) 
-1 I Su I 0 I Co I C 1 M I R |S I if" 

(OakTree^) Corn 
J) Su 0_1_1_0_0_0_0_0_ 

^~~~T? ?I- _0_0_0_0_1_0_0_0_0_ 

_ _| Co 0_0_0_0_1_0_0_0_ 

(CaterpillaO ( Vlouse ) _C_0_0_0_0_0_1_0_0_ 
*?h^-~Z_^-^ M_0_0_0_0_0_0_1_1_ 

/ _R_0_0_0_0_0_0_0_1_ 

( Robin ) / (SnakT^) J_Q_0_0_0_0_0_0_1_ 
^?_^_s / 

" 
H00000000 

f Hawk T 

Figure 2. A simple ecosystem and its adjacency matrix. Prey/resources are located at the tails of the arrows and predators/consumers 
are located at the heads of arrows. Each organism is represented in the matrix by its first letter, except for Sunlight (Su) and Corn (Co). 

Ecosystem taken from fourth grade TIMSS science test. 

goes a significant change. Without this ability to explicitly 
affect each other, information could not pass through the con 

nected network of individuals, as it would exist only within 

the computer-generated construct and not within the individual 

minds connected to the system. 
On a related note, the movies take this to the next logical 

step, illustrated in the way the newly released Agent Smith is 

able to write himself over other programs in the system. Going 
further, the Wachowski brothers have Smith copy himself into 

the brain of an individual who has been freed from the system, 

thereby releasing himself into the real world. Although this 

may seem impossible, it is merely an extension of the mecha 

nisms already at work in the computer system. For example, 
the rebels can easily download information from cartridges 
into a person's mind in order to teach them kung fu or how to 

fly a helicopter. This surely involves changes in the real brain 

of the individual, for they must remember, at the very least, 
that they have this knowledge in the computer world in order 
to make use of it the next time they "plug in." Thus, program 

ming in the computer world can have effects in the real world. 

Without these reciprocal effects, information?about people 
and places and abilities?would never pass through the system 
of interconnected people, and the rebellion would be doomed 
to failure. 

In the end, we are left with not only popular reasons for the 

movie title, but also mathematical reasons. Without matrices, 
the computer graphics used to project the images into the 

minds of the embedded people would not be possible. Matrices 

also form a vital tool for analyzing the possible paths of future 
events through the use of Markov chains. And matrices are 

common tools for representing the connections in a network or 

agents that share information. g| 

Continued from page 10 

that the vectors (-1,1), (1,-2,1), (-1,3,-3,1), (1,-4,6,-4,1), 

and so on, make up the bottom rows of the inverses of the Pas 
cal matrices. Secondly, notice that the vectors bx,..., bn appear 

upside down as the columns of the Pascal matrix. 
A moment's thought should convince you that this means 

that each of bls b^ is orthogonal to the (reversal, read 

right-to-left, of the) last row of the inverse of the Pascal 
matrix. By construction, however, this must also hold for the 
vectors cl5 cn_j. So this explains why we were seeing the 
rows of Pascal's triangle with alternating signs! 

The next step in the story would be to try to explain why the 
other vectors in our orthogonal bases of weighting vectors look 
the way they do. Fortunately, we have been able to do this by 
focusing on weighting vectors that are different from bx,... ,bn 

but that also correspond to simple counting questions. We will 
save the details for another paper, but we invite you to give it 
some thought. You may be just as surprised as we were by what 

you discover! | 

Further Reading 
G. Call and D. Velleman, Pascal's matrices, The American 

Mathematical Monthly, Vol. 100, No. 4. (Apr., 1993), 
372-376. 

Z. Daugherty, A. Eustis,G. Minton,andM. Orrison, Voting, 
the symmetric group, and representation theory, to appear in 
The American Mathematical Monthly. 

D. Saari, Chaotic elections!, American Mathematical Society, 
Providence, RI, 2001. 
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