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COMPUTING ISOTYPIC PROJECTIONS WITH
THE LANCZOS ITERATION∗

DAVID K. MASLEN† , MICHAEL E. ORRISON‡ , AND DANIEL N. ROCKMORE§

SIAM J. MATRIX ANAL. APPL. c© 2004 Society for Industrial and Applied Mathematics
Vol. 25, No. 3, pp. 784–803

Abstract. When the isotypic subspaces of a representation are viewed as the eigenspaces of
a symmetric linear transformation, isotypic projections may be achieved as eigenspace projections
and computed using the Lanczos iteration. In this paper, we show how this approach gives rise to
an efficient isotypic projection method for permutation representations of distance transitive graphs
and the symmetric group.
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1. Introduction. Let G be a finite group acting on a finite set X. Let L(X) be
the vector space of complex valued functions on X. The action of G on X gives rise
to a permutation representation ρ of G defined on L(X) by

(ρ(g)(f))(x) = f(g−1x)

for all g ∈ G, f ∈ L(X), and x ∈ X. Because L(X) is a representation of G, there is
a basis independent decomposition

L(X) = V1 ⊕ · · · ⊕ Vn

of L(X) into G-invariant subspaces known as isotypic subspaces. The problem ad-
dressed in this paper is the following: Given an arbitrary f ∈ L(X), how may we
efficiently compute the projection of f onto each isotypic subspace of L(X)?

The problem of computing projections onto isotypic subspaces arises in spectral
analysis which is a nonmodel-based approach to the analysis of data that may be
viewed as a complex valued function f on a set X that has an underlying symmetry
group G. Developed by Diaconis [5, 6], the subject extends the classical spectral
analysis of time series and requires the computation of projections of f onto subsets
of G-invariant subspaces of L(X).

As an example, let X be the set {x0, . . . , xn−1} and let G be the cyclic group Z/nZ

acting on X by cyclicly permuting its elements. The elements of L(X) may be viewed
as signals on n points and the isotypic subspaces of L(X) as corresponding to the
different frequencies that make up these signals. The isotypic projections of f ∈ L(X)
may be computed with the aid of the usual discrete Fourier transform (DFT). The
classical fast Fourier transform (FFT) may therefore be used to efficiently compute
the projections of f onto the isotypic subspaces of L(X) (see, e.g., [13]).
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As another example, suppose voters are asked to rank k candidates in order of
preference. The set X is then the set of orderings of the k candidates and G is
the symmetric group Sk whose natural action on the set of candidates induces an
action on the set of orderings. If f ∈ L(X) is such that f(x) is the number of
voters choosing the ordering x, then there are natural statistics associated to f . For
example, the mean response of f is the value (1/|X|)

∑
x∈X f(x), whereas a first

order summary of f counts the number of voters that ranked candidate i in position
j. Similarly, there are higher order summaries associated to f . For example, we could
compute the number of voters that ranked candidates i and j in positions k and l,
either respectively or so that order does not matter. These higher order summaries,
however, contain redundant information. Removing this redundant information, or
finding the pure higher order effects of f , is equivalent to computing the isotypic
projections of f (see [6, 17]).

A naive approach (see, e.g., [19]) to computing the n isotypic projections of
f ∈ L(X) requires O(n|G||X|) operations where we count a complex multiplication
followed by a complex addition as one operation. Diaconis and Rockmore [7] show
that a careful reorganization of this approach reduces the number of necessary op-
erations to O(n|X|2). The advantage of their approach is that it relies only on the
knowledge of the characters of G. In terms of operation counts, however, the number
of operations required by a direct matrix multiplication approach is also O(n|X|2),
which has prompted the search for other approaches to computing isotypic projec-
tions. For example, Driscoll, Healy, and Rockmore [8] show that if X is a distance
transitive graph, then fast discrete polynomial transforms may be used to compute
the n isotypic projections of f ∈ L(X) with at most O(|X|2 + |X|n log2 n) operations.
This bound, however, assumes the use of exact arithmetic. Stability issues arise when
their algorithm is implemented using finite precision arithmetic.

In this paper, we develop an approach to computing isotypic projections that
relies on a method for computing projections onto the eigenspaces of a collection
of simultaneously diagonalizable linear transformations. We call the collections of
transformations that we use separating sets because they allow us to separate a repre-
sentation into its isotypic components. The approach may be seen as a generalization
of the Gentleman–Sande, or decimation in frequency, FFT in that we too will be it-
eratively computing projections of projections (see [10]). Such collections have also
been used in [3], for example, where certain separating sets are known as complete
sets of commuting operators.

As a simple example of how a separating set is used to compute isotypic pro-
jections, suppose that L(X) has three isotypic subspaces V1, V2, and V3. Thus
L(X) = V1⊕V2⊕V3 and each f ∈ L(X) may be written uniquely as f = f1 +f2 +f3,
where fi ∈ Vi. Additionally, suppose that T and T ′ are diagonalizable linear trans-
formations on L(X) such that the eigenspaces of T are V1 ⊕ V2 and V3, and the
eigenspaces of T ′ are V1 and V2 ⊕ V3. As we shall see, {T, T ′} is a separating set for
L(X). We may therefore compute the fi by first projecting f onto the eigenspaces
of T to compute f1 + f2 and f3, and then projecting both f1 + f2 and f3 onto the
eigenspaces of T ′ to compute f1, f2, and f3. Note that each computation is done with
respect to a fixed basis of L(X). This process of decomposing L(X) = V1 ⊕ V2 ⊕ V3

is illustrated in Figure 1.

The efficiency of this approach depends on an efficient eigenspace projection
method. Since the separating sets we use consist of real symmetric matrices, we
look to the Lanczos iteration for such a method. This is an algorithm that may
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V1 ⊕ V2 ⊕ V3

↙ ↘
V1 ⊕ V2 V3

↙ ↘ ↓
V1 V2 V3

Fig. 1. Decomposing L(X) = V1 ⊕ V2 ⊕ V3 using T and T ′.

be used to efficiently compute the eigenspace projections of a real symmetric matrix
when, as in all of our examples, it has relatively few eigenspaces and when it may be
applied efficiently to arbitrary vectors, either directly or through a given subroutine
(see, e.g., [16]).

We proceed as follows. In section 2, we describe the isotypic decomposition of
a representation and introduce the idea of a separating set of diagonalizable linear
transformations. In section 3, we show how an eigenspace approach to computing
isotypic projections for cyclic groups leads to the Gentleman–Sande FFT. In section 4,
we review how the Lanczos iteration may be used to compute the projections of a
vector onto the eigenspaces of a real symmetric matrix. We then use the results of
section 2 to create an isotypic projection method. This method is then shown to
be efficient for certain permutation representations of distance transitive graphs in
section 5 and the symmetric group in section 6.

2. Isotypic subspaces. In this section, we describe the isotypic decomposition
of a representation and we introduce the idea of a separating set of diagonalizable
linear transformations. We then show how these separating sets may be used to
compute isotypic projections. A good reference for representations of finite groups
is [19].

2.1. Complex representations. Let G be a finite group, let V be a finite
dimensional vector space over C, and let GL(V ) be the group of automorphisms of
V . A representation of G is a homomorphism ρ : G → GL(V ). If the homomorphism
ρ is understood, then we also say that V is a representation of G. The character of
ρ is the function χ : G → C, where χ(g) is the usual trace of ρ(g). Note that the
character of a representation of G is constant on the conjugacy classes of G.

A subspace W of V is invariant if ρ(g)(w) ∈ W for all g ∈ G, w ∈ W . A
representation is said to be simple if it contains no nontrivial invariant subspaces. If
C1, . . . , Ch are the distinct conjugacy classes of G, then there are h distinct (up to
isomorphism) simple representations W1, . . . ,Wh of G. Let di be the dimension of
Wi, let χi be the character of Wi, and let χi(Cj) be the value of χi on Cj .

2.2. The isotypic decomposition. Every representation of G is a direct sum
of simple representations. Thus, V is a direct sum of simple representations, say,
U1, . . . , Ul. Denote by Vi the direct sum of those U1, . . . , Ul that are isomorphic
to Wi. Removing the trivial Vi (and renumbering if necessary) creates the isotypic
decomposition

V = V1 ⊕ · · · ⊕ Vn,

where each Vi is then an isotypic subspace of V . Each v ∈ V may therefore be written
uniquely as

v = v1 + · · · + vn,
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where vi ∈ Vi is called the isotypic projection of v onto the isotypic subspace Vi. The
isotypic decomposition of V is independent of the choice of Uj .

Theorem 2.1. The projection pi of V onto Vi along ⊕j �=iVj is given by the
formula

pi =
di
|G|

∑
g∈G

χi(g)
∗ρ(g).

Proof. See, for example, Theorem 8 in [19].

By Theorem 2.1, the isotypic projection vi may be computed by directly applying
pi to v. There are, however, drawbacks to this approach. First, directly applying pi to
an arbitrary vector in V requires O(dim(V )

2
) operations which may be prohibitive if

dim(V ) is large. Second, to construct pi using the above formula requires a sum over
the group G as well as an explicit knowledge of the representations of each element
of G. This too may be prohibitive if G is large.

2.3. Separating sets. Suppose now that {T1, . . . , Tk} is a collection of diago-
nalizable linear transformations on V whose eigenspaces are direct sums of the isotypic
subspaces of V . For each isotypic subspace Vi, let ci = (µi1, . . . , µik) be the k-tuple
of eigenvalues where, for 1 ≤ j ≤ k, µij is the eigenvalue of Tj associated to Vi. If
ci �= ci′ whenever Vi �= Vi′ , then we say that {T1, . . . , Tk} is a separating set for V .

The existence of a separating set {T1, . . . , Tk} for V means that the computation
of the isotypic projections of v ∈ V can be achieved through a series of eigenspace
projections:

Stage 1. Compute the projections of v onto each of the eigenspaces of T1.

Stage 2. Compute the projections of each of the previously computed projections
onto each of the eigenspaces of T2.

...

Stage k. Compute the projections of each of the previously computed projections
onto each of the eigenspaces of Tk.

Lemma 2.2. The computed projections at Stage k are precisely the isotypic pro-
jections of the vector v.

Proof. The projections at each stage are sums of the isotypic projections of v.
If a projection at Stage k was the sum of two or more isotypic projections, then the
corresponding isotypic subspaces must have been in the same eigenspace for each of
the Tj . This, however, would contradict the fact that {T1, . . . , Tk} is a separating set
for V .

We may easily find separating sets for V by looking to the conjugacy classes
C1, . . . , Ch of G. In particular, if Tj =

∑
c∈Cj

ρ(c) is the class sum of Cj (with

respect to ρ) and µij = |Cj |χi(Cj)/di, then we have the following lemma.

Lemma 2.3. The class sum Tj is a diagonalizable linear transformation on V
whose eigenspaces are direct sums of isotypic subspaces, and µij is the eigenvalue of
Tj that is associated to the isotypic subspace Vi.

Proof. This is a variation of Proposition 6 in [19].

The complete collection of class sums forms a separating set of V . In fact, by The-
orem 2.1, every separating set for V is composed of linear combinations of class sums.
We may, however, be able to find much smaller separating sets than the complete
collection of class sums.
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2.4. Permutation representations. Suppose now that G acts on a finite set
X. Let L(X) be the vector space of complex valued functions on X. The action of G
on X induces a permutation representation ρ : G → GL(L(X)) defined by

(ρ(g)(f))(x) = f(g−1x)

for all g ∈ G, f ∈ L(X), and x ∈ X. The vector space L(X) has a natural basis
{δx}x∈X , where

δx(x′) =

{
1 if x = x′,

0 otherwise.

We will refer to {δx}x∈X as the delta basis of L(X). Note that dim(L(X)) = |X|.
By choosing a basis for L(X), we may identify each linear transformation on L(X)

with an |X| × |X| matrix. Thus, we will assume that each linear transformation on
L(X) is written as a matrix with respect to the delta basis of L(X). In particular,
if g ∈ G, then ρ(g) corresponds to an |X| × |X| matrix with one 1 in each row and
column, and zeros elsewhere.

3. Cyclic groups. In this section, we show how using separating sets to compute
isotypic projections for cyclic groups leads to the Gentleman–Sande, or decimation in
frequency, FFT (see [10]).

3.1. The DFT and isotypic projections. Let G be the cyclic group Z/nZ

and let X be the set {xo, . . . , xn−1}. Let ω be a primitive nth root of unity, let g be a
generator for G, and let G act on X by setting gjxi = xi+j , where all subscripts are
taken modulo n. The resulting permutation representation

ρ : Z/nZ → GL(L(X))

has n isotypic subspaces V0, . . . , Vn−1, where each Vi is one-dimensional (and hence
simple) with character χi defined by χi(g

j) = ωij .
Each element gj of G forms a conjugacy class Cj = {gj}. The eigenvalue of the

class sum Tj of Cj associated to the isotypic subspace Vi is therefore χi(Cj)/di =
χi(g

j)/1 = ωij .
Let f ∈ L(X) and let fi be the isotypic projection of f onto the isotypic subspace

Vi. Since ω is a primitive nth root of unity, the class sum T1 forms a separating set
for L(X). The isotypic projection fi may therefore be viewed as the projection of f
onto the eigenspace of T1 with eigenvalue ωi. By Theorem 2.1, this may be computed
as

fi =

⎛
⎝ 1

n

n−1∑
j=0

ω−ijρ(gj)

⎞
⎠ f.

Note that fi(x0) = ωikfi(xk) and that fi is therefore determined by

fi(x0) =

⎛
⎝ 1

n

n−1∑
j=0

ω−ijρ(gj)

⎞
⎠ f(x0) =

1

n

n−1∑
j=0

ωijf(xj).

This, however, is the ith coefficient of the usual DFT applied to f . An FFT on n
points may therefore be thought of as an efficient algorithm for computing isotypic
projections of vectors in L(X).
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3.2. The Gentleman–Sande FFT. Suppose now that n = pq. Since {T1} is
a separating set for L(X), so is {T1, Tp}. We could therefore compute the isotypic
projections of f by first computing the projections of f onto the eigenspaces of Tp

and then projecting each of these projections onto the eigenspaces of T1.
The eigenspaces of Tp are W0, . . . ,Wq−1, where the eigenvalue of Tp that is asso-

ciated to Wk is ωpk and

Wk = Vk ⊕ Vk+q ⊕ · · · ⊕ Vk+(p−1)q.

The projection f ′
k of f onto Wk is therefore

fk + fk+q + · · · + fk+(p−1)q.(3.1)

In fact, the Wk are the isotypic subspaces of L(X) with respect to the action on X
of the subgroup of G that is generated by gp. This subgroup is cyclic with order q.
Thus, by Theorem 2.1,

f ′
k =

(
1

q

q−1∑
t=0

ω−pktρ(gpt)

)
f.

Note that f ′
k(xs) = ωpktf ′

k(xs+pt) and that f ′
k is therefore determined by the values

f ′
k(x0), . . . , f

′
k(xp−1). In this sense, since f ′

k(xj) requires O(q) operations to compute,
f ′
k requires O(pq) operations to compute. The projections f ′

0, . . . , f
′
q−1 may therefore

be computed using O(pq2) operations.
Since n = pq, each 0 ≤ i, j ≤ n− 1 can be uniquely represented as i = k + lq and

j = s + tp for some 0 ≤ k, t ≤ q − 1 and 0 ≤ l, s ≤ p − 1. Moreover, by (3.1), the
isotypic projection fi = fk+lq may be computed by projecting f ′

k onto the eigenspace
of T1 with eigenvalue ω(k+lq). Recall that fk+lq is determined by fk+lq(x0), which we
may compute as

fk+lq(x0) =

⎛
⎝ 1

n

n−1∑
j=0

ω−(k+lq)jρ(gj)

⎞
⎠ f ′

k(x0)

=
1

n

n−1∑
j=0

ω(k+lq)jf ′
k(xj)

=
1

pq

p−1∑
s=0

q−1∑
t=0

ω(k+lq)(s+tp)f ′
k(xs+tp)

=
1

p

p−1∑
s=0

ω(k+lq)s 1

q

q−1∑
t=0

ω(k+lq)tpf ′
k(xs+tp)

=
1

p

p−1∑
s=0

ω(k+lq)s 1

q

q−1∑
t=0

ωpktf ′
k(xs+tp)

=
1

p

p−1∑
s=0

ω(k+lq)s 1

q

q−1∑
t=0

f ′
k(xs)

=
1

p

p−1∑
s=0

(
ωksf ′

k(xs)
)
(ωq)ls.
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This is a DFT on p points applied to the function ωksf ′
k. Thus, if we have computed

f ′
0, . . . , f

′
q−1, we may compute the isotypic projection fi using O(p) operations. Since

there are pq isotypic projections and the f ′
k require O(pq2) operations to compute, we

may compute the isotypic projections of f ∈ L(X) using O(p2q+ pq2) = O((p+ q)pq)
operations.

This particular FFT is known as the Gentleman–Sande, or decimation in fre-
quency, FFT (see [10]). The approach to decomposing representations that is pre-
sented in this paper may be viewed as a generalization of decimation in frequency
since we too will be iteratively computing projections of projections.

4. The Lanczos iteration. Given a separating set, isotypic projections become
eigenspace projections. In this section, we show how the Lanczos iteration gives rise
to an efficient isotypic projection method when the number of isotypic subspaces is
relatively small and the linear transformations in a separating set are real symmetric
matrices that can be applied efficiently. Good references for the Lanczos iteration
are [4, 16, 22, 23].

4.1. Krylov subspaces. Let C
N be the usual complex vector space of N -tuples

with complex coefficients. Let MN (C) be the set of N × N matrices with complex
coefficients. We will view the elements of C

N as column matrices of size N . The
matrices MN (C) may therefore be viewed as linear transformations of C

N with respect
to the standard basis of C

N .

Let T ∈ MN (C), let T t denote the transpose of T , and let T ∗ denote the conjugate
transpose of T . If v, w ∈ C

N , then the usual inner product of v and w is v∗w. The
norm of v is ||v|| = (v∗v)1/2. T is symmetric if T = T t and hermitian if T = T ∗, in
which case T is diagonalizable with real eigenvalues.

If f ∈ C
N , then the jth Krylov subspace generated by T and f is the subspace

Kj of C
N that is spanned by the vectors f, Tf, . . . , T j−1f . We write this as

Kj = 〈f, Tf, . . . , T j−1f〉.

The T -invariant subspace K = 〈f, Tf, T 2f, . . . 〉 is the Krylov subspace generated by T
and f . Note that K1 ⊆ K2 ⊆ K3 ⊆ · · · and that for some m, Km = Km+1 = · · · = K.

Suppose now that T ∈ MN (C) is diagonalizable with n distinct eigenvalues. Then

C
N = V1 ⊕ · · · ⊕ Vn,

where the Vi are the n distinct eigenspaces of T . Each f ∈ C
N may therefore be

written uniquely as f = f1 + · · ·+ fn, where fi ∈ Vi. We say that fi is the eigenspace
projection of f onto the eigenspace Vi. By the following lemma, we may restrict our
attention to the Krylov subspace generated by T and f when computing these fi.

Lemma 4.1. If T ∈ MN (C) is diagonalizable and f ∈ C
N , then the nontriv-

ial projections of f onto the eigenspaces of T form a basis for the Krylov subspace
generated by T and f .

Proof. Suppose that T has n distinct eigenvalues µ1, . . . , µn and that f = f1 +
· · · + fn, where fi is the projection of f onto the eigenspace corresponding to the
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eigenvalue µi. We then have the following system of equations:

f = f1 + f2 + · · · + fn,

T f = µ1f1 + µ2f2 + · · · + µnfn,

T 2f = µ2
1f1 + µ2

2f2 + · · · + µ2
nfn,(4.1)

...

Tn−1f = µn−1
1 f1 + µn−1

2 f2 + · · · + µn−1
n fn.

The coefficients of the fi in (4.1) form a Vandermonde matrix⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1
µ1 µ2 · · · µn

µ2
1 µ2

2 · · · µ2
n

...
...

. . .
...

µn−1
1 µn−1

2 · · · µn−1
n

⎞
⎟⎟⎟⎟⎟⎠

which is invertible since the µi are distinct (see, e.g., [9]). We may therefore solve
the system for the fi in terms of the T jf . This shows that each fi is contained in
K = 〈f, Tf, T 2f, . . . 〉. On the other hand, any power of T applied to f is a linear
combination of the fi. Thus K is spanned by the fi. Since the nontrivial fi are
linearly independent, the lemma follows.

Corollary 4.2. The dimension of K = 〈f, Tf, T 2f, . . . 〉 is equal to the number
of nontrivial projections of f onto the eigenspaces of T .

Corollary 4.3. Eigenvectors of the restriction of T to K are scalar multiples
of the eigenspace projections of f .

Proof. This follows from the fact that each eigenspace of the restriction of T to K
is one-dimensional and is spanned by one of the nontrivial projections of f onto the
eigenspaces of T .

If u is an eigenvector of the restriction of T to K, then we may scale u into an
eigenspace projection of f by Corollary 4.3. If the eigenspaces of the restriction of T
to K are orthogonal, this may be computed as

u∗f

u∗u
u.(4.2)

Moreover, these computations may be done relative to a basis of K allowing us to
gain efficiency if the dimension of K is small relative to N . For example, suppose
n = dimK. Relative to a basis of K, the computation in (4.2) requires 3n + 1
operations. Relative to a basis of C

N , however, this computation requires 3N + 1
operations.

4.2. Restricting real symmetric matrices to Krylov subspaces. Let T be
an N ×N real symmetric matrix. For f ∈ C

N , define the jth Lanczos matrix Lj to
be the symmetric tridiagonal matrix

Lj =

⎛
⎜⎜⎜⎜⎝
α1 β1

β1 α2
. . .

. . .
. . . βj−1

βj−1 αj

⎞
⎟⎟⎟⎟⎠

whose entries are defined recursively using the Lanczos iteration.
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The Lanczos Iteration
(assuming exact arithmetic)

β0 = 0, q0 = 0, q1 = f/||f ||

for i = 1, 2, 3, . . .
v = Tqi
αi = q∗i v
v = v − βi−1qi−1 − αiqi
βi = ||v||
if βi �= 0

qi+1 = v/βi

else

qi+1 = 0.

The Lanczos iteration is a modified version of the classical Gram–Schmidt or-
thogonalization process. At its heart is an efficient three-term recurrence which arises
because the matrix T is real and symmetric. The usefulness of the Lanczos matrices,
together with the qi that are generated during the Lanczos iteration, is revealed in
the following lemma.

Lemma 4.4. If the dimension of the Krylov subspace K = 〈f, Tf, T 2f, . . . 〉 is m,
then {q1, . . . , qm} is an orthonormal basis for K and Lm is the restriction of T to K
with respect to this basis.

Although the Lanczos iteration is easily implemented, in finite precision arith-
metic the qi quickly lose their property of being orthogonal. They may even become
linearly dependent (see, e.g., [22]). For this reason, some form of reorthogonalization
is usually introduced. For example, the Lanczos iteration with complete reorthogonal-
ization, as described in [16], reorthogonalizes v against all of the previous q1, . . . , qi
after computing αi and v = βiqi+1.

The Lanczos Iteration
with Complete Reorthogonalization
(assuming finite precision arithmetic)

β0 = 0, q0 = 0, q1 = f/||f ||, ε = tolerance

for i = 1, 2, 3, . . .
v = Tqi
αi = q∗i v
v = v − βi−1qi−1 − αiqi
for j = 1 to i

γ = q∗i−j+1v
v = v − γqi−j+1

βi = ||v||
if βi > ε

qi+1 = v/βi

else

qi+1 = 0.

Remark. The Lanczos iteration with complete reorthogonalization is much more
stable than the Lanczos iteration without reorthogonalization. In fact, the numerical
stability of the Lanczos iteration with reorthogonalization is comparable to that of



COMPUTING ISOTYPIC PROJECTIONS 793

the Givens and Householder algorithms, which, like the Lanczos iteration, reduce a
matrix to tridiagonal form (see Chapter 6, section 41 of [23]).

To get a sense of how much work it takes to compute the Lanczos iteration with
complete reorthogonalization, let T op be the number of operations needed to apply
the matrix T to an arbitrary vector, either directly or through a given subroutine.
Note that T op is never more than the number of nonzero entries of T .

Lemma 4.5. If T is an N ×N real symmetric matrix and f ∈ C
N , then

O(nT op + n2N)

operations are required to compute n iterations of the Lanczos iteration with complete
reorthogonalization for T and f .

Proof. It is easy to see that the Lanczos iteration without reorthogonalization
requires O(nT op + nN) operations. Since complete reorthogonalization requires an
additional O(n2N) operations, the lemma follows.

4.3. The Lanczos eigenspace projection method. We may now state the
following theorem. Its proof outlines a method for computing projections onto the
eigenspaces of a real symmetric matrix.

Theorem 4.6. If T is an N ×N real symmetric matrix with n distinct eigen-
values and f is a nonzero vector in C

N , then the projections of f onto the eigenspaces
of T require O(nT op + n2N) operations.

Proof. The claim follows directly from the discussion in [16] of the Rayleigh–Ritz
procedure applied to the sequence of Krylov subspaces K1,K2, . . . generated by T and
f . The method is important, however, so we include the details.

Suppose that f has m nonzero projections f1, . . . , fm onto the eigenspaces of T .
Let µi be the eigenvalue corresponding to the eigenspace containing fi. Let Lm be
the mth Lanczos matrix generated during the Lanczos iteration with respect to T and
f . Let {q1, . . . , qm} be the corresponding orthonormal basis of the Krylov subspace
K generated by T and f .

It is useful to express the elements of K with respect to the basis {q1, . . . , qm}.
Thus, if v ∈ K, let ṽ denote v with respect to {q1, . . . , qm}. In other words, if
v =

∑m
i=1 αiqi, then ṽ = (α1, . . . , αm)t.

Since K is spanned by the fi, K = Km and each µi is an eigenvalue of Lm. Let
ũi be an eigenvector of Lm with eigenvalue µi such that ||ũi|| = 1. Since Lm is a real
symmetric matrix, {ũ1, . . . , ũm} is an orthonormal basis for K.

Since q1 = ||f ||−1f , f̃ = (||f ||, 0, . . . , 0)t. It follows that f̃i = (ũ∗
i f̃)ũi is the

eigenspace projection fi with respect to the basis {q1, . . . , qm}. Thus, if Qm is the
N ×m matrix whose ith column is the vector qi, then fi = Qmf̃i. We may therefore
compute the eigenspace projections of f as follows.

Stage 1. Generate Lm and Qm by using the Lanczos iteration with complete
reorthogonalization with T and f until a zero vector appears.

Stage 2. Compute the m eigenvalues µ1, . . . , µm and corresponding eigenvectors
ũ1, . . . , ũm of Lm.

Stage 3. For 1 ≤ i ≤ m, compute f̃i = (ũ∗
i f̃)ũi.

Stage 4. For 1 ≤ i ≤ m, compute fi = Qmf̃i.

Stage 1 requires O(mT op + m2N) operations and Stage 2 requires O(m3) operations
due to the tridiagonal form of Tm (see [23]). Stage 3 requires O(m2) operations and
Stage 4 requires O(m2N) operations. Since m ≤ n ≤ N , the theorem follows.
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Remark. The coefficient implied by O(nT op+n2N) in Theorem 4.6 is independent
of n, T op, and N . We will implicitly make use of this fact throughout the rest of the
paper.

We will refer to the projection method outlined in Theorem 4.6 as the Lanczos
eigenspace projection method or LEPM.

Remark. The LEPM is a sensible way of computing eigenspace projections only if
n is much less than N and T op is much less than N2. After all, a naive algorithm that
uses matrix multiplication to directly compute the fi requires O(nN2) operations.
Thus, for our method to be efficient, we must have an efficient algorithm for applying
the real symmetric matrix T , and the number of distinct eigenvalues of T must be
small relative to the dimension of the space upon which T acts.

4.4. The Lanczos isotypic projection method. In this section, we combine
the results of sections 2.3 and 4.3 to create an isotypic projection method that relies
on the use of separating sets of real symmetric matrices.

Let G be a finite group, let V be a finite dimensional representation of G, and let
{T1, . . . , Tk} be a separating set of real symmetric matrices for V . By Lemma 2.2, we
may compute the isotypic projections of a vector v ∈ V as follows.

Stage 1. Using the LEPM, compute the projections of v onto each of the eigenspaces
of T1.

Stage 2. Using the LEPM, compute the projections of each of the previously
computed projections onto each of the eigenspaces of T2.

...

Stage k. Using the LEPM, compute the projections of each of the previously
computed projections onto each of the eigenspaces of Tk.

We will refer to this approach to computing isotypic projections as the Lanczos isotypic
projection method or LIPM.

Let ι(V ) be the least number of operations needed to compute the isotypic pro-
jections of an arbitrary vector in V . We may now state our main theorem.

Main Theorem 4.7. Let G be a finite group acting on a finite set X. Let L(X)
be the resulting permutation representation. If L(X) = V1 ⊕ · · · ⊕ Vn is the isotypic
decomposition of L(X) and {T1, . . . , Tk} is an isotypic separating set of real symmetric
matrices for L(X), then

ι(L(X)) = O

(
k∑

i=1

(
nT op

i + n2|X|
))

.

Proof. The number of operations needed at the ith stage of the LIPM is never
more than O(nT op

i + n2|X|). The theorem follows immediately.

5. Distance transitive graphs. Let X be a connected graph and denote the
distance function of X by d. Let k be the diameter of X which is the maximum
distance between any two vertices of X. A group G of automorphisms of X is said
to be distance transitive on X if G is transitive on each of the sets {(x, x′) | x, x′ ∈
X and d(x, x′) = i} for 0 ≤ i ≤ k. A graph is said to be distance transitive if it
is connected and has a distance transitive group of automorphisms. For example,
the 2-element subsets of a 4-element set form a distance transitive graph where two
2-element subsets are adjacent if their intersection has size 1 (see Figure 2). A good
reference for distance transitive graphs is [2].
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Fig. 2. A distance transitive graph.

Let X be a distance transitive graph, let G be a distance transitive group of
automorphisms of X, and let L(X) be the permutation representation of G induced
by the action of G on the vertices of X. The adjacency operator of X is the linear
transformation A : L(X) → L(X), where

(Af)(x) =
∑

x′:d(x,x′)=1

f(x′)

for all x ∈ X. The operator A has k + 1 distinct eigenvalues which are also the zeros
of certain polynomials associated with the graph X (see, e.g., [2]). For example, the
adjacency operator of the graph in Figure 2, relative to its delta basis (as defined in
section 2.4), is

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 0
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 0 1 1
1 0 1 1 0 1
0 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It has three distinct eigenvalues.
Lemma 5.1. The isotypic subspaces of L(X) are precisely the eigenspaces of A.
Proof. This follows from section 2 of Stanton [21].
Theorem 5.2. Let X be a distance transitive graph with diameter k, let G be

a distance transitive group of automorphisms of X, and let L(X) be the associated
permutation representation of G. If A is the adjacency operator of X, then

ι(L(X)) = O(kAop + k2|X|).

Proof. Relative to the delta basis of L(X), the adjacency operator A is a real
symmetric matrix. Thus, the result follows from Theorem 4.7 and Lemma 5.1.

A direct matrix multiplication approach to computing isotypic projections for
L(X) requires O(k|X|2) operations. Although O(kAop + k2|X|) may yield a better
upper bound, we may be able to gain even more efficiency by taking advantage of the
graph structure of X. For this, the notion of a Radon transform is helpful.
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5.1. Radon transforms. Let G be a finite group acting on finite sets X and
Y and giving permutation representations L(X) and L(Y ), respectively. In addition,
suppose there is an incidence relation between X and Y where we write x ∼ y if
x ∈ X is incident to y ∈ Y . The Radon transform R : L(X) → L(Y ) is then defined
by

(Rf)(y) =
∑

x:x∼y

f(x)

for all x ∈ X (see [1]). The adjoint R∗ : L(Y ) → L(X) of R is defined by

(R∗f)(x) =
∑

y:x∼y

f(y)

for all y ∈ Y .
Suppose now that X is a distance transitive graph with respect to G, and let

X ′ be a complete subgraph of X that contains at least two vertices. Recall that a
graph is said to be complete if every pair of distinct vertices is adjacent. Let Y be the
collection of distinct images of X ′ under the action of G on X, and say that x ∈ X is
incident to y ∈ Y if x is a vertex of y. Let R : L(X) → L(Y ) be the associated Radon
transform. For convenience, we say that Y is a complete covering of X with Radon
transform R. Note that, with respect to the delta bases of L(X) and L(Y ), R∗R is a
matrix with integer coefficients, R∗ = Rt, and (RtR)t = RtRtt = RtR. Thus R∗R is
a real symmetric matrix.

We will make use of the integers r and s that are defined in the following lemma.
Lemma 5.3. There are integers r and s such that

|{y ∈ Y | x ∼ y}| = r

for every vertex x of X and

|{y ∈ Y | x ∼ y and x′ ∼ y}| = s

for every edge {x, x′} of X.
Proof. This follows from the fact that X is a distance transitive graph.
Lemma 5.4. If A : L(X) → L(X) is the adjacency operator of X and I : L(X) →

L(X) is the identity, then A = (1/s)(R∗R− rI).
Proof. This follows from the fact that, for each x ∈ X,

(R∗Rf)(x) =
∑

y:x∼y

∑
x′:x′∼y

f(x′) = rf(x) + s

⎛
⎝ ∑

x′:d(x,x′)=1

f(x′)

⎞
⎠

= ((rI + sA)f)(x).

Lemma 5.5. If X is a distance transitive graph and Y is a complete covering of X
with Radon transform R, then {(R∗R)} is a separating set for L(X) and (R∗R)op ≤
2r|X|.

Proof. Let A be the adjacency operator of X. The product R∗R and the adjacency
operator A have the same eigenspaces by Lemma 5.4; therefore {(R∗R)} is a separating
set since {A} is a separating set by Lemma 5.1.

We may apply R∗R to a vector f ∈ L(X) by first computing Rf and then
R∗(Rf). Furthermore, when regarded as a matrix with respect to the delta bases
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of L(X) and L(Y ), both R and R∗ contain r|X| nonzero entries. It follows that
(R∗R)op ≤ R∗op + Rop ≤ r|X| + r|X| = 2r|X|.

By Theorem 4.7 and Lemma 5.5, we have the following theorem.

Theorem 5.6. Let X be a distance transitive graph, and let Y be a complete
covering of X. If X has diameter k and |{y ∈ Y | x ∼ y}| = r for every vertex x of
X, then

ι(L(X)) = O
(
kr|X| + k2|X|

)
.

Remark. Since X is a distance transitive graph, there is an integer a such that,
for every vertex x of X,

|{x′ ∈ X | d(x, x′) = 1}| = a.

Applying the adjacency operator of X directly therefore requires no more than a|X|
operations. Thus, if r is noticeably less than a, then by Theorem 5.6 we may want
to use the associated Radon transform and its adjoint in the LIPM rather than the
adjacency operator to compute the isotypic projections of a vector in L(X). We
illustrate this in the next two sections.

5.2. The Johnson graph. Let n ≥ 2 and let k ≤ n/2. The k-element subsets
X(n−k,k) of {1, . . . , n} form a distance transitive graph with automorphism group Sn

by defining two k-element subsets to be adjacent if their intersection has size k−1. The
resulting graph is known as the Johnson graph. It has diameter k and is sometimes
denoted by J(n, k).

Each vertex of J(n, k) is adjacent to k(n−k) other vertices and |X(n−k,k)| =
(
n
k

)
.

The number of operations required to directly apply the adjacency operator A is
therefore k(n− k)

(
n
k

)
. By Theorem 5.2, we therefore have that

ι
(
L
(
X(n−k,k)

))
= O

(
k2(n− k)

(
n

k

))
.(5.1)

For each (k − 1)-element subset y ∈ X(n−(k−1),k−1) there is a corresponding
complete subgraph of J(n, k) consisting of those x ∈ X(n−k,k) that contain y. The
collection Y of these subgraphs forms a complete cover of J(n, k) and each vertex of
J(n, k) is contained in k such subgraphs. Thus, by Theorem 5.6, we have the following
improvement to (5.1).

Theorem 5.7. If n ≥ 2, k ≤ n/2, and L
(
X(n−k,k)

)
is the permutation repre-

sentation of Sn associated to the Johnson graph J(n, k), then

ι
(
L
(
X(n−k,k)

))
= O

(
k2

(
n

k

))
.

We summarize the results of this section in Table 1. Note that the bounds in-
volving the LIPM compare favorably to the upper bound of

O

((
n

k

)2

+

(
n

k

)
k log2 k

)

given in [8].
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Table 1

Upper bounds on ι
(
L

(
X(n−k,k)

))
.

Direct
LIPM with R∗R LIPM with A matrix

multiplication

O
(
k2

(n
k

))
O

(
k2(n− k)

(n
k

))
O

(
k
(n
k

)2
)

5.3. The Grassmann graph. Let n ≥ 2, let k ≤ n/2, and let V be an n-
dimensional vector space over the finite field Fq of q elements. Let GL(n, q) be the
group of automorphisms of V . The k-dimensional subspaces X(n−k,k) of V form
a distance transitive graph with respect to GL(n, q) by defining two k-dimensional
subspaces to be adjacent if their intersection is a (k − 1)-dimensional subspace of
V . The resulting graph is known as the Grassmann graph. It has diameter k and is
analogous to the Johnson graph J(n, k). We will denote it by G(n, k, q). See [2] for
details concerning the Grassmann graph.

For each nonnegative integer m, let [m] = 1 + q + q2 + · · · + qm−1, let [m]! =
[m][m− 1] · · · [1] if m > 0, and let [0]! = 1. Note that [m] = (qm − 1)/(q− 1), [0] = 0,
and [1] = 1. Define (

m

l

)
q

=

{
[m]!/([l]![m− l]!) if m ≥ l ≥ 0,

0 otherwise.

Although not obvious, this is a polynomial in q known as a Gaussian polynomial (see,
e.g., [20]).

Each vertex of G(n, k, q) is adjacent to q[k][n− k] other vertices and |X(n−k,k)| =(
n
k

)
q
. Direct multiplication of the adjacency operator A of G(n, k, q) therefore requires

q[k][n− k]
(
n
k

)
q

operations. By Theorem 5.2, we have that

ι
(
C[X(n−k,k)]

)
= O

(
kq[k][n− k]

(
n

k

)
q

)
.(5.2)

Each (k − 1)-dimensional subspace y ∈ X(n−(k−1),k−1), in analogy with the
Johnson graph, corresponds to a complete subgraph of G(n, k, q) consisting of those
x ∈ X(n−k,k) that contain y. The collection Y of such subgraphs forms a complete
cover of G(n, k, q) and each vertex of G(n, k, q) is contained in [k] such subgraphs. By
Theorem 5.6, we therefore have the following improvement to (5.2).

Theorem 5.8. Let n ≥ 2 and k ≤ n/2. Let L
(
X(n−k,k)

)
be the permutation

representation of GL(n, q) associated to the Grassmann graph G(n, k, q). Then

ι
(
L
(
X(n−k,k)

))
= O

(
k[k]

(
n

k

)
q

)
.

We summarize the results of this section in Table 2. As with the Johnson graph,
note that the bounds involving the LIPM compare favorably to the upper bound of

O

((
n

k

)2

q

+

(
n

k

)
q

k log2 k

)

given in [8].
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Table 2

Upper bounds on ι
(
L

(
X(n−k,k)

))
.

Direct
LIPM with R∗R LIPM with A matrix

multiplication

O

(
k[k]

(n
k

)
q

)
O

(
kq[k][n− k]

(n
k

)
q

)
O

(
k
(n
k

)2

q

)

6. The symmetric group. Spectral analysis for nonabelian groups has found
its greatest success with the analysis of ranked data (see [5, 6, 17]). Ranked data
arises when respondents are given a list of n items which they are asked to rank in
terms of preference. We say that such a ranking is full if the respondents are asked
to rank each element of the list. On the other hand, we say that a ranking is a partial
ranking of shape λ if for some sequence λ = (λ1, . . . , λm) of positive integers whose
sum is n, the respondents are asked to choose their top λ1 items, then their next top
λ2 items, and so on, with no internal ordering. Note that a full ranking is a partial
ranking of shape (1, . . . , 1).

If Xλ is the set of possible partial rankings of shape λ, the partially ranked data
of shape λ is the function f ∈ L

(
Xλ

)
, where, for each x ∈ Xλ, f(x) is the number of

respondents choosing the partial ranking x. For an example of partially ranked data,
consider a lottery in which participants are asked to choose five numbers from the set
{1, . . . , 39}. Each lottery ticket corresponds to a partial ranking of shape (5, 34), and
the relevant ranked data is then the function that assigns to each such ranking the
number of tickets corresponding to that ranking that were sold.

For another example of ranked data, consider the partially ranked data that arises
when a film society asks its members to choose, from a list of ten movies, their three
favorite movies and then their next three favorite movies. Their choices correspond
to partial rankings of shape (3, 3, 4), and the relevant partially ranked data is the
function that assigns to each such ranking the number of members choosing that
ranking.

The natural action of the symmetric group Sn on the n items in the list gives rise
to an action of Sn on Xλ. Moreover, as noted in section 1, the isotypic subspaces
of the resulting permutation representation L

(
Xλ

)
correspond to certain pure higher

order effects associated to the ranked data f ∈ L
(
Xλ

)
(see [6, 17]). Computing the

isotypic projections of f can therefore lead to some insight into how the respondents
went about choosing their rankings.

6.1. Representation theory. Let n be a positive integer. A composition of n
is a sequence λ = (λ1, . . . , λm) of positive integers whose sum is n. If λ1 ≥ · · · ≥ λm,
then λ is a partition of n. To each composition λ, there corresponds a partition λ
obtained by arranging the parts of λ in nonincreasing order. The partitions of n form
a partially ordered set under the dominance order where, if λ and λ′ are partitions of
n, then we say that λ dominates λ′ if λ1 + · · · + λi ≥ λ′

1 + · · · + λ′
i for all i ≥ 1. If λ

dominates λ′, then we write λ � λ′.

As is often the case, we identify the composition λ = (λ1, . . . , λm) of n with the
Ferrers diagram of shape λ, which is the left-justified array of dots with λi dots in
the ith row (see Figure 3). If the dots of a Ferrers diagram of shape λ are replaced
by the numbers 1, . . . , n without repetition, then we create a Young tableau of shape
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• •
• • •
•
• • •

Fig. 3. The Ferrers diagram of shape (2, 3, 1, 3).

λ. Two Young tableaux are said to be equivalent if they differ only by a permutation
of the entries within the rows of the tableaux. An equivalence class of tableaux is a
tabloid. A tabloid is denoted by forming a representative tableau and then drawing
lines between the rows (see Figure 4).

4 9
5 2 3
7
8 1 6

9 4
2 5 3
7
6 8 1

4 9
2 3 5
7
1 6 8

Fig. 4. Two equivalent tableaux and their tabloid.

Let Xλ be the set of tabloids of shape λ. The set Xλ naturally corresponds to
the set of rankings of shape λ since each row of a tabloid may be viewed as a ranked
subset of an n-element set. Moreover, we may rearrange the subsets in each ranking
so that their sizes are in nonincreasing order. We may therefore assume that λ is a
partition of n.

Let λ be a partition of n. The action of Sn on {1, . . . , n} induces an action of Sn

on Xλ. For example, if σ = (135)(27) and

t =

5 2 3
4 1 6
7

,

then

σt =
σ(5) σ(2) σ(3)
σ(4) σ(1) σ(6)
σ(7)

=

1 7 5
4 3 6
2

.

We denote the resulting permutation representation L(Xλ) by Mλ.
For every partition µ of n, there is a simple representation Wµ of Sn. These rep-

resentations form a complete (up to isomorphism) collection of simple representations
of Sn. The representation Mλ is isomorphic to a direct sum of simple representations

Mλ ∼=
⊕
µ�λ

κµλW
µ,

where the numbers κµλ are Kostka numbers and denote the multiplicity of Wµ in Mλ.
(Kostka numbers also count objects known as semistandard tableaux. See, e.g., [18].)
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Note that the subspace of Mλ that is isomorphic to κµλW
µ is the isotypic subspace

of Mλ that corresponds to the simple representation Wµ.

6.2. Separating sets. Let Ci be the conjugacy class of i-cycles in Sn and let
Ti be the corresponding class sum with respect to Mλ. For example, if n = 4, i = 3,
and λ = (2, 2), then

C3 = {(123), (132), (124), (142), (134), (143), (234), (243)}

and, under a particular order of the delta basis of M (2,2),

T3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2 2 2 2 0
2 0 2 2 0 2
2 2 0 0 2 2
2 2 0 0 2 2
2 0 2 2 0 2
0 2 2 2 2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Theorem 6.1 (Katriel). If λ = (λ1, . . . , λm) is a partition of n, then {T2, . . . , Tm}
is a separating set for Mλ.

Proof. This is Theorem 3 in Katriel [11] rewritten using the language of separating
sets.

Moreover, the number of Ti that are actually needed to form a separating set
for any representation of Sn seems to be small relative to n. Katriel made this
observation after calculations revealed that {T2, . . . , Tk+1} is a separating set for any
representation of the symmetric group on ϕ(k) or less symbols, where ϕ(k) is much
larger than k. For example, {T2} is a separating set for S2, S3, S4, and S5 but not
S6. Thus ϕ(1) = 5. Similarly, calculations have shown that ϕ(2) = 14, ϕ(3) = 23,
ϕ(4) = 41, and ϕ(5) ≥ 72 (see [11]). We therefore have the following theorem.

Theorem 6.2. Let n and k be positive integers such that n ≤ ϕ(k). If λ is a
partition of n, and ζλ is the number of isotypic subspaces of Mλ, then

ι
(
Mλ

)
= O

(
k+1∑
i=2

(
ζλ(i− 1)!

(
n

i

)
|Xλ| + ζ2

λ|Xλ|
))

.

Proof. The collection {T2, . . . , Tk+1} is a separating set for Mλ since n ≤ ϕ(k).
It is easy to show that each Ti is a real symmetric matrix with respect to the delta
basis of Mλ. Thus, by Theorem 4.7,

ι
(
Mλ

)
= O

(
k+1∑
i=2

(
ζλT

op
i + ζ2

λ|Xλ|
))

.

Recall that T op
i is no more than the number of nonzero entries in Ti, which is at most

|Ci||Xλ|. Since |Ci| = (i− 1)!
(
n
i

)
, the theorem follows.

We summarize the results of this section, and include some particular examples,
in Table 3.

Remarks. Note that when n ≥ 2 and k ≤ n/2, we were able to find a bound for
ι
(
M (n−k,k)

)
in section 5.2 by viewing the elements of X(n−k,k) as the vertices of a

distance transitive graph. Moreover, the upper bound in section 5.2 is much better
than the upper bound given by Theorem 6.2.
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Table 3

Upper bounds on ι(Mλ).

Direct
λ LIPM matrix

multiplication

(n− k, k) O
(
k2(n− k)

(n
k

))
O

(
k
(n
k

)2
)

(n− k, k − 1, 1) O
(
k3(n− k)

(n
k

))
O

(
k3

(n
k

)2
)

(λ1, . . . , λm) O
(∑k+1

i=2

(
ζλ(i− 1)!

(n
i

)
|Xλ| + ζ2

λ|Xλ|
))

O
(
ζλ|Xλ|2

)
n ≤ ϕ(k)

Additionally, an FFT and inverse for the symmetric group, both requiring O(n2n!)
operations, were constructed in [12]. Thus if p(n) is the number of partitions of n, then
the isotypic projections of a vector in M (1,...,1) may be computed using O(p(n)n2n!)
operations. See [14] for an FFT for the homogeneous space M (n−k,k) and [15] for
some generalizations of the results presented in this paper.
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