
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

2-1-2006

The Linear Complexity of a Graph
David L. Neel
Seattle University

Michael E. Orrison Jr.
Harvey Mudd College

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Neel, David L. and Orrison, Michael. "The linear complexity of a graph." Electronic Journal of Combinatorics 13 (2006), Research
Paper 9. (electronic).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/70974059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

The Linear Complexity of a Graph

David L. Neel
Department of Mathematics

Seattle University, Seattle, WA, USA
neeld@seattleu.edu

Michael E. Orrison
Department of Mathematics

Harvey Mudd College, Claremont, CA, USA
orrison@hmc.edu

Submitted: Aug 1, 2005; Accepted: Jan 18, 2006; Published: Feb 1, 2006
Mathematics Subject Classification: 05C85, 68R10

Abstract

The linear complexity of a matrix is a measure of the number of additions,
subtractions, and scalar multiplications required to multiply that matrix and an
arbitrary vector. In this paper, we define the linear complexity of a graph to be the
linear complexity of any one of its associated adjacency matrices. We then compute
or give upper bounds for the linear complexity of several classes of graphs.

1 Introduction

Complexity, like beauty, is in the eye of the beholder. It should therefore come as no
surprise that the complexity of a graph has been measured in several different ways. For
example, the complexity of a graph has been defined to be the number of its spanning
trees [2, 5, 8]. It has been defined to be the value of a certain formula involving the
number of vertices, edges, and proper paths in a graph [10]. It has also been defined as
the number of Boolean operations, based on a pre-determined set of Boolean operators
(usually union and intersection), necessary to construct the graph from a fixed generating
set of graphs [12].

In this paper, we introduce another measure of the complexity of a graph. Our mea-
sure is the linear complexity of any one of the graph’s adjacency matrices. If A is any
matrix, then the linear complexity of A is essentially the minimum number of additions,
subtractions, and scalar multiplications required to compute AX, where X is an arbitrary
column vector of the appropriate size [4]. As we will see, all of the adjacency matrices of

the electronic journal of combinatorics 13 (2006), #R9 1

a graph Γ have the same linear complexity. We define this common value to be the linear
complexity of Γ (see Sections 2.2-2.3).

An adjacency matrix of a graph completely encodes its underlying structure. More-
over, this structure is completely recoverable using any algorithm designed to compute
the product of an adjacency matrix of the graph and an arbitrary vector. The linear
complexity of a graph may therefore be seen as a measure of its overall complexity in
that it measures our ability to efficiently encode its adjacency matrices. In other words,
it measures the ease with which we are able to communicate the underlying structure of
a graph.

Our original motivation for studying the linear complexity of a graph was the fact
that the number of arithmetic operations required to compute the projections of an arbi-
trary vector onto the eigenspaces of an adjacency matrix can be bounded using its size,
number of distinct eigenvalues, and linear complexity [9, 11]. Knowing the linear com-
plexity of a graph therefore gives us some insight into how efficiently we can compute
certain eigenspace projections. Such insights can be extremely useful when computing,
for example, amplitude spectra for fitness functions defined on graphs (see, for example,
[1, 13, 14]).

The linear complexities of several classes of matrices, including discrete Fourier trans-
forms, Toeplitz, Hankel, and circulant matrices, have been studied [4]. Since our focus is
on the adjacency matrices of graphs, this paper may be seen as contributing to the un-
derstanding of the linear complexity of the class of symmetric 0–1 matrices. For example,
with only slight changes, many of our results carry over easily to symmetric 0–1 matrices
by simply allowing graphs to have loops.

We proceed as follows. In Section 2, we describe the linear complexity of a matrix,
and we introduce the notion of the linear complexity of a graph. We also see how we may
relate the linear complexity of a graph to that of one of its subgraphs. In Section 3, we
give several upper and lower bounds on the linear complexity of a graph. In Section 4, we
consider the linear complexity of several well-known classes of graphs. Finally, in Section
5, we give an upper bound for the linear complexity of a graph that is based on the use
of clique partitions.

2 Background

In this section, we define the linear complexity of a graph. Our approach requires only
a basic familiarity with adjacency matrices of graphs, and a working knowledge of the
linear complexity of a linear transformation. An excellent reference for linear complexity,
and algebraic complexity in general, is [4]. Throughout the paper, we assume familiarity
with the basics of graph theory. See for example [15]. Lastly, all graphs considered in this
paper are finite, simple, and undirected.

the electronic journal of combinatorics 13 (2006), #R9 2

2.1 Adjacency Matrices

Let Γ be a graph whose vertex set is {γ1, . . . , γn}. The corresponding adjacency matrix
of Γ is the symmetric n × n matrix whose (i, j) entry is 1 if γi is adjacent to γj, and 0
otherwise. For example, if Γ is the complete graph on four vertices (see Figure 1), then
its adjacency matrix is

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

regardless of the order of its vertices. If Γ is a cycle on four vertices (see Figure 1), then
it has three distinct adjacency matrices:

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 ,

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 ,

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

 .

Figure 1: A complete graph (left) and cycle (right) on four vertices.

Note that, for convenience, we will often speak of “the” adjacency matrix of Γ when
it is clear that a specific choice of an ordering of the vertices of Γ is inconsequential.

2.2 Linear Complexity of a Matrix

Let K be a field and let
(g−n+1, . . . , g0, g1, . . . , gr)

be a sequence of linear forms in indeterminants x1, . . . , xn over K (i.e., linear combinations
of the xi with coefficients in K). As defined in [4], such a sequence is a linear computation
sequence (over K with n inputs) of length r if

1. g−n+1 = x1, . . . , g0 = xn and,

2. for every 1 ≤ ρ ≤ r, either

gρ = zρgi or gρ = ερgi + δρgj,

where 0 6= zρ ∈ K, ερ, δρ ∈ {+1,−1}, and −n < i, j < ρ.

the electronic journal of combinatorics 13 (2006), #R9 3

Such a sequence is then said to compute a set F of linear forms if F is a subset of
{0,±gρ | − n < ρ ≤ r}.

As an example, if K = R, F = {x1 +x2, x1 −3x2}, and F ′ = {x1 +x2, 2x1−2x3, 4x1 +
2x3}, then

(x1, x2, x1 + x2, 3x2, x1 − 3x2)

is a linear computation sequence of length 3 that computes F , and

(x1, x2, x3, x1 + x2, 2x1, 2x3, 2x1 − 2x3, 4x1, 4x1 + 2x3)

is a linear computation sequence of length 6 that computes F ′.
The linear complexity L(f1, . . . , fm) of the set {f1, . . . , fm} of linear forms is the min-

imum r ∈ N such that there is a linear computation sequence of length r that computes
{f1, . . . , fm}. The linear complexity L(A) of a matrix A = (aij) ∈ Km×n is then de-
fined to be L(f1, . . . , fm), where fi =

∑n
j=1 aijxj . The linear complexity of a matrix

A ∈ Km×n is therefore a measure of how difficult it is to compute the produt AX, where
X = [x1, . . . , xn]t is an arbitrary vector.

Note that, for convenience, we will assume that all of the linear computation sequences
in this paper are over a field K of characteristic 0. Also, before moving on to graphs, we
list here as lemmas some linear complexity results that will be useful in later sections:

Lemma 1 (Remark 13.3 (4) in [4]). Let {f1, . . . , fm} be a set of linear forms in the
variables x1, . . . , xn. If {f1, . . . , fm} ∩ {0,±x1, . . . ,±xn} = ∅ and fi 6= fj for all i 6= j,
then L(f1, . . . , fn) ≥ m.

Lemma 2 (Lemma 13.7 (2) in [4]). If B is a submatrix of A, i.e., B = A or B is
obtained from A by deleting some rows and/or columns, then L(B) ≤ L(A).

Lemma 3 (Corollary 13.21 in [4]). L(
∑n

i=1 aixi) = n − 1 + |{|a1|, . . . , |an|} \ {1}|, if
all of the ai are nonzero.

2.3 Linear Complexity of a Graph

Let Γ be a graph, let {γ1, . . . , γn} be its vertex set, and let A = (aij) ∈ {0, 1}n×n be its
associated adjacency matrix. To every vertex γi ∈ Γ, we will associate the indeterminant
xi and the linear form

fi =
n∑

j=1

aijxj .

Since aij = 1 if γi ∼ γj and is 0 otherwise, fi depends only on the neighbors of γi. In
particular, it should be clear that L(fi) ≤ deg(γi) − 1.

As we have seen, different orderings of the vertices of a graph give rise to possibly
different adjacency matrices. Since the linear forms of different adjacency matrices of a
graph differ only by a permutation, however, we may unambiguously define the linear
complexity L(Γ) of a graph Γ to be the linear complexity of any one of its adjacency
matrices. In other words, the linear complexity of a graph Γ is a measure of how hard it
is to compute AX, where A is an adjacency matrix of Γ and X is a generic vector of the
appropriate size.

the electronic journal of combinatorics 13 (2006), #R9 4

2.4 Reduced Version of a Matrix

We now turn our attention to relating the linear complexity of one matrix to another. We
begin with the following theorem which relates the linear complexity of a matrix to that
of its transpose. It is a slightly modified version of Theorem 13.20 in [4], and it will play
a pivotal role in the next section and, consequently, throughout the rest of the paper.

Theorem 4 (Theorem 13.20 in [4]). If z(A) denotes the number of zero rows of
A ∈ Km×n, then

L(A) = L(At) + n − m + z(A) − z(At).

If A is a matrix and B is obtained from A by removing redundant rows, rows of zeros,
and rows that contain all zeros except for a single one, then L(A) = L(B). Such rows
will contribute nothing to the length of any linear computation sequence of A since they
contribute no additional linear forms. We will call this matrix the reduced version of A
and will denote it by r(A). For our purposes, the usefulness of Theorem 4 lies in our
ability to relate L(A) = L(r(A)) to L(r(A)t). Furthermore, we may do this recursively.

As an example, if

A =

0 1 0 1 1 1 0
1 0 1 1 0 0 1
0 1 0 1 1 1 0
1 1 1 0 0 0 0
1 0 1 0 0 0 0
1 0 1 0 0 0 0
0 1 0 0 0 0 0

(1)

then

r(A) =

0 1 0 1 1 1 0
1 0 1 1 0 0 1
1 1 1 0 0 0 0
1 0 1 0 0 0 0

since the third and sixth rows of A are equal to the first and fifth rows of A, respectively,
and the seventh row contains all zeros except for one 1. The reduced version of the
transpose of r(A) is

r(r(A)t) =

0 1 1 1

1 0 1 0
1 1 0 0

and the reduced version of the transpose of r(r(A)t) is

r(r(r(A)t)t) =

0 1 1

1 0 1
1 1 0

 . (2)

the electronic journal of combinatorics 13 (2006), #R9 5

By using these reduced matrices, and repeatedly appealing to Theorem 4, we see that

L(A) = L(r(A)) = L(r(A)t) + 3

= L(r(r(A)t)) + 3

= L(r(r(r(A)t)t)) + 4

= 7

since it can be shown that the matrix r(r(r(A)t)t) in (2) has linear complexity 3 (see, for
example, Theorem 17).

2.5 Irreducible Graphs

To see the above discussion from a graph-theoretic perspective, consider the graph corre-
sponding to the matrix in (1) (see Figure 2). In this case, we see that the neighbor sets
of γ1 and γ3 are equal, as are the neighbor sets of γ5 and γ6. In addition, γ7 is a leaf. If
we remove γ3, γ6 and γ7, then γ5 becomes a leaf. By then removing γ5, we leave only a
cycle on γ1, γ2, γ4. Using Theorem 4, we may then relate the linear complexities of these
subgraphs.

γ5

γ2

γ3 γ4

γ7γ6

γ1

Figure 2: A reducible graph.

To make this idea concrete, consider constructing a sequence of connected subgraphs
of a connected graph in the following way. First, if γ is a vertex in a graph Γ, then we
will denote its neighbor set in Γ by NΓ(γ). Also, if Γ is a graph, then V (Γ) will denote
its vertex set, and E(Γ) will denote its edge set.

Let Γ be a connected graph with vertex set V (Γ) ⊆ {γ1, . . . , γn} consisting of at
least three vertices. Let R(Γ) denote the subgraph of Γ obtained by removing the vertex
γj ∈ V (Γ) with the smallest index j such that

1. γj is a leaf, or

2. there exists a γi ∈ V (Γ) such that i < j and NΓ(γj) = NΓ(γi).

the electronic journal of combinatorics 13 (2006), #R9 6

If no such vertex exists, then define R(Γ) to be Γ. For convenience, we also define R(Γ)
to be Γ if Γ consists of only one edge or one vertex. If Γ is a connected graph such that
R(Γ) = Γ, then we say that Γ is irreducible. If R(Γ) 6= Γ, then we say that Γ is reducible.

Given a connected graph Γ with vertex set V (Γ) = {γ1, . . . , γn}, we may then construct
the sequence

Γ, R(Γ), R(R(Γ)), R(R(R(Γ))), . . .

of subgraphs of Γ. Let I(Γ) denote the first irreducible graph in this sequence.

Theorem 5. If Γ is a connected graph Γ with vertex set V (Γ) = {γ1, . . . , γn}, then

L(Γ) = L(I(Γ)) + |V (Γ)| − |V (I(Γ))|.

Proof. It suffices to show that if Γ is not irreducible, then L(Γ) = L(R(Γ))+1. With that
in mind, suppose Γ is not irreducible, and let γ ∈ V (G) be the vertex removed from Γ to
create R(Γ). Let A be the adjacency matrix of Γ, and let B be the matrix obtained from
A by removing the row corresponding to γ. By construction, we know that L(A) = L(B).
By Theorem 4, we then have that

L(B) = L(Bt) + 1.

By removing the redundant row in Bt that corresponds to γ, we then create the adjacency
matrix A′ of R(Γ). Moreover, since L(Bt) = L(A′), we have that L(A) = L(A′) + 1. In
other words, L(Γ) = L(R(Γ)) + 1.

3 Bounds

In this section, we consider bounds on the linear complexity of a graph. We begin with
some naive bounds. We then consider bounds based on edge partitions and direct prod-
ucts.

3.1 Naive Bounds

We begin with some naive but useful bounds on the linear complexity of a graph.

Proposition 6. If Γ is a connected graph, then L(Γ) ≤ 2|E(Γ)| − |V (Γ)|.
Proof. The linear form associated to each γ ∈ V (Γ) requires at most deg(γ) − 1 ≥ 0
additions. Thus,

L(Γ) ≤
∑

γ∈V (Γ)

(deg(γ) − 1) = 2|E(Γ)| − |V (Γ)|.

Since the linear form associated to a vertex depends only on its neighbors, we also
have the following bound.

the electronic journal of combinatorics 13 (2006), #R9 7

Proposition 7. The linear complexity of a graph is less than or equal to the sum of the
linear complexities of its connected components.

Proposition 8. If Γ is a graph and ∆(Γ) is the maximum degree of a vertex in Γ, then
∆(Γ) − 1 ≤ L(Γ).

Proof. Let A be the adjacency matrix of Γ. Remove all of the rows of A except for one row
corresponding to a vertex of maximum degree, and call the resulting row matrix B. By
Lemma 2, we have that L(B) ≤ L(A), and by Lemma 3, we have that L(B) = ∆(Γ)− 1.
The proposition follows immediately.

We may put an equivalence relation on the vertices of a graph Γ by saying that two
vertices are equivalent if they have precisely the same set of neighbors. Since equivalent
vertices are never adjacent, note that each equivalence class is an independent set of
vertices.

Proposition 9. Let Γ be a connected graph. If m is the number of equivalence classes
(of the equivalence relation defined above) that contain non-leaves, then m ≤ L(Γ).

Proof. Let A be the adjacency matrix of Γ. The nontrivial linear forms of A correspond
to the non-leaves of Γ. Since equivalent vertices have equal linear forms, we need only
consider m distinct nontrivial linear forms. The proposition then follows immediately
from Lemma 1.

Although Proposition 9 is indeed a naive bound, it suggests that we may find minimal
linear computation sequences for the adjacency matrix of a graph by gathering together
vertices whose corresponding linear forms are equal, or nearly equal. This approach will
be particularly useful when we consider complete graphs and complete k-partite graphs
in Section 4.

3.2 Bounds from Partitioning Edge Sets

We now consider upper bounds on the linear complexity of a graph obtained from a
partition of its edge set.

Theorem 10. Let Γ be a graph and suppose that E(Γ) is the union of k disjoint subsets
of edges such that the jth subset induces the subgraph Γj of Γ. If Γ has n vertices and the
ith vertex is in bi of the induced subgraphs, then

L(Γ) ≤
k∑

j=1

L(Γj) +

n∑
i=1

(bi − 1).

Proof. Let V (Γ) = {γ1, . . . , γn} be the vertex set of Γ. As noted in Section 2.3, we may
assume that to γi ∈ V (Γ) we have associated the indeterminant xi and the linear form

fi =

n∑
j=1

aijxj

the electronic journal of combinatorics 13 (2006), #R9 8

where aij = 1 if γi ∼ γj and is 0 otherwise. If γi ∈ Γj , then let f j
i be the linear form

associated to γi when thought of as a vertex in Γj . If γi /∈ Γj, define f j
i = 0. It follows

that

fi =
k∑

j=1

f j
i .

This sum has bi nonzero summands, so its linear complexity is no more than bi−1 if given
the linear forms f 1

i , . . . , fk
i . Since the linear complexity of the set of f j

i is no more than∑k
j=1 L(Γj), the theorem follows.

In the last theorem, we saw how the linear complexity of a graph can be bounded by
the linear complexity of edge-disjoint subgraphs. In the next theorem, we consider the
linear complexity of a graph obtained by removing edges from another graph.

Let Γ be a graph and let F ⊆ E(Γ). Let ΓF be the subgraph of Γ induced by F and
let Γ

eF be the subgraph of Γ obtained by removing the edges in F . Finally, let F be the
complement of F in E(Γ).

Theorem 11. If Γ is a graph and F ⊆ E(Γ), then

L(Γ
eF) ≤ L(Γ) + L(ΓF) + |V (ΓF) ∩ V (ΓF)|.

Proof. Let V (Γ) = {γ1, . . . , γn} be the vertex set of Γ. To γi ∈ V (Γ), associate the
indeterminant xi and the linear form

fi =
n∑

j=1

aijxj

where aij = 1 if γi ∼ γj and is 0 otherwise. Let f
eF

i be the linear form associated to γi as
a vertex in Γ

eF . If γi ∈ ΓF , then let fF
i be the linear form associated to γi as a vertex in

ΓF . If γi /∈ ΓF , define fF
i = 0. It follows that

f
eF

i = fi − fF
i .

This difference is nontrivial only if γi ∈ V (ΓF) ∩ V (ΓF). Since the linear complexity of
{fi}n

i=1 ∪ {fF
i }n

i=1 is no more than L(Γ) + L(ΓF), the theorem follows.

The next theorem gives a bound for the difference between the complexity of a graph
and that of a subgraph induced by a subset of edges. Our proof relies on Theorem 10,
Theorem 11, and the following lemma.

Lemma 12. If Γ is a graph and F ⊆ E(Γ), then L(Γ
eF) = L(ΓF).

Proof. Γ
eF is isomorphic to ΓF together with a (possibly empty) set of isolated vertices. It

follows that the sets of nontrivial linear forms associated to Γ
eF and ΓF are identical.

the electronic journal of combinatorics 13 (2006), #R9 9

Theorem 13. If Γ is a graph and F ⊆ E(Γ), then

|L(Γ) − L(Γ
eF)| = |L(Γ) − L(ΓF)| ≤ L(ΓF) + |V (ΓF) ∩ V (ΓF)|.

Proof. The edge set of Γ is the disjoint union of F and F . Thus, by Theorem 10 we have

L(Γ) − L(ΓF) ≤ L(ΓF) + |V (ΓF) ∩ V (ΓF)|.
By Theorem 11 we have

L(Γ
eF) − L(Γ) ≤ L(ΓF) + |V (ΓF) ∩ V (ΓF)|.

By Lemma 12, L(Γ
eF) = L(ΓF). The theorem follows immediately.

Corollary 14. If two graphs Γ and Γ′ differ by only one edge, then

|L(Γ) − L(Γ′)| ≤ 2.

3.3 Bounds for Direct Products of Graphs

Before moving on to specific examples, we finish this section by considering the linear
complexity of a graph that is the direct product of other graphs. Examples of such
graphs include the important class of Hamming graphs (see Section 4.6).

The direct product of d graphs Γ1, . . . , Γd is the graph with vertex set V (Γ1) × · · · ×
V (Γd) whose edges are the two-element sets {(γ1, . . . , γd), (γ

′
1, . . . , γ

′
d)} for which there is

some m such that γm ∼ γ′
m and γl = γ′

l for all l 6= m (see, for example, [3]).

Theorem 15. If Γ is the direct product of Γ1, . . . , Γd, then

L(Γ) ≤ |V (Γ)|
(

d∑
j=1

L(Γj)

|V (Γj)| + (d − 1)

)
.

Proof. For 1 ≤ i ≤ d, let Ei be the subset of edges of Γ whose vertices differ in the ith
position, and let ΓEi

be the subgraph of Γ induced by Ei. Note that the Ei partition E(Γ)
and that ΓEi

is isomorphic to a graph consisting of
∏

j 6=i |V (Γj)| disconnected copies of

Γi. Since every vertex of Γ is contained in at most d of the Ei, and |V (Γ)| =
∏d

i=1 |V (Γi)|,
by Proposition 7 and Theorem 10 we have

L(Γ) ≤
d∑

i=1

L(ΓEi
) + |V (Γ)|(d − 1)

=

d∑
i=1

(∏
j 6=i

|V (Γj)|L(Γi)

)
+ |V (Γ)|(d − 1)

=

(
d∏

j=1

|V (Γj)|
)(

d∑
i=1

L(Γi)

|V (Γi)|

)
+ |V (Γ)|(d − 1)

= |V (Γ)|
(

d∑
i=1

L(Γi)

|V (Γi)| + (d − 1)

)
.

the electronic journal of combinatorics 13 (2006), #R9 10

Corollary 16. If Γd is the direct product of the graph Γ with itself d times, then

L(Γd) ≤ |V (Γ)|d
(

d
L(Γ)

|V (Γ)| + (d − 1)

)
.

4 Examples

In this section, we consider the linear complexity of several well-known classes of graphs.
More specifically, we determine the linear complexity of cycles, trees, complete graphs,
and complete k-partitite graphs. We also present bounds on the linear complexity of
Johnson graphs and Hamming graphs.

4.1 Cycles

Let Cn denote the graph that is the cycle on n vertices. Since Cn has n edges and n
vertices, the naive bound given by Proposition 6 is

L(Cn) ≤ 2n − n = n.

For most cycles, this bound is optimal.

Theorem 17. If n 6= 4, then L(Cn) = n.

Proof. If n 6= 4, then every vertex of Cn is a non-leaf with a unique set of neighbors.
Thus, by Proposition 9, n ≤ L(Cn). Since L(Cn) ≤ n by Proposition 6, the theorem
follows.

Note that the vertices of C4 have non-distinct neighbor sets. In fact, C4 is isomorphic
to the complete bipartite graph K2,2 which we consider in Section 4.4.

4.2 Trees

Let T be a tree on n ≥ 2 vertices. Since T has n − 1 edges, the naive bound for L(T)
given by Proposition 6 is

L(T) ≤ 2(n − 1) − n = n − 2.

Moreover, this bound is optimal.

Theorem 18. If T is a tree on n ≥ 2 vertices, then L(T) = n − 2.

Proof. In a tree, only the leaves may have non-distinct neighbor sets, otherwise the tree
would contain a cycle. Thus R(T) is again a tree, and I(T) consists of only an edge,
which has linear complexity 0. The claim then follows from Theorem 5.

the electronic journal of combinatorics 13 (2006), #R9 11

4.3 Complete Graphs

Recall that Kn denotes the complete graph on n vertices. Since Kn has n(n− 1)/2 edges,
if n ≥ 2, then the bound given by Proposition 6 is

L(Kn) ≤ 2
n(n − 1)

2
− n = n(n − 2). (3)

The adjacency matrix for Kn, however, is quite simple to describe—it has zeros on the
diagonal and ones in every other postition. For example, the adjacency matrix for K5 is

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 .

We may easily take advantage of this simple structure to create a linear computation
sequence for the adjacency matrix of Kn with length much shorter than n(n − 2).

Let {γ1, . . . , γn} be the vertices of Kn. Note that the linear form associated to γj is

fj =

(
n∑

i=1

xi

)
− xj .

We may therefore compute {f1, . . . , fn} by computing

i. fn =
∑n−1

i=1 xi,

ii. S =
∑n

i=1 xi = fn + xn, and

iii. fj = S − xj for j = 1, . . . , (n − 1).

These three steps give rise to a linear computation sequence for the fi of length

(n − 2) + 1 + (n − 1) = 2n − 2.

Thus, L(Kn) ≤ 2n − 2. As we now will show, if n ≥ 4, then this inequality is in fact
equality. We begin with two lemmas.

Lemma 19. If n ≥ 2, then L(Kn) ≤ L(Kn+1) − 2.

Proof. First, note that the adjacency matrix of Kn is a submatrix of the adjacency matrix
for Kn+1. Thus, by Lemma 2, L(Kn) ≤ L(Kn+1). Let

s = (x1, . . . , xn+1, g1, . . . , gm)

be a minimal linear computation sequence for the adjacency matrix of Kn+1. Since n+1 ≥
3, we know that m ≥ 3 by Proposition 8 and Theorem 17.

the electronic journal of combinatorics 13 (2006), #R9 12

Since the computation sequence s is minimal, we know that gm must be a linear
form associated to one of the vertices in Kn+1. Let γ be this vertex, and let x be the
indeterminate associated to γ. We may create a linear computation sequence s′ for Kn+1−
γ ∼= Kn from s by removing gm, setting x = 0, and removing any redundant linear forms
in s. Since setting x = 0 makes at least one of the gi, 1 ≤ i ≤ m− 1 redundant, we know
that the length of s′ is at most m − 2. Thus L(Kn) ≤ L(Kn+1) − 2.

Lemma 20. L(K4) = 6.

Proof. We know that L(K4) ≤ 6, and by Proposition 17 and Lemma 19, we also know
that L(K4) ≥ 5. We therefore need only show that L(K4) 6= 5.

Suppose that (x1, x2, x3, x4, g1, g2, g3, g4, g5) is a linear computation sequence for the
adjacency matrix A of K4. Since g2, . . . , g5 must be (up to sign) the four linear forms
associated with A, we may assume without loss of generality that g1 = ±(x1 + x2) and
g2 = ±(x1 + x2 + x3). This then forces g3 to be ±(x1 + x2 + x4).

Suppose now that g4 = ±(x1 + x3 + x4). Since x1 and x2 have different coefficients
in g4, it cannot be the case that it is the sum or difference of two forms in {g1, g2, g3}.
Furthermore, any other sum or difference of two forms in {x1, x2, x3, x4, g1, g2, g3} has an
even number of nonzero coefficients. Since g4 is not a multiple of any of the already
computed forms, it follows that it is impossible for g4 to equal ±(x1 + x3 + x4). A similar
argument holds for the form ±(x2 + x3 + x4). This shows that a linear computation
sequence for the adjacency matrix of K4 must have length at least six. Thus L(K4) 6=
5.

We may now determine the linear complexity of all complete graphs.

Theorem 21. L(K1) = L(K2) = 0, L(K3) = 3, and if n ≥ 4, then L(Kn) = 2n − 2.

Proof. The linear forms associated to K1 and K2 are trivial, thus L(K1) = L(K2) = 0.
Since K3 is a cycle on three vertices, L(K3) = 3 follows from Theorem 17. For n ≥ 4, we
proceed by induction using L(K4) = 6 as our base case.

Suppose the statement holds for k ≥ 4, and thus we know that L(Kk) = 2k − 2. We
have constructed a linear computation sequence above that shows that

L(Kk+1) ≤ 2(k + 1) − 2 = 2k.

By Lemma 19, we have that L(Kk) + 2 ≤ L(Kk+1). It follows that L(Kk+1) = 2k. Thus,
by induction, if n ≥ 4, then L(Kn) = 2n − 2.

The following corollary states that the difference between the linear complexity of a
graph on n vertices and the linear complexity of its complement is bounded by 3n− 2. It
follows from Lemma 12, Theorem 11, and Theorem 21 although we provide a much more
direct proof using adjacency matrices.

Corollary 22. If Γ is a graph on n vertices, then

|L(Γ) − L
(
Γ
) | ≤ 3n − 2.

the electronic journal of combinatorics 13 (2006), #R9 13

Proof. Let Γ be a graph on n vertices and let A(Γ) denote the adjacency matrix of Γ. We
clearly have

A(Γ) = A(Kn) − A
(
Γ
)
.

It follows that
L(Γ) ≤ L(Kn) + L(Γ) + n = 3n − 2 + L(Γ).

The corollary then follows immediately from the fact that the complement of Γ is Γ.

4.4 Complete k-partitite graphs

Theorem 21 generalizes easily to complete k-partite graphs. First, recall that the complete
k-partite graph Kn1,...,nk

is the graph whose vertex set may be partitioned into k blocks
of sizes n1, . . . , nk such that two vertices are adjacent if and only if they are in different
blocks. Note that Kn = K1,...,1, and that if k = 2, then such a graph is also known as
a complete bipartite graph or a bipartite clique. Bipartite cliques will play an important
role for us in Section 5.1.

We assume that k ≥ 2. Let {γ1, . . . , γn} be the vertices of Kn1,...,nk
(where n =

n1 + · · ·+nk), and let B1, . . . , Bk be the corresponding blocks of vertices in the associated
partition of V (Kn1,...,nk

). For j = 1, . . . , k, define

yj =
∑

γi∈Bj

xi.

Note that if γi ∈ Bj , then the linear form associated to γi is

fj =

(
k∑

l=1

yl

)
− yj.

We therefore need only compute {f1, . . . , fk} to compute all of the linear forms for
Kn1,...,nk

. This may be done by computing

i. yj =
∑

γi∈Bj
xi for j = 1, . . . , k,

ii. fk =
∑k−1

j=1 yj ,

iii. S =
∑k

j=1 yj = fk + yk, and

iv. fj = S − yj for j = 1, . . . , (k − 1).

These four steps give rise to a linear computation sequence for {f1, . . . , fk} of length

(n − k) + (k − 2) + 1 + (k − 1) = n + k − 2.

This proves that L(Kn1,...,nk
) ≤ n+k−2. Moreoever, if k ≥ 4, then this bound is optimal.

Theorem 23. Let Γ be the complete k-partite graph Kn1,...,nk
on n = n1+· · ·+nk vertices.

If k = 2, then L(Γ) = n−2; if k = 3, then L(Γ) = n; and if k ≥ 4, then L(Γ) = n+k−2.

the electronic journal of combinatorics 13 (2006), #R9 14

Proof. This follows directly from Theorem 5, Theorem 21, and the fact that

I(Kn1,...,nk
) = Kk.

4.5 Johnson graphs

Let 1 ≤ k ≤ n. The Johnson graph J(n, k) is the graph whose vertices are the k-element
subsets of {1, . . . , n}, where two vertices γ and γ′ are adjacent if and only if |γ∩γ′| = k−1.
Functions defined on Johnson graphs arise when considering certain types of committee
voting data. Knowing the linear complexity of Johnson graphs therefore tells us something
about how efficiently we may analyze such data (see, for example, [6, 9]).

Every vertex of J(n, k) has exactly k(n − k) neighbors. Since |V (J(n, k))| =
(

n
k

)
, the

number of edges in J(n, k) is (
n

k

)
k(n − k)

2
.

The naive upper bound for L(J(n, k)) given by Proposition 6 is therefore

L(J(n, k)) ≤
(

n

k

)
k(n − k) −

(
n

k

)
.

We may, however, improve this bound significantly by closely examining the substructure
of J(n, k).

Label every edge {γ, γ′} of J(n, k) with the (k − 1)-element set γ ∩ γ′. These labels
then partition the edges of J(n, k) into

(
n

k−1

)
subsets, each of which induce a complete

subgraph that is isomorphic to Kn−k+1. Every vertex of J(n, k) is contained in k such
subgraphs. By Theorem 10 and Theorem 21, we therefore have that

L(J(n, k)) ≤
(

n

k − 1

)
(2(n − k + 1) − 2) +

(
n

k

)
(k − 1)

=

(
n

k

)(
2k(n − k)

n − k + 1
+ (k − 1)

)

<

(
n

k

)
3k.

This bound, however, may be improved further still.

Theorem 24. Let 1 ≤ k ≤ n and let J(n, k) the Johnson graph defined on the k-sets of
the set {1, . . . , n}. Then

L(J(n, k)) <

(
n

k

)
(2k + 1).

the electronic journal of combinatorics 13 (2006), #R9 15

Proof. Consider the partition of the edges of J(n, k) described above. For every (k − 1)-
element subset δ, let Jδ be the subgraph of J(n, k) that is induced by the edges with the
label δ. As noted above, Jδ is a complete graph on n − k + 1 vertices.

Let {γ1, . . . , γm} be the vertices of J(n, k). For each Jδ, define

Sδ =
∑
γi∈Jδ

xi.

The linear form associated to any vertex γj of J(n, k) is then

fj =

∑

δ⊂γj

Sδ

− kxj .

This immediately gives rise to a linear computation sequence for {f1, . . . , fm} of length(
n

k − 1

)
((n − k + 1) − 1) + (k − 1)

(
n

k

)
+ 2

(
n

k

)

which simplifies to (
n

k

)
k(n − k)

n − k + 1
+ (k + 1)

(
n

k

)
<

(
n

k

)
(2k + 1).

4.6 Hamming Graphs

A direct product Kn1×· · ·×Knd
of complete graphs is a Hamming graph (see, for example,

[3]). Hamming graphs have recently been used in the analysis of fitness landscapes derived
from RNA folding [14]. As with the Johnson graphs and committee voting data, knowing
something about the linear complexity of Hamming graphs tells us something about how
efficiently we may analyze such landscapes.

Theorem 25. If Γ is the Hamming graph Kn1 × · · · × Knd
, then

L(Γ) < (2d + 1)

(
d∏

i=1

ni

)
.

Proof. The result follows directly from an argument similar to that found in the proof of
Theorem 24. We leave the details to the interested reader.

In particular, for the Hamming graphs H(d, n) = Kn × · · · × Kn (d times), we have
that L(H(d, n)) < (2d + 1)nd.

the electronic journal of combinatorics 13 (2006), #R9 16

5 Bounds for Graphs in General

In this section, we give an upper bound on the linear complexity of an arbitrary graph.
The bound is based on the number of vertices and edges in the graph, and it follows from
a result found in [7].

5.1 Clique Partitions

Let Γ be a graph. A clique partition of Γ is a collection C = {Γ1, . . . , Γk} of subgraphs of
Γ such that each Γi is a bipartite clique and {E(Γ1), . . . , E(Γk)} is a partition of E(Γ).
The order of a bipartite clique is the number of vertices in it. The order of C is then
defined to be the sum of the orders of the individual Γi’s.

Let Γ be a graph with n vertices {γ1, . . . , γn}. Let C = {Γ1, . . . , Γk} be a clique parition
of Γ. Let wj denote the order Γj . By Theorem 23,

L(Γj) = wj − 2 (4)

for each j = 1, . . . , k.
Let w = w1 + · · · + wk be the order of C, and let bi be the number of Γj that contain

the ith vertex γi of Γ. Note that bi is then the contribution of γi to the order w of C. It
follows immediately that

n∑
i=1

bi = w. (5)

By Theorem 10, (4) and (5) we therefore have that

L(Γ) ≤
k∑

j=1

L(Γj) +

n∑
i=1

(bi − 1) = 2w − (n + 2k) < 2w.

In other words, the linear complexity of a graph Γ is bounded above by twice the order
of any clique partition of Γ. It was shown in [7], however, that if Γ is a graph with n
vertices and m edges, then Γ has a clique partition of order

O

(
m log(n2/m)

log n

)
.

This proves the following theorem:

Theorem 26. If Γ is a graph with n vertices and m edges, then

L(Γ) ∈ O

(
m log(n2/m)

log n

)
.

the electronic journal of combinatorics 13 (2006), #R9 17

6 Acknowledgments

This paper is dedicated to the memory of our friend and mentor Kenneth P. Bogart.
Part of this paper was written while the second author was visiting the Department of
Mathematics and Statistics at the University of Western Australia. Special thanks to
Cheryl Praeger for her encouragement and support. Special thanks also to Doug West
for helpful suggestions on terminology and definitions, and to Robert Beezer, Masanori
Koyama, Jason Rosenhouse, and Robin Thomas for comments on a preliminary version
of this paper. This work was supported in part by a Harvey Mudd College Beckman
Research Award and by Seattle University’s College of Science and Engineering.

References

[1] O. Bastert, D. Rockmore, P. Stadler, and G. Tinhofer, Landscapes on spaces of trees,
Appl. Math. Comput. 131 (2002), no. 2-3, 439–459.

[2] N. Biggs, Algebraic graph theory, Cambridge University Press, London, 1974, Cam-
bridge Tracts in Mathematics, No. 67.

[3] A. Brouwer, A. Cohen, and A. Neumaier, Distance-regular graphs, Springer-Verlag,
Berlin, 1989.

[4] P. Bürgisser, M. Clausen, and M.A. Shokrollahi, Algebraic complexity theory,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math-
ematical Sciences], vol. 315, Springer-Verlag, Berlin, 1997, With the collaboration of
Thomas Lickteig.

[5] G. Constantine, Graph complexity and the Laplacian matrix in blocked experiments,
Linear and Multilinear Algebra 28 (1990), no. 1-2, 49–56.

[6] P. Diaconis, Group representations in probability and statistics, Institute of Mathe-
matical Statistics, Hayward, CA, 1988.

[7] T. Feder and R. Motwani, Clique partitions, graph compression and speeding-up al-
gorithms, J. Comput. System Sci. 51 (1995), no. 2, 261–272.

[8] R. Grone and R. Merris, A bound for the complexity of a simple graph, Discrete Math.
69 (1988), no. 1, 97–99.

[9] D. Maslen, M. Orrison, and D. Rockmore, Computing isotypic projections with the
Lanczos iteration, SIAM Journal on Matrix Analysis and Applications 25 (2004),
no. 3, 784–803.

[10] D. Minoli, Combinatorial graph complexity, Atti Accad. Naz. Lincei Rend. Cl. Sci.
Fis. Mat. Natur. (8) 59 (1975), no. 6, 651–661 (1976).

the electronic journal of combinatorics 13 (2006), #R9 18

[11] M. Orrison, An eigenspace approach to decomposing representations of finite groups,
Ph.D. thesis, Dartmouth College, 2001.

[12] P. Pudlák, V. Rödl, and P. Savický, Graph complexity, Acta Inform. 25 (1988), no. 5,
515–535.

[13] C. Reidys and P. Stadler, Combinatorial landscapes, SIAM Rev. 44 (2002), no. 1,
3–54.

[14] D. Rockmore, P. Kostelec, W. Hordijk, and P. Stadler, Fast Fourier transform for
fitness landscapes, Appl. Comput. Harmon. Anal. 12 (2002), no. 1, 57–76.

[15] D. West, Introduction to graph theory, Prentice Hall Inc., Upper Saddle River, NJ,
1996.

the electronic journal of combinatorics 13 (2006), #R9 19

	Claremont Colleges
	Scholarship @ Claremont
	2-1-2006

	The Linear Complexity of a Graph
	David L. Neel
	Michael E. Orrison Jr.
	Recommended Citation

	v13i1r9.dvi

