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LOCALLY FINITE FAMILIES, COMPLETELY SEPARATED SETS
AND REMOTE POINTS

M. HENRIKSEN AND T. J. PETERS

(Communicated by Doug W. Curtis)

ABSTRACT. It is shown that if X is a nonpseudocompact space with a a­
locally finite 1r-base, then X has remote points. Within the class of spaces
possessing a a-locally finite 1r-base, this result extends the work of Chae and
Smith, because their work utilized normality to achieve complete separation.
It provides spaces which have remote points, where the spaces do not satisfy
the conditions required in the previous works by Dow, by van Douwen, by van
Mill, or by Peters.

The lemma: "Let X be a space and let {C~: e < a} be a locally finite
family of cozero sets of X. Let {Z~: e< a} be a family of zero sets of X such
that for each e< a, Z~ C C~. Then U~<Q Z~ is completely separated from

XIU~<Q C~", is a fundamental tool in this work.
An example is given which demonstrates the value of this tool. The example

also refutes an appealing conjecture-r-a conjecture for which the authors found
that there existed significant confusion within the topological community as
to its truth or falsity.

1. Introduction. All spaces that appear below are assumed to be Tychonoff.
A n-base for a space X is a collection of open subsets such that each open subset
of X contains one of them. A space that has a a-locally finite 1r-base is called a
a-it space. As usual, (3X will denote the Stone-Cech compactification of X, and a
point p of (3X that fails to be in cl.BxA for any nowhere dense subset A of X is
called a remote point of X, and T X will denote the set of remote points of X. The
cardinality of X will be denoted by IXI.

The existence of remote points for large classes was established first by N. Fine
and L. Gillman in [FG] assuming the continuum hypothesis, and this assumption
was shown to be unnecessary by E. van Douwen and S. Chae and J. Smith [VD,
CS]. In particular, they show that every space with countable 1r-weighthas a remote
point. .

Recall from [CS] that a space X is called a G-space if for any open subspace U
of X and any positive integer n, there is a family of C of nonempty closed sets with
the n-intersection property such that every dense open set in U contains a set in
C.

They showed that every normal nonpseudocompact G-space has remote points
and that every a-it space is a G-space. In particular, every metrizable space is
a G-space. However, there exist G-spaces which are not a-t: spaces [P2,P4 ] . In
this work, it is shown that every nonpseudocompact a-n space has remote points.
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The question of the existence of remote points for nonnormal, nonpseudocompact
G-spaces, as posed in [P2 , P s ], remains open.

2. Complete separation via locally finite families. Pervading the litera­
ture on remote points has been a concern with techniques for the demonstration
of complete separation [CS, vD, D, FG, G, vM, PI, P 2 , P s , R, W]. This work
shares that concern, as evidenced by the following lemma.

2.1 LEMMA. Let X be a space and let {Ce: €< a} be a locally finite family of
cozero sets of X. Let {Ze: € < a} be a family of zero sets of X such that for each
€ < a, z, ~ Ceo Then Ue<a z, is completely separated from X \ Ue<a Ceo

PROOF. For each € < a, there exists a continuous function Ie: X ~ [0,1] such
that

le(x) = 1 for all x E Ze and

Ie (x) = 0 for all x E X \ Ce.

Define the function I: X ~ [0,00) by I = Le<a Ie. The local finiteness of
{Ce: € < a} insures that I is well defined and continuous.

Furthermore,

I(x) ~ 1 for all x E Uz, and
e<a

I(x) = 0 for all x E XI Uc,
e<a

which suffices to prove the lemma [GJ, 1.15].

3. Remote points for o-tt spaces. The appropriate modifications are now
made to the techniques of Chae and Smith so that the previous lemma may be
invoked in lieu of their hypothesis of normality.

3.1 THEOREM. If X is a nonspeudocompact a-n space, then ITXI ~ 2c .

PROOF. Let B = Un<w B n be a a-locally 1r-base for X. Without loss of general­
ity, assume that for each n < W, B n C B n +1 , and further, assume that each B E B
is a cozero set of X. Let U be a nonempty open subset of X. Then there exists
n < wand V E B n such that V C U. Let #(U) be the least such n. Furthermore,
there exists m < wand W E B m such that W is completely separated from X \ V
for some V E B#(u), where V C U. Let #(U)' be the least such m. [Note that
#(U)' ~ #(U).]

Let

B#(u) = {V E B#(u) : V C U and there exists W E B#(u)' such that

W is completely separated from X \ V}.

For each V E B#(u), choose a unique Wv E B#(u)' such that Wv is completely
separated from X \ V and also choose a unique zero set ZWv such that Wv C

ZWv C V. The unique choices insure that the family {Zwv : V E B#(u)} is locally
finite.

Let
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Inductively, for each n < w, define

Fn(U) = U{Fn-1(U n W): W E B#(u)' and Un W =I 0} U Fn-1(U).

It is clear that each Fn(U) is closed and each Fn(U) C U.
Let H be the family of dense open subsets of X. For each n < wand for each

nonempty open subset U of X, let

Fn(U) = {Fn(UnH): HEH}.

The argument of [CS, Theorem 3] is now adapted to show that Fn(U) has the
n-intersection property. The argument proceeds by induction.

Let H 1,H2 , •.• .H; E H.
For n = 1, it is clear that F1 (U n HI) is nonempty.
Suppose that the statement is true for n - 1. Without loss of generality, assume

that #(UnH1)' is less than #(UnHi)', for i = 2, ... ,n. (Hence, B#(UnH1 ) ' C
B#(UnHd" for i = 2, ... , n.) By definition of Fn ( · ) , there exist V E B#(UnH 1 ) ,

Wv E B#(UnH1 ) ' and ZWv such that Wv C ZWv C F1(U n HI) C Fn(U n HI) C
Un HI. Hence, un Wv is a nonempty open subset of X.

Let
L = Fn-1(U n Wv n H 2 ) n··· n Fn-1(U n Wv n Hn).

The induction hypothesis implies that L is nonempty. Since Wv E B#(UnHd'
whenever i = 2, ... ,n, it follows that L C Fn-l(UnWV nHi) C Fn(UnHi) for i =
2, ... ,n-where the latter inclusion follows from the definition of
Fn(·). Note also that L C Fn-1(U n Wv n H2 ) c Wv C Fn(U n HI). Hence,
L C Fn(U n HI) n ... n Fn(U n Hn). Therefore, the family F n(U) has the n­
intersection property.

Let {G n : n < w} be a countably infinite discrete family of nonempty cozero sets
of X. For each q E io"; let

Fq = {U Fn(GnnH): JEq,HEH}.
nEJ

It is easy to see that n F q = 0 and that F q is a family of closed subsets of X,
where F q has the finite intersection property. So, for each q E io"; it follows that

n{clpxF: F E Fq } C (3X/X.

It remains to show, for each q E o"; that n{clpxF: FE F q } C TX. Clearly, it
suffices for each such q and each nowhere dense A C X to show that there exists
FA E F q such that FA is completely separated from A. Let H E H such that
A C X\H. Let FA = Un<w Fn(G n nH). That A and FA are completely separated
can be seen by invoking Lemma 2.1.

It now only remains to show that the cardinality of T X is at least 2c . The
argument here is an adaptation of [vD]. For each q E co"; let

t; = n{clpxF: FE Fq } .

Let HE H, let p,q E w· such that p =I q and let J E p, K E q such that J and K
are disjoint. Then

t; Cclpx U Fn(G n n H) and t; = clpx U Fn(G n n H).
nEJ nEK
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Note that the condition that for each n < w, Gn is a cozero set, implies that
X \ UnEJ c; is a zero set. Furthermore,

U r; (Gn n H) c X \ U c; and
nEK nEJ

U Fn(Gn nH) c U Gn·
nEJ nEJ

Then, the definition of F(·), the discreteness of the family {Gn : n < w} and Lemma
2.1 insure that UnEJ Fn(Gn nH) is completely separated from UnEK Fn(Gn nH).
Hence, Tp and Tq are disjoint. Since the cardinality of w· is equal to 2c , it is clear
that the cardinality of T X is at least 2c , and the proof is complete.

3.2 REMARK. Many examples of a-n products are given in [PI and P 4 ] . Cer­
tain specialized instances of these products had been shown to have remote points
[PI, P s ]. Theorem 3.1 is much more general.

In particular, Theorem 3.1 demonstrates that the following product has remote
points-a result that was previously unknown.

3.3 EXAMPLE. Let {Xe}e<Wl be the family of discrete spaces, where X e = We+1,
for each e< W1. Since the product TIe<Wl X e is a a-t: space [P 1 , P 4 ] , it also has
remote points.

4. The class of a-it spaces versus other classes of spaces known to
possess remote points. It is worthwhile to note the difference between the class
of a-t: spaces and some other similar classes of spaces known to possess remote
points.

A. Dow [D] showed that any nonpseudocompact space with a "... good n­
base ... " has remote points. The ensuing arguments demonstrate that there exist
nonpseudocompact a-t: spaces which do not have good 1r-bases.

4.1 DEFINITION. If~,~, ~ c 9'(X), we shall say that ~ refines ~ n ~ if for
a E~, b E ~ with an b =1= 0, there is acE ~ with c Can b [D].

4.2 DEFINITION. A set ~ C 9'(X) is wide if for any maximal family of open
sets, a, there is a finite (j1 C o such that U(j1 n A =1= 0 for all A E~. And
Ql = UmEw~ ~ 9'(X) is good if each ~ is wide, ~ C ~+1, and for any
n, mEw, there is a k E W such that ~k refines~ n~ [D].

For the following, if X is a space, let eX denote the cellularity of X.

4.3 LEMMA. If a space X has a good n-base, then X has the countable chain
condition.

PROOF. Suppose eX is uncountable, and let B = Um<w B m be a good 1r-base
for X. Let ~ be an uncountable maximal cellular family of nonvoid open subsets
of X. For each n < w, there exists ~~ C ~ such that I~~I < wand such that
(U~~) n B =1= 0, for each B E B m· Note that IUm<w ~~I ~ w.

Choose 6 E ~ such that 6 ¢ Um<w ~~.

Choose iJ E B such that iJ C 6, where iJ E Bn" for some it < w.
However, then iJ n (U ~~) = 0, in contradiction to the condition that X has a

good 1r-base.
4.4 REMARK. Lemma 4.3 demonstrates that any a-n space with uncountable

cellularity does not have a good 1r-base. In particular, the product given in Example
3.3 is such a space.
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J. van Mill showed that each nonspeudocompact, "... nicely approximated
spaced... " has remote points [vM]. Remark 4.9 below shows that it is easy to
find (7-1r spaces which are not nicely approximated.

4.5 DEFINITION. The notation (Xa, laP, K) means that K is an ordinal, that for
each Q < K, Xa is a space and that for each (3 < Q, laP is a continuous function from
Xa into Xp such that if (3 < Q < I then I,p = laP o/,a. The triple (Xa, laP, K)
is called an inverse system. The inverse limit lim(Xa, laP, K) of the inverse system

+--

(Xa, laP, K) is the subspace {x E ila<" Xa lV'(3 < Q < K: Xp = laP(Xa)} of
ila<" x.; The projection from ~(Xa, laP, K) into x, is denoted by I"a. An
inverse system (Xa, laP, K) is called continuous provided that Xp = lim(Xa, la" (3)

+--
for each limit ordinal (3 < K [vM].

4.6 DEFINITION. A continuous function I: X ~ Y is called quasi-openwhenever
intj- F[U] =I- 0 for each nonempty open U C X [vM].

4.7 DEFINITION. A space X is called nicely approximated provided there is a
continuous inverse system (Xa, laP, WI) such that

-each laP is quasi-open ((3 < Q < WI);

-each Xa has countable 1r-weight;
-X ~ lim(Xa, laP,wl).

+--
We say that (Xa,/ap,wl) nicely approximates X [vM].

4.8 LEMMA. If X is a nicely approximated space, then IXI ~ 2c •

PROOF. it is clear that X is homeomorphic to a subspace of a product of WI

many factors, where each factor has countable 1r-weight. Hence, the full product
is separable [C]. Therefore, the cardinality of the full product must be less than or
equal to 2C[C]. Hence IXI ~ 2c •

4.9 REMARK. Any discrete space of cardinality exceeding 2C is a (7-1r space,
which is not nicely approximated. It is also clear that any such spaces does not
have a good 1r-base (4.3).

EXAMPLE 3.3 and Remark 4.9 can now be combined to give an example of a
nontrivial (7-1r space, which neither has a good 1r-base nor is nicely approximated.

4.10 EXAMPLE. Let X be the product given in Example 3.3. Let D be the
discrete space of cardinality (2C )+ .

Let Y = X x D. Then Y is a (7-1r space (since D is discrete and X is a (7-1r

space), but Y does not have a good 1r-base (4.3) and Y is not nicely approximated
(4.8).

The work of Dow [D] and of van Mill [vM] include spaces which are not (7-1r

spaces.
4.11 EXAMPLE. Let X = WWl, where each factor W has the discrete topology.

Then X has a good 1r-base [D] and X is nicely approximated [vM], but X is not
a (7-1r space [PI, P 4 ] .

5. Counterexamples to conjectures concerning complete separation.
Some care must be exercised in the proof of Theorem 3.1 in order to effect the
desired complete separation. Naive attempts to modify the hypotheses of Lemma
2.1 and/or the proof of Theorem 3.1, easily become misdirected. In particular,
negative answers are provided to two questions concerning potential avenues of
modification.
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5.1 QUESTION. If {Ce: e< Q} is a locally finite family of cozero sets of a space
X and if A c X such that for each e< Q, Ce and A are completely separated,
then must Ue<o: Ce and A be completely separated? (The answer is "No.", as is
demonstrated by Example 5.2, below.)

5.2 EXAMPLE. Let W have the discrete topology and let (w+ 1) be its one-point
compactification.

Let WI consist of the space WI +1 endowed with the following topology. If Q < WI,

then {Q} is open. If U c WI and WI E U, then U is open if and only if IWI/UI ~ w.
Let D= WI X (w+ 1) and let Y = (w + 1) x w.
Let EB denote disjoint topological union and let X' be the set obtained from DEBY

by identifying the points (WI, n) and (w, n) for each n < w. For each n < w, denote
the point so obtained by Pn. Endow X' with the resultant quotient space topology.
The desired space X is obtained as a subspace of X', where X = X' - {(WI, w)}.
(Since, in general, quotient maps do not preserve Tychonoff spaces, it is worthwhile
to note that X' is a regular Hausdorff, Lindelof space, and as such, X' is also a
Tychonoff space.)

For each n < w, let Vn denote the points of X strictly to the right (as depicted
below) of Pn. Let A denote the top edge of X (as depicted below) and specifically
note that X contains no points strictly to the right of A. Thus, X may be depicted
as

( ( A ) )

(O,w)
( ( Vn )]

Pn

( Vl ·1
Pl
(( Vo ~ ]

(0,0) (0,0)
Po

4Wl

W~

Let V = Un<w Vn. The following assertions are easily verified.
(a) For each n < W, Vn is a cozero set of X.
(b) The family {Vn}n<w is locally finite.
(c) For each n < W, Vn and A are completely separated.
(d) The sets V and A are not completely separated.
5.3 REMARK. The space X of the preceding example is nonpseudocompact but

it is not a o-tt space. Furthermore, it is a nonnormal G-space. But X possesses
remote points. In fact, the much stronger condition that T X is dense in {3X \ X
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holds [Ps]. The latter conclusion follows since X is a nearly realcompact [K,
Theorem I, Example A], strong G-space [P2 , P s ].

5.4 QUESTION. If {Ze: e< a} is a locally finite family of zero sets of a space
X and if A c X such that for each e< a, Ze and A are completely separated,
then must Ue<Q Ze and A be completely separated? (The answer is "No.", as is
demonstrated by Example 5.5, below.)

5.5 EXAMPLE. The space given here is defined in [GJ, 6P]. Let

A == {3R \ ({3N \ N).

Let A == A - R and for each n < w, let Zn = {n}. Note that N == Un<w Zn. The
following assertions are easily verified.

(a) For each n < W, Zn is a zero set of A.
(b) The family {Zn}n<w is locally finite.
(c) For each n < W, Zn and A are completely separated. (In fact, for each n < W,

Zn and A are, themselves, disjoint zero sets.)
(d) The sets N and A are not completely separated.
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