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The steady boundary layer due to a fast vortex
Andrew J. Bernoff
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston,
Illinois 60208

Harald J. H. M. van Dongen and Seth Lichtera)
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208

~Received 11 January 1995; accepted 13 September 1995!

A point vortex located above and convected parallel to a wall is an important model of the process
by which a boundary layer becomes unstable due to external disturbances. Often it has been
assumed that the boundary layer due to the passage of the vortex is inherentlyunsteady. Here we
show that for a vortex convected by a uniform shear flow, there is asteadysolution when the speed
of the vortexcv is sufficiently fast. The existence of the steady solution is demonstrated analytically
in the limit of large vortex velocity~cv→`! and numerically at more moderate speeds. This solution
may provide a useful base state about which to investigate the stability of a boundary layer induced
by external disturbances. ©1995 American Institute of Physics.@S1070-6631~96!01301-3#

I. INTRODUCTION

In this work we study steady boundary layer solutions
due to the passage of a fast vortex near a wall. The vortex is
‘‘fast,’’ in that it is convected by a shear flow at a speed that
is much greater than the speed at which it would propagate
due solely to induction by its image. The height of the vortex
above the wall is fixed, as may reasonably be assumed from
inviscid analysis~see Ref. 1! when the boundary layer thick-
ness is small compared to the height of the vortex.

It has been previously observed that there are two gen-
eral types of boundary layer response to the passage of a
vortex. For slower vortices~including those propagating
solely due to induction!, reversed flow occurs in the near
wall region, leading to a finite-time singularity in the solu-
tion to the boundary layer equations. Walker2 considered a
vortex in a flow at rest at infinity and notes that for this
situation there is no steady viscous solution. For this problem
a singularity that forms in finite time was described by Elliot
et al.3 Walker’s geometry was later considered with a La-
grangian numerical scheme4 and recently with an adaptive
grid technique.5 In the present paper, the vortex is convected
by a shear flow, a geometry previously considered by Doli-
galski et al.6 Their work focused on relatively slow moving
vortices, and they concluded that the boundary layer will
thicken locally in an ‘‘eruption’’ for arbitrary vortex speed.
For faster vortices, though no temporal singularity has been
observed, it has been suggested that the boundary layer
grows continually in time.6 Doligalskiet al.7 present an over-
view of the literature. Physical experiments relating to this
problem are also reviewed in Lutonet al.8

Note that in the case studied here, as in Ref. 6, the vortex
is convected by a background flow of uniform shear. This
shear is a solution to the equations of motion and so the
boundary layer develops in response to the passage of the
vortex alone. The case studied here is to be distinguished
from those studies, e.g. Refs. 1 and 7, in which the boundary

layer development is in response to both the passage of the
vortex and an impulsively started flow.

Our goal here is to show that there exists a steady solu-
tion to the boundary layer equations for sufficiently fast vor-
tices. Our numerics are not suited, nor do we try to pursue,
the greater complexity of resolving the structure of separa-
tion. The existence of a steady solution for fast vortices is
consistent with the work of Degani and Walker,9 who
showed that for a rotating cylinder in a uniform flow, a suf-
ficiently high rotation rate will suppress separation.

In the next section we formulate the problem and derive
an asymptotic solution for the steady problem in the case of
aweakboundary layer. Here, ‘‘weak’’ indicates that the fluid
velocity is much smaller than the vortex velocity. This solu-
tion is valid both in the limit of large vortex speed and far
downstream of the vortex, where the induced velocity is
small. In Sec. III we describe a numerical formulation of the
steady problem for finite vortex speedcv . Numerical results
are presented in Sec. IV, including plots of streamfunction,
stagnation point location, wall shear stress, and displacement
thickness. It is then shown that these measures of the numeri-
cal solution converge to the asymptotic solution in the limit
of large vortex velocity~cv→`!. The implication of the ex-
istence of a steady solution and application of these results
are discussed in Sec. V.

II. FORMULATION

We consider the boundary layer induced by a rectilinear
potential vortex of strengthk̃, which can be positive or nega-
tive, at a heighty5H above a no-slip wall, Fig. 1. The
vortex is being advected by a linear shear profile,u5ay
~a>0!, modeling an external flow; the shear velocity van-
ishes at the wall and consequently only affects the boundary
layer structure indirectly through the advection of the vortex.

The equations of motion are nondimensionalized on the
vortex heightH and twice the magnitude of the strength
2uk̃u. We consider the limit of large Reynolds number,

Re5
2uk̃u

n
,

a!Corresponding author: Tel:~708! 467-1885; FAX:~708! 491-3915; E-mail:
s-lichter@nwu.edu.
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where n is the kinematic viscosity. In the nondimensional
coordinate system, a vortex of strengthk561

2 at unit height
is advected by a shearu5ay, wherea5H2a/2k̃.

The inviscid problem can be solved by considering an
image vortex,~cf. Fig. 1!, of opposite sign symmetrically
placed relative to the wall. Consequently, the vortex will
propagate parallel to the wall with a velocitycv equal to the
velocity induced by the vortex’s image in the wall~ci561

4!,
together with the advection due to the imposed shear
(cs5a),

cv5cs1ci5a6 1
4. ~1!

In the case in which the vortex strength is positive, the vor-
tex and the shear flow both induce a positive velocity; in this
casecv.

1
4. When the vortex strength is negative, the nega-

tive velocity induced by the image vortex is counter to the
shear flow; in this casecv.21

4.
The vortex and its image, together with the background

shear, create an inviscid velocity field of the form

~ ū,v̄ !5S ay6
~x2cvt !

22y211

@~x2cvt !
21y211#224y2

,

62~x2cvt !y

@~x2cvt !
21y211#224y2D . ~2!

Although this velocity field satisfies the impermeability con-
dition, it does not satisfy the no-slip condition. Consequently,
a boundary layer will form near the wall. A standard bound-
ary layer scaling is now made,

T5t, X5x2cvt, Y5ARe y, ~3!

U~X,Y,T!5u~x,y,t !, V~X,Y,T!5ARe v~X,Y,T!.
~4!

The pressure in the boundary layer is independent of height
at leading order; evaluating it in the inviscid region and sub-
stituting yields the boundary layer equations,

]U

]X
1

]V

]Y
50, ~5!

]U

]T
1~U2cv!

]U

]X
1V

]U

]Y
5~Ū2cv!

dŪ

dX
1

]2U

]Y2 . ~6!

The velocity (U,V) must match the inviscid solution~2! out-
side the boundary layerY@1 but still near the wally!1.
That is,

~U,V!→~Ū,V̄!, as Y→`, ~7!

where

~Ū,V̄!5S 6
1

X211
,6

2XY

~X211!2D . ~8!

Note that the boundary layer is much thinner than the char-
acteristic scale of the shear layer. Consequently, the shear has
no direct role in boundary layer development to leading or-
der and acts only to convect the vortex.

In addition, the no-slip condition must be satisfied,

U~X,0,T!5V~X,0,T!50. ~9!

To complete the formulation of the problem we must also
prescribe initial conditions on the velocity. We will assume
that the fluid initially has the inviscid profile,

U~X,Y,0!5Ū, V~X,Y,0!5V̄, ~10!

as if the vortex were turned on att501. We believe this
condition is appropriate for a vortex propagating into undis-
turbed shear flow, as any initial disturbance will eventually
be far upstream of the vortex. Moreover, as we are most
concerned with a class of steady solutions this condition has
little effect on the subsequent analysis.

We will concentrate our efforts on finding a steady solu-
tion to the boundary layer equations in the frame moving
with the vortex; to this end we note that if the term (U2cv)
is negative, corresponding to flow in the upstream direction,
the steady problem will be parabolic in nature and we can, at
least in theory, solve the problem by integrating from down-
streamx5` to upstreamx52`. This condition requires that

cv.max~U !, ~11!

where max(U) is the maximum value of the velocity in the
boundary layer. Where this condition is violated, there will
be a region of upstream flow, and the strictly parabolic nature
of the equations is lost; the question of existence of a steady
solution becomes much more delicate in this case.

A. Weak boundary layer approximation

The boundary layer equations imply that the viscous per-
turbation of the velocity field from the inviscid velocity pro-
file ~8! is localized near the boundary. If, in addition, the
fluid velocity is assumed to be small compared to the vortex
velocity an approximate solution can be found. The bound-
ary layer response is thenweak, and the governing equations
can be linearized around the inviscid solution. This approxi-
mation is valid in two regimes: first, when the speed of
propagation of the vortex is large~cv@1! and the cumulative
response at any fixed spatial location is small due to the fast
passage of the vortex; and second, far downstream from the
vortex where the quiescent fluid only feels the weak alge-
braic precursors of the vortex induced velocity.

FIG. 1. Schematic of the geometry in dimensional variables. A vortex, here
of strength1k, is located a distancey5H above a wall. An image vortex is
equidistant below the wall at the samex location. The vortex is convected
by a shear flowu5ay.
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To linearize the equations around the inviscid profiles,
define perturbation velocity components (k,l ),

U5Ū1k~X,Y,T!, V5V̄1 l ~X,Y,T!. ~12!

If we assume that the fluid velocity is much less than the
vortex velocity (uUu,uVu!cv), then, at leading order, the per-
turbation velocity satisfies the linearized boundary layer
equations,

]k

]X
1

] l

]Y
50, ~13!

]k

]T
2cv

]k

]X
5

]2k

]Y2 . ~14!

We expect the perturbation velocity to vanish in the farfield
Y@1. At the boundary, the no-slip condition must be satis-
fied,

k~X,0,T!5
71

X211
, l ~X,0,T!50. ~15!

The initial condition~10! indicates that both components of
the perturbation velocity initially vanish.

Note that the linearized momentum equation~14! de-
couples from the incompressibility equation~13! and takes
the form of a diffusion equation for the horizontal velocity
perturbationk, with a source term~15! on the boundary. The
incompressibility equation now yields a parasitic definition
for the vertical velocity perturbation,

l ~X,Y,T!52E
0

Y ]k~X,Y8,T!

]X
dY8. ~16!

A steady solution to the diffusion equation fork is derived
below.

It is possible to write down a time-dependent solution to
the diffusion equation fork ~14! by interpreting the boundary
condition ~15! as a source on the boundary and using a
Green’s function formulation.10 However, as the source term
is integrable, we expect that in the frame moving with the
vortex the solution will rapidly approach a steady velocity
distribution in the neighborhood of the vortex and leave the
initial transient behind at a fixed point in the laboratory
frame. Moreover, as the dynamics in this limit are governed
by the diffusion equation, we expect that this solution will be
stable and attracting for all initial conditions that are undis-
turbed downstream of the vortex. Consequently, we limit our
study to this steady response.

The steady solution fork takes the form

k~X,Y,T!57K~X,h!, h5AcvY, ~17!

and satisfies the steady diffusion equation

KX1Khh50,

K~X,0!5
1

X211
, ~18!

lim
h→`

K~X,h!50.

A solution can be found by using a Green’s function10 for-
mulation on the boundary

K~X,h!5
h

2Ap
E
0

` e2h2/4j

j3/2@11~X1j!2#
dj, ~19!

which can be transformed to a more useful form by the
change of variablesr 5 h/A2j,

K~X,h!5A2

p E
0

` r 4e2r2/2

r 41~Xr21h2/2!2
dr. ~20!

This integral form of the solution can be used to derive a
number of useful results, leading to a description of the flow
in the boundary layer.

We expect that the perturbation velocity will be weak far
downstream~X@1!; in this region the solution can be ex-
panded in terms of similarity variables,

K~X,h!5
g~z!

X2 1O ~X24!, z5
h

A2X
, ~21!

where

g~z!5A2

p E
0

` r 4e2r2/2

~r 21z2!2
dr. ~22!

Note thatg is a monotonically decreasing function ofz. For
small z, corresponding to being near the solid boundary,
g~z!;1, which recovers the no-slip boundary condition. For
largez, the integral can be expanded to yield

g~z!;
1

z4
, K~X,h!;

4

h4 1O S Xh2D . ~23!

Physically ugu<1 implies uKu,1/X2. So the boundary layer
is becoming weaker asX→`.

The solution~20! is also uniformly valid in the limit of
large vortex velocity~cv@1!; this can be verified by substi-
tuting the scaling~17! into the momentum equation~6! and
retaining the leading-order terms. In Sec. IV we compare the
results in the large-velocity limit to numerical calculations
over a range ofcv .

In this limit, linearizing the governing equations~13!–
~15! about the steady solution yields a homogeneous diffu-
sion equation. This suggests that the solution is stable to
small perturbations.

B. Streamfunction

The streamfunctionc(X,Y) for the velocity satisfies

~cY ,2cX!5~U,V!, ~24!

and can be most easily constructed from our solutions by
specifying thatc50 on the solid boundary, which yields

c~X,Y!5E
0

Y

U~X,Y8!dY8. ~25!

When both the streamfunction and the vertical coordinate are
scaled withAcv, the solution becomes independent of vortex
velocity in the weak boundary layer limit~cv→`!. Conse-
quently, we define
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c~X,Y![
c̄~X,h!

Acv
, ~26!

which in the weak boundary layer limit approaches

lim
cv→`

c̄~X,h!56
h

11X2 7E
0

h
K~X,h!dh. ~27!

C. Displacement thickness

Two useful measures of the boundary layer considered
are the displacement thickness and the wall stress, both of
which can be computed analytically from the integral repre-
sentation for largecv .

The displacement thickness of the boundary layer can be
defined as

d* ~X!52
*0

`k~X,Y8!dY8

Ū~X!
. ~28!

It is convenient to introduce a scaled displacement thickness,

d* ~X!5A p

2cv
d̄* ~X!. ~29!

In the limit of largecv , this can be computed by substituting
the integral formulation~20! and interchanging the order of
integration,

lim
cv→`

d̄* ~X!5S 11X2

A11X21X
D 1/2. ~30!

Note that the scaled thicknessd̄* (X) is independent of vor-
tex speed and hence should provide a uniformly valid ap-
proximation for the displacement thickness in the limit of
high speed.

D. Wall stress

The wall stress is proportional toUY(X,0),

tw~X!5mUY~X,0!5mApcv
2

t̄w~X!, ~31!

where t̄w(X) is the wall shear stress scaled with respect to
the vortex speed. In the weak boundary layer limit~cv→`!,
the scaled wall stress approaches

t̄w~X!56
2X1A11X2

2~11X2!3/2AX1A11X2
, ~32!

where the sign oft̄ matches that of the vortex.
A stagnation point appears on the boundary and can be

located at the pointX5Xstag, wheretw passes through zero.
In the limit of largecv , Eq. ~32! yieldsXstag521/).

III. NUMERICAL FORMULATION AND PARABOLICITY

To solve the boundary layer equations numerically, we
use the Davis Coupled Scheme11 which leads to a second-
order accurate solution in the grid spacingsDX,DY. The
method assumes the local parabolicity of momentum equa-
tion. The basic strategy is to assume that the weak boundary
layer solution is valid at some largeX, and then to integrate

in the upstream direction. At each point inX we apply no-
slip boundary conditions at the wall~Y50!, and assume
Neumann boundary conditions on the deviation ofU from
the inviscid flow (Ū) at some large value ofY. At each step
this implicit scheme requires the inversion of a pentadiago-
nal matrix to integrate a distanceDX upstream. If at any
point U2cv becomes positive, corresponding to a loss of
local parabolicity@cf. Eq. ~11!#, the scheme will become un-
stable to short waves. Typically, we have chosen (DX,DY)
as small as~20.001,0.005! and a computational domain of
X5@212.5,12.5#, Y5@0,25#; refinement studies verified that
our results are insensitive to numerical parameters.

Numerical solutions can be expected where the criterion
~11! is everywhere satisfied. Fork51

2 numerical solutions
were found forcv>1. This can be understood by noting that
the maximum value ofU is apparently 1, obtained atX50 in
the matching region, whereU is given byŪ @cf. Eq.~8!#. For
k521

2, solutions were also found forcv>1. This can be
understood by noting that the velocity becomes positive in a
region upstream from the vortex@cf. Fig. 6#. The exact value
of cv at which parabolicity was lost was not computed be-
cause of the stiffness of the calculations ascv decreases.

Below we present the results of our numerical calcula-
tions and compare them to the asymptotic results found in
the limit of large velocity.

IV. RESULTS

A. Streamfunction

Figure 2 shows the streamlines as a function of the spa-
tial variables~X,h!. The interval between contour levels of
streamfunction is 0.1 with non-negative values shown as
solid lines and negative values as dashed lines. Recall that
the vertical scalingh contains the square root of the speed of
the vortex~17! as well as the Reynolds number~3!. So the
figures greatly exaggerate the vertical scale in order to reveal
the details of the boundary layer flow. The results of Sec.
II A for k51

2 ascv→` are presented in Fig. 2~c!. For positive
X, the flow closely approximates the inviscid flow field
(Ū,V̄) which is a family of parabolas symmetric with respect
to X50, @cf. Eq. ~8!#. For negativeX, however, the upstream
portion of these streamlines are concentrated into a narrow-
band, resulting in a downward jet-like flow. In addition, for
negativeX, there is a wedge-shaped region of reverse flow.
The reverse flow region is separated from the region of for-
ward flow by a stagnation streamline that intersects the wall
at X521/), as can be computed by settingtw50 in Eq.
~32!. For a negative vortexk521

2, the pattern of streamlines
is identical but the direction of flow is reversed.

The flow field for finite speedscv are shown in Figs. 2~a!
and 2~b!. Figure 2~a! is for a speedcv52.0. Figure 2~b! is for
a high speed of vortex propagationcv510.0. Note that as the
vortex speed increases, the flow pattern approaches that
shown for cv→`, Fig. 2~c!. The streamline patterns for a
negative vortexk521

2 are comparable to the positive vortex
results at the same speed with the reversed direction of flow.
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B. Stagnation streamline

For all speeds studied, there is one stagnation streamline.
This streamline intersects the wall at some locationXstag,
Fig. 3. As the vortex speeducvu becomes large, the value of
Xstag approaches the asymptotic value of21/). For k51

2

~k521
2! the flow along the stagnation streamline is toward

~away from! the wall. As the speed of the vortex slows,Xstag
moves upstream~downstream!.

C. Shear stress

Figures 4~a! and 4~b! show the shear stress distribution
along the wall for the positive and negative vortex cases,
respectively. On both figures, the infinite velocity case is
given by the solid line. As the vortex speeducvu becomes
large, the shear stress approaches that given by the infinite
velocity vortex. The shear stress is small except in the inter-
val around the vortex location. Fork51

2 andX@0 the shear
stress is small and positive. Recall that in this region, the
flow is well approximated by the infinite velocity results, and
so the shear stress indicates that only a weak boundary layer
has been stirred up by the algebraically small 1/~X211! vor-
tex velocity. ForX,0 the negative values of the stress are
indicative of the reverse flow region. Note that the shear
stress is zero at the stagnation point shown in Fig. 3. On
reflecting thek51

2 results about the ordinate, one finds the
qualitative behavior fork521

2. The values, however, are not
precisely reproduced, as changing the sign ofk does not
precisely reverse the sign of the problem statement—the vor-
tex always convects towardX→`.

D. Displacement thickness

The displacement thickness, defined in Eq.~30!, normal-
ized with respect toŪ is shown in Figs. 5~a! and 5~b! for
positive and negative values of vortex strengthk561

2, re-

FIG. 3. The location of the stagnation pointXstagas a function of the speed
cv of the vortex. For vortices of both positivek5

1
2 and negativek52

1
2

strength, the location of the stagnation point approaches21/), the asymp-
totic value in the limitcv→`; see Sec. IV A.

FIG. 2. The scaled streamfunctionc̄(X,h) in the boundary layer is shown
for a positive vortex,k5

1
2 and for vortex speedscv52,10,̀ . The contour

levels are at intervals of 0.1 with counterclockwise~clockwise! flow shown
with solid ~dotted! contours. A stagnation point occurs where the zero con-
tour meets the wall~h50!. As cv increases the flow field becomes increas-
ingly well approximated by the large velocity asymptotic solution.~a! Nu-
merically calculated streamfunction forcv52. ~b! Numerically calculated
streamfunction forcv510. ~c! Streamfunction forcv5` calculated from the
integral solution~20!.

160 Phys. Fluids, Vol. 8, No. 1, January 1996 Bernoff, van Dongen, and Lichter

Downloaded¬02¬Mar¬2011¬to¬134.173.130.140.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://pof.aip.org/about/rights_and_permissions



spectively. ForX@0 the normalized displacement thickness
is very thin—another manifestation of the high speed of the
vortex; viscous diffusion from the wall does not have a long
time to act before the arrival of the vortex. Upstream, for
X!0, the values decay slowly; the smallest value ofŪ d̄*
shown for positiveX ~at X510.0! is only reached atX'
240.

In both figures the solid line represents the asymptotic
result ascv→`. From Eq.~30! it can be determined that the
maximum thickness ofŪ d̄* occurs atX521/). For finite
vortex speed, the maximum normalized thickness occurs for
X,0 and approaches the limiting value as vortex speed in-
creases. Ascv increases the general shape of the displace-

ment thickness can be seen to approach that given by the
asymptotic result.

V. DISCUSSION

A steady solution to the boundary layer equations dis-
turbed by the passage of a fast vortex has been presented. In
the limit of large vortex velocity~cv→`!, the boundary layer
is weak and an asymptotic solution is found. The weak
boundary layer approximation of Sec. II A suggests that as
cv is increased through finite values ofcv , the results should
converge to the asymptotic results. Our numerical results of

FIG. 5. The displacement thicknessd̄* normalized by the free-stream ve-
locity at the edge of the boundary layerŪ as a function of distanceX along
the wall. The vortex is located atX50. As the speed of the vortex
cv52,6,10 increases the displacement thickness approaches that given by
the asymptotic resultcv→` for which the maximum thickness is atX521/
). Note that ascv decreases the maximum amplitude of~a! vortices of
positive strengthk5

1
2 increases faster than that for~b! vortices of negative

strengthk52
1
2. This suggests that the steady solution will break down

sooner—at a larger value ofcv-for k5
1
2 than fork52

1
2; see Sec. III.~b! For

the caption see the previous figure.

FIG. 4. Shear stresst̄w as a function of distanceX along the wall. The
vortex is located atX50. As the speed of the vortexcv52,6,10 increases,
the shear stress distribution approaches that given by the asymptotic result
cv→`. Note that, as suggested by the linearized equation~14!, the results
for ~a! vortices of positive strengthk5

1
2 and ~b! vortices of negative

strengthk52
1
2 are nearly mirror images of one another; increasingly so as

cv→`. ~b! For the caption see the previous figure.
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streamfunction, stagnation point location, shear stress, and
displacement thickness do indeed confirm this.

Moreover, our numerical results demonstrate the exist-
ence of steady solutions for a fast vortex for at leastcv>1.
This result can be compared qualitatively to that of Degani
and Walker,9 who find that separation on a rotating and trans-
lating cylinder is suppressed whenVa/U0.1.9, whereV is
the angular speed of rotation,a is the cylinder radius, andU0
is the speed of translation. In general, we believe that if the
relative wall speed is large compared to the external velocity
field, then eruption of the boundary layer can be suppressed.
Physically, this can be explained by noting that the effects of
the external velocity field are advected away by the moving
boundary before they can accumulate into a temporal erup-
tion.

The breakdown of the existence of the steady solution is
associated with local flow reversal in the frame of the vortex.
It may be possible to make analytical progress in the under-
standing of finite-time singularity formation by considering
the manner in which the steady solution fails ascv decreases.
Several problems of practical interest that can be modeled as
a vortex-boundary layer interaction have been discussed in
the literature. For example, the interactions of a wall with
hairpin vortices, trailing vortices, and other shed vortical
structures are relevant to the performance of both aircraft and
marine vessels. Often, performance is limited by the occur-
rence of boundary layer eruption. The demonstration here of
a steady solution suggests that if the vortex is advected suf-
ficiently quickly over the boundary then eruption may be
suppressed.
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