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The steady boundary layer due to a fast vortex

Andrew J. Bernoff
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston,
lllinois 60208

Harald J. H. M. van Dongen and Seth Lichter®
Department of Mechanical Engineering, Northwestern University, Evanston, lllinois 60208

(Received 11 January 1995; accepted 13 September 1995

A point vortex located above and convected parallel to a wall is an important model of the process
by which a boundary layer becomes unstable due to external disturbances. Often it has been
assumed that the boundary layer due to the passage of the vortex is inharenédsdy Here we

show that for a vortex convected by a uniform shear flow, theresteadysolution when the speed

of the vortexc, is sufficiently fast. The existence of the steady solution is demonstrated analytically
in the limit of large vortex velocityc,—%) and numerically at more moderate speeds. This solution
may provide a useful base state about which to investigate the stability of a boundary layer induced
by external disturbances. @995 American Institute of Physid$§1070-663(96)01301-3

I. INTRODUCTION layer development is in response to both the passage of the
vortex and an impulsively started flow.

In this work we study steady boundary layer solutions  Our goal here is to show that there exists a steady solu-
due to the passage of a fast vortex near a wall. The vortex ison to the boundary layer equations for sufficiently fast vor-
“fast,” in that it is convected by a shear flow at a speed thattices. Our numerics are not suited, nor do we try to pursue,
is much greater than the speed at which it would propagatthe greater complexity of resolving the structure of separa-
due solely to induction by its image. The height of the vortextion. The existence of a steady solution for fast vortices is
above the wall is fixed, as may reasonably be assumed fromonsistent with the work of Degani and WalRemvho
inviscid analysigsee Ref. 1when the boundary layer thick- showed that for a rotating cylinder in a uniform flow, a suf-
ness is small compared to the height of the vortex. ficiently high rotation rate will suppress separation.

It has been previously observed that there are two gen- In the next section we formulate the problem and derive
eral types of boundary layer response to the passage of an asymptotic solution for the steady problem in the case of
vortex. For slower vorticegincluding those propagating aweakboundary layer. Here, “weak” indicates that the fluid
solely due to induction reversed flow occurs in the near velocity is much smaller than the vortex velocity. This solu-
wall region, leading to a finite-time singularity in the solu- tion is valid both in the limit of large vortex speed and far
tion to the boundary layer equations. Wafkepnsidered a downstream of the vortex, where the induced velocity is
vortex in a flow at rest at infinity and notes that for this small. In Sec. Il we describe a numerical formulation of the
situation there is no steady viscous solution. For this problensteady problem for finite vortex speeg. Numerical results
a singularity that forms in finite time was described by Elliot are presented in Sec. 1V, including plots of streamfunction,
et al®> Walker’s geometry was later considered with a La-stagnation point location, wall shear stress, and displacement
grangian numerical schethand recently with an adaptive thickness. Itis then shown that these measures of the numeri-
grid techniqué. In the present paper, the vortex is convectedcal solution converge to the asymptotic solution in the limit
by a shear flow, a geometry previously considered by Doli-of large vortex velocity(c,—c). The implication of the ex-
galski et al® Their work focused on relatively slow moving istence of a steady solution and application of these results
vortices, and they concluded that the boundary layer willare discussed in Sec. V.
thicken locally in an “eruption” for arbitrary vortex speed.

For faster vortices, though no temporal singularity has beefi. FORMULATION

observed, it has been suggested that the boundary layer
grows continually in timé&.Doligalskiet al.” present an over-
view of the literature. Physical experiments relating to this

; ; 8
problem are glso reviewed n Lutcet al. . vortex is being advected by a linear shear profile ay
Note that in the case studied here, as in Ref. 6, the vorte{azo), modeling an external flow; the shear velocity van-

is convected by a background fiow of uniform shear. Thlsishes at the wall and consequently only affects the boundary

shear is a solution to the equations of motion and so th‘fw‘aeyer structure indirectly through the advection of the vortex.

boundary layer develops in response to the passage of th The equations of motion are nondimensionalized on the

vortex alone. The case studied here is to be distinguishe\%rtex heightH and twice the magnitude of the strength
from those studies, e.g. Refs. 1 and 7, in which the boundar¥|l~(|. We consider the limit of large Reynolds number,

We consider the boundary layer induced by a rectilinear
potential vortex of strengtR, which can be positive or nega-
tive, at a heighty=H above a no-slip wall, Fig. 1. The

dCorresponding author: Te(708) 467-1885; FAX:(708) 491-3915; E-mail: Re= M
s-lichter@nwu.edu. v '
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Note that the boundary layer is much thinner than the char-
FIG. 1. Schematic of the geometry in dimensional variables. A vortex, herédCteristic scale of the shear layer. Consequently, the shear has

of strength+ «, is located a distanag=H above a wall. An image vortexis  no direct role in boundary layer development to leading or-
equidistant below the wall at the sareocation. The vortex is convected  4ar and acts only to convect the vortex
by a shear flowu= ay. )

In addition, the no-slip condition must be satisfied,
U(X,0,T)=V(X,0,T)=0. 9)

where v is the kinematic viscosity. In the nondimensional To complete the formulation of the problem we must also
coordinate system, a vortex of strengtl + 3 at unit height  prescribe initial conditions on the velocity. We will assume
is advected by a shear=ay, wherea=H?2a/2k. that the fluid initially has the inviscid profile,

The inviscid problem can be solved by considering an — —
image vortex,(cf. Fig. 1), of opposite sign symmetrically UX.Y.0=U, V(XY.0=V, (10
placed relative to the wall. Consequently, the vortex willas if the vortex were turned on at0+. We believe this
propagate parallel to the wall with a velocity equal to the  condition is appropriate for a vortex propagating into undis-
velocity induced by the vortex's image in the wét{=*7),  turbed shear flow, as any initial disturbance will eventually
together with the advection due to the imposed sheabe far upstream of the vortex. Moreover, as we are most
(cs=a), concerned with a class of steady solutions this condition has
little effect on the subsequent analysis.

We will concentrate our efforts on finding a steady solu-
In the case in which the vortex strength is positive, the vordion to the boundary layer equations in the frame moving
tex and the shear flow both induce a positive velocity; in thiswith the vortex; to this end we note that if the tertd £ c,)
casec,>3 When the vortex strength is negative, the negais negative, corresponding to flow in the upstream direction,
tive velocity induced by the image vortex is counter to thethe steady problem will be parabolic in nature and we can, at
shear flow; in this case,>—1. least in theory, solve the problem by integrating from down-

The vortex and its image, together with the backgroundstreamx=c to upstreanx=—c. This condition requires that
shear, create an inviscid velocity field of the form ¢, >maxU), (11)

Cc,=Cst+Ccj=a* 1. (1)

_ 2_\,2
(x szt) ; y +21 , where maxy) is the maximum value of the velocity in the

[(X=c,t) +y“+1]°—4y*’ boundary layer. Where this condition is violated, there will
o (x— be a region of upstream flow, and the strictly parabolic nature
T2(x—c,b)y - _ . :

—s 5 5. (2) of the equations is lost; the question of existence of a steady
[(x=c,0)"+y"+1]"—4y solution becomes much more delicate in this case.
Although this velocity field satisfies the impermeability con- o weak boundary layer approximation

dition, it does not satisfy the no-slip condition. Consequently, . . )
a boundary layer will form near the wall. A standard bound- '€ boundary layer equations imply that the viscous per-

(u,v)=|ay=+

ary layer scaling is now made, turbation of the velocity field from the inviscid velocity pro-
file (8) is localized near the boundary. If, in addition, the
T=t, X=x—c,t, Y= \/R—ey, (3)  fluid velocity is assumed to be small compared to the vortex
velocity an approximate solution can be found. The bound-
UX,Y,T)=u(xy.t), V(XY,T)=JRev(X,Y,T). ary layer response is thameak and the governing equations

(4) can be linearized around the inviscid solution. This approxi-

The pressure in the boundary layer is independent of heighfiation is valid in two regimes: first, when the speed of
at leading order; evaluating it in the inviscid region and sub-Propagation of the vortex is larde,>1) and the cumulative

stituting yields the boundary layer equations, response at any fixed spatial location is small due to the fast
passage of the vortex; and second, far downstream from the
ﬂ+ ﬂ_o 5) vortex where the quiescent fluid only feels the weak alge-
axX oY braic precursors of the vortex induced velocity.
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To linearize the equations around the inviscid profiles,A solution can be found by using a Green’s functibfor-
define perturbation velocity components|(), mulation on the boundary

o 774

U f *
dé
3/ 2 '
If we assume that the fluid velocity is much less than the 2\m Jo € T1+(X+8)7]

vortex velocity (U,|V|<c,), then, at leading order, the per- which can be transformed to a more useful form by the
turbation velocity satisfies the linearized boundary layerchange of variables= 7/2¢,

U=U+k(X,Y,T), V=V+I(X,Y,T). (12) KXo
)=

(19

equations, 2
\/5 % rée 2
dk  dl K(X,n)= —J Z 7252 dr. (20)
4 = T r*+(Xre+ n°12)
x T =0 (13 °

This integral form of the solution can be used to derive a
ak ok 5%k number of useful results, leading to a description of the flow
a1 % ox T av? 14 in the boundary layer.

We expect that the perturbation velocity will be weak far

We eXpeCt the perturbation Velocity to vanish in the farfielddownstreanﬂl(x>1); in this region the solution can be ex-
Y>1. At the boundary, the no-slip condition must be satis-panded in terms of similarity variables,

fied,
o) 7
T1 KX, 7)="or +O(X Y, (=—, (21)
K(X,0,T)= Y;—l 1(X,0,T)=0. (15) S V2x
where

The initial condition(10) indicates that both components of 5
the perturbation velocity initially vanish. 3 \F = rhe "2 q 09

Note that the linearized momentum equatida) de- 9(5)= 7o 7+ 22

couples from the incompressibility equati¢h3) and takes i ) . )
the form of a diffusion equation for the horizontal velocity NOt€ thatg is a monotonically decreasing function afFor
perturbatiork, with a source tern15) on the boundary. The Small £, corresponding to being near the solid boundary,

incompressibility equation now yields a parasitic definition9($)~1, which recovers the no-slip boundary condition. For
for the vertical velocity perturbation, large £, the integral can be expanded to yield

1

, 4 (X

. o _ _ _ Physically|g|<1 implies |K|<1/X2. So the boundary layer
A steady solution to the diffusion equation feris derived s pecoming weaker a%—.
below: . _ . . The solution(20) is also uniformly valid in the limit of
It. is p.053|ble tq write down a.tlme—dependent solution tojarge vortex velocity(c,>1); this can be verified by substi-
the diffusion equation fok (14) by interpreting the boundary tuting the scaling17) into the momentum equatiof®) and

condition (15) as a source on the boundary and using &etaining the leading-order terms. In Sec. IV we compare the
Green's function formulatioft! However, as the source term resylts in the large-velocity limit to numerical calculations

is integrable, we expect that in the frame moving with thegyer a range of, .

vortex the solution will rapidly approach a steady velocity In this limit, linearizing the governing equatior{$3)—
distribution in the neighborhOOd of the vortex and leave the(15) about the steady solution y|e|ds a homogeneous diffu-

initial transient behind at a fixed point in the laboratory sion equation. This suggests that the solution is stable to
frame. Moreover, as the dynamics in this limit are governedsma| perturbations.

by the diffusion equation, we expect that this solution will be
stable and attracting for all initial conditions that are undis-
turbed downstream of the vortex. Consequently, we limit ouB. Streamfunction

I(X,Y,T)=—J0 X

study to this steady response. The streamfunctiony(X,Y) for the velocity satisfies
The steady solution fok takes the form
_ \/_ (wY!_le):(U’V)l (24)
KXY T=FKX ), 7=veY, (17) and can be most easily constructed from our solutions by
and satisfies the steady diffusion equation specifying thatyy=0 on the solid boundary, which yields
_ Y
Kx+K,=0, ¢(x,v):f UX,Y)H)dy'. (25)
0
1
K(X,0)= 21 (18 When both the streamfunction and the vertical coordinate are
scaled with\/c,, the solution becomes independent of vortex
i = velocity in the weak boundary layer limic,—). Conse-
lim K(X,7)=0. v
o0 guently, we define
158 Phys. Fluids, Vol. 8, No. 1, January 1996 Bernoff, van Dongen, and Lichter
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(X, 7) in the upstream direction. At each point ¥awe apply no-

P(X,Y)= , (26) slip boundary conditions at the waly=0), and assume
\/a Neumann boundary conditions on the deviationloffrom
which in the weak boundary layer limit approaches the inviscid flow () at some large value of. At each step
, this implicit scheme requires the inversion of a pentadiago-
.= 7 . . .
lim lﬂ(xﬂl):i—zij K(X,7)d7. (27)  hal matrix to integrate a distanckX upstream. If at any
€c,— 1+X 0 point U—c, becomes positive, corresponding to a loss of

local parabolicity{cf. Eq.(11)], the scheme will become un-
stable to short waves. Typically, we have chosAX(AY)
Two useful measures of the boundary layer considereds small ag—0.001,0.00% and a computational domain of
are the displacement thickness and the wall stress, both &f=[—12.5,12.9, Y=[0,25]; refinement studies verified that
which can be computed analytically from the integral repre-our results are insensitive to numerical parameters.

C. Displacement thickness

sentation for large, . Numerical solutions can be expected where the criterion
The displacement thickness of the boundary layer can bél1) is everywhere satisfied. Fot=3 numerical solutions
defined as were found forc,=1. This can be understood by noting that

ST Y the maximum value ot is apparently 1, obtained Xt=0 in
o (289 the matching region, whetd is given byU [cf. Eq.(8)]. For
U(X) k=—3, solutions were also found for,=1. This can be
It is convenient to introduce a scaled displacement thicknesé’,nd_erStOOd by noting that the veloc'|ty becomes positive in a
region upstream from the vortégf. Fig. 6]. The exact value
[ 7 — of ¢, at which parabolicity was lost was not computed be-
& (X)= 2c, & (X). (29) cause of the stiffness of the calculationscgsdecreases.
Below we present the results of our numerical calcula-
s and compare them to the asymptotic results found in
the limit of large velocity.

5 (X)=

In the limit of largec, , this can be computed by substituting tion
the integral formulatior{20) and interchanging the order of

integration,
lim &*(X) 1xe | (30)
im = —
Gyt V1+X24+X

Note that the scaled thicknes’ (X) is independent of vor- V. RESULTS
tex speed and hence should provide a uniformly valid apa_ sireamfunction

proximation for the displacement thickness in the limit of ) . .
high speed. Figure 2 shows the streamlines as a function of the spa-

tial variables(X,7). The interval between contour levels of
streamfunction is 0.1 with non-negative values shown as
solid lines and negative values as dashed lines. Recall that

D. Wall stress

The wall stress is proportional 1(X,0), the vertical scalingy contains the square root of the speed of
C the vortex(17) as well as the Reynolds numb@). So the
Tw(X)=uUy(X,00=u\/ T” Tw(X), (31  figures greatly exaggerate the vertical scale in order to reveal

B the details of the boundary layer flow. The results of Sec.
where7,,(X) is the wall shear stress scaled with respect tdl Afor k=3 asc,— are presented in Fig(®. For positive
the vortex speed. In the weak boundary layer lifajf—c), X, the flow closely approximates the inviscid flow field

the scaled wall stress approaches (U,V) which is a family of parabolas symmetric with respect
to X=0, [cf. Eq.(8)]. For negativeX, however, the upstream
T (X) =+ 2X+ V14X , (32) portion of these streamlines are concentrated into a narrow-
2(1+ X232 X+ 1+ X2 band, resulting in a downward jet-like flow. In addition, for

negativeX, there is a wedge-shaped region of reverse flow.

where the sign of- matches that of the vortex. L .
. . The reverse flow region is separated from the region of for-
A stagnation point appears on the boundary and can be

located at the poinK =X, Wherer, passes through zero. ward flow by a stagnation streamline that intersects the wall

i - __ at X=—1Aj3, as can be computed by setting=0 in Eq.
In the limit of largec, , Eq. (32) yields Xsiog=— 13 (32). For a negative vortex=—3, the pattern of streamlines

is identical but the direction of flow is reversed.

The flow field for finite speeds, are shown in Figs. (@)

To solve the boundary layer equations numerically, weand 2b). Figure Za) is for a speed,=2.0. Figure 2b) is for
use the Davis Coupled Schethevhich leads to a second- a high speed of vortex propagatiop=10.0. Note that as the
order accurate solution in the grid spacingX,AY. The vortex speed increases, the flow pattern approaches that
method assumes the local parabolicity of momentum equashown forc,—, Fig. 2c). The streamline patterns for a
tion. The basic strategy is to assume that the weak boundanegative vortexc=—3 are comparable to the positive vortex
layer solution is valid at some largé and then to integrate results at the same speed with the reversed direction of flow.

Ill. NUMERICAL FORMULATION AND PARABOLICITY
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FIG. 3. The location of the stagnation poi{,qas a function of the speed

. e 1 . 1
¢, of the vortex. For vortices of both positive=35 and negativex=—35
strength, the location of the stagnation point approach&&3, the asymp-
totic value in the limitc,—; see Sec. IV A.

B. Stagnation streamline

For all speeds studied, there is one stagnation streamline.
This streamline intersects the wall at some locatip,,
Fig. 3. As the vortex speelt,| becomes large, the value of
Xstag @PProaches the asymptotic value efliv3. For K=3
(k=—3) the flow along the stagnation streamline is toward
(away from) the wall. As the speed of the vortex slow,q
moves upstreandownstream

Streamfunction (c,, =00
. ey ,) C. Shear stress

Figures 4a) and 4b) show the shear stress distribution
along the wall for the positive and negative vortex cases,
respectively. On both figures, the infinite velocity case is
given by the solid line. As the vortex speéc|,| becomes
large, the shear stress approaches that given by the infinite
velocity vortex. The shear stress is small except in the inter-
val around the vortex location. Far=3 and X>0 the shear
stress is small and positive. Recall that in this region, the
flow is well approximated by the infinite velocity results, and
so the shear stress indicates that only a weak boundary layer
has been stirred up by the algebraically smalk# 1) vor-
tex velocity. ForX<0 the negative values of the stress are
indicative of the reverse flow region. Note that the shear
stress is zero at the stagnation point shown in Fig. 3. On
reflecting thex=3 results about the ordinate, one finds the
qualitative behavior fok=—3. The values, however, are not
precisely reproduced, as changing the signkofloes not
FIG. 2. The scaled streamfunctia®(X, %) in the boundary layer is shown Precisely reverse the sign of the problem statement—the vor-
for a positive vortex,K:% and for vortex speeds,=2,10s. The contour  tex always convects towapd—oo.
levels are at intervals of 0.1 with counterclockwigstockwise flow shown
with solid (dotted contours. A stagnation point occurs where the zero con-

tour meets the wallz=0). As ¢, increases the flow field becomes increas- D. Displacement thickness

ingly well approximated by the large velocity asymptotic solutica.Nu- . . . .
merically calculated streamfunction far,=2. (b) Numerically calculated The dlsplacemerlt thickness, defined in Bﬂ), normal-

streamfunction foc, =10. () Streamfunction foc, == calculated fromthe  ized with respect tdJ is shown in Figs. &) and 5b) for
integral solution(20). positive and negative values of vortex strength+3, re-

160 Phys. Fluids, Vol. 8, No. 1, January 1996 Bernoff, van Dongen, and Lichter
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FIG. 4. Shear stress, as a function of distancX along the wall. The FIG. 5. The displacement thickness ‘normalized by the free-stream ve-

vortex is located aX=0. As the speed of the vortex,=2,6,10 increases, - . .
the shear stress distribution approaches that given by the asymptotic restlg th}\//vztlIth?}ﬁsg\?o(:tfei]ﬁsb?gsgtaeg I:Xyirgs 2sfu?hc;|ogp(él;?jls(t)af\n;feal\?;?ex

¢, . Note that, as suggested by the Jinearized equatldy, the results ¢,=2,6,10 increases the displacement thickness approaches that given by

. el _1 . .

for (@ vo_rtlct_es of posmve_ stre_ngthc—z and (b) vortlc.e_s of nggatlve the asymptotic resutt, —o for which the maximum thickness is &t=—1/
strengthx=—5 are nearly mirror images of one another; increasingly so as‘/g Note that ase dvecreases the maximum amplitude (ef vortices of
c,—. (b) For the caption see the previous figure. ’ v P

positive stren th<=:-2L increases faster than that fts) vortices of negative

strengthk=—3. This suggests that the steady solution will break down
1 1

sooner—at a larger value of-for k=3 than fork=—73; see Sec. Ill(b) For

the caption see the previous figure.

spectively. ForX>0 the normalized displacement thickness
is very thin—another manifestation of the high speed of thement thickness can be seen to approach that given by the
vortex; viscous diffusion from the wall does not have a longasymptotic result.
time to act before the arrival of the vortex. Upstream, for
X<0, the values decay slowly; the smallest valuelo$*
shown for positiveX (at X=10.0 is only reached aX~
—40. A steady solution to the boundary layer equations dis-
In both figures the solid line represents the asymptotidurbed by the passage of a fast vortex has been presented. In
result asc,—o. From Eq.(30) it can be determined that the the limit of large vortex velocityc,—x), the boundary layer
maximum thickness obl 6* occurs atX=—1A3. For finite is weak and an asymptotic solution is found. The weak
vortex speed, the maximum normalized thickness occurs fadboundary layer approximation of Sec. Il A suggests that as
X<0 and approaches the limiting value as vortex speed ine, is increased through finite values @f, the results should
creases. Ag, increases the general shape of the displaceeonverge to the asymptotic results. Our numerical results of

V. DISCUSSION
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streamfunction, stagnation point location, shear stress, ar@06828. A NATO Collaborative Research Grant has al-

displacement thickness do indeed confirm this. lowed S.L. to maintain fruitful contact with Professor G. J. F.
Moreover, our numerical results demonstrate the existvan Heijst, University of Eindhoven, the Netherlands. We

ence of steady solutions for a fast vortex for at legst1l.  would also like to thank Mr. Chih-Yu Lin, who donated his

This result can be compared qualitatively to that of Degantime to help format the presentation of the results.

and Walker who find that separation on a rotating and trans-

lating cylinder is suppressed whéka/U,>1.9, where() is

the angular speed of rotatioa,is the cylinder radius, and,

is the speed of translation. In general, we believe that if the

relative wall speed is large compared to the external velocityit | poligaiski and J. D. A. Walker, “The boundary layer induced by a

field, then eruption of the boundary layer can be suppressed convected two-dimensional vortex,” J. Fluid MectB89, 1 (1984.

Physically, this can be explained by noting that the effects of2J. D. A. Walker, “The boundary layer due to rectilinear vortex,” Proc. R.

the external velocity field are advected away by the moving, Soc. London Ser. 85, 167 (1978.

. 3 ; ; “
boundary before they can accumulate into a temporal erup->: - Ellott F. T. Smith, and S. J. Cowley, "Breakdown of boundary
layers: (i) on moving surfaces(ii) in semi-similar unsteady flow(ii ) in

tion. . . . fully unsteady flow,” Geophys. Astrophys. Fluid Dy85, 77 (1983.
The breakdown of the existence of the steady solution isv. J. Peridier, F. T. Smith, and J. D. A. Walker, “Vortex-induced boundary-
associated with local flow reversal in the frame of the vortex. layer separation. Part 1. The unsteady limit problem-Rg” J. Fluid
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