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Introduction
"Knock 'm Down" is a game of dice that is so easy to learn that it is being

played in classrooms around the world. Although this game has been effective
at developing students' intuition about probability [Fendel et al. 1997; Hunt
1998], we will show that lurking underneath this deceptively simple game are
many surprising and highly unintuitive results.

Player A

Figure 1. Allocations for Player A and Player B.

The game is played by two players, each of whom is given a 6-sided die, 12
tokens, and a card with the numbers 2 through 12. Each player allocates tokens
among the eleven numbers on that player'S card. Let's suppose that players
A and B allocate their tokens as shown in Figure 1. Next, the players roll their
dice together and each removes a token from their board on the value equal to
the sum of the dice. For instance, in Figure 1, if a 6 and a 2 are rolled, then both
players remove a token from the 8 spot; but if a 6 and a 5 are rolled, player A
removes a token from the 11 spot but-since player B has no tokens on the 11
spot-player B's board is unchanged. The first player to remove all tokens is
the winner. (If both players remove their last token on the same roll, then the
game is a draw.)

In this paper, we investigate the questions:
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Who is the favorite to win the game?

Can you find a "better" allocation than the ones in Figure 1?

Instinctively, position B seems superior, since it more closely resembles the
shape of the histogram of probabilities in Figure 2. In fact, B wins against A
75% of the games, draws 9%, and loses only 16%.

P 12345654321
=36 36 36 36 36 36 36 36 36 36 36

Figure 2. Histogram of probabilities and allocation of 36 tokens.

Given 36 tokens, we could allocate them exactly proportionally to the prob
abilities (see Figure 2). By all that is sensible, we felt that this should be the
optimal allocation for 36 tokens. But as we soon learned, in this innocent little
dice game, all is not sensible!

Expectations and Results
Before revealing our solution to the original 12-token game, let's find thebest

allocation for some simpler games. (Here's a hint: The best 12-token allocation
can be obtained by moving just one token in player B's allocation in Figure 1.)

Consider a 4-valued game consisting of outcomes 1, 2, 3, and 4 with respec
tive probabilities .1, .2, .3, and .4. How should you allocate 10 tokens among
the four outcomes? For notational convenience, we call this the lO-token game
with P = (.1, .2, .3, .4). Can you predict which of the two allocations in Figure 3
is better? Notice that the first allocation has exactly the same triangular shape
as the histogram of probabilities.

Player A

~B§~
CillIIill

P =.1 .2 .3 .4

Player B

B§~
P =.1 .2 .3 .4

Figure 3. Which allocation is better?
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Surprisingly, the answer depends on what you mean by "better." It seems
reasonable that we should want the allocation that requires, on average, the
fewest number of turns to remove all tokens. LetA = (1,2,3, 4),B = (0,2,3,5),
and let E[X] denote the average number (i.e., the expected value) of the number
of rolls needed to clear all the tokens with allocation X. We find E[A] = 17.7,
whereas E[B] = 16.3. In fact, using calculations discussed in a later section,
we can show that B has the smallest expectation among all allocations of 10
tokens. Armed with this information, it appears that B is the superior position.
Or is it?

When we play the two positions against each other, we find that B loses to
A more than twice as often as B beats A! Why does this happen? Essentially
because if a 1 is rolled any time before B is finished, then A's configuration
becomes a proper subconfiguration of B's, so B cannot possibly win (it must
lose or draw). However,five 4s must be rolled before B can achieve that status
against A.

In fact, allocation A beats out all other allocations with 10 tokens, in terms of
(on average) winning more often than it loses. Using terminology from Maurer
(1980], we call such an allocation an emperor.

Does this same phenomenon occur when we increase the number of tokens?
Alas, no. When we play the same 4-valued game with 20 tokens, allocation
(1,3,6,10) has the lowest expected value and it beats the triangular allocation
(2,4, 6, 8) in head-to-head competition. (We note that I, 3, 6, and 10 are triangu
lar numbers, but that's just a coincidence!) But here's the strange part: Alloca
tion (2,4,6,8) beats (1,4,6,9) which in turn beats (1,3,6, 10)! In other words,
we have a situation with nontransitive probabilities, as illustrated in Figure 4.
The arc from (1,3,6,10) to (2,4,6,8) indicates that (1,3,6,10) beats (2,4,6,8)
with probability .433 and loses to (2, 4, 6, 8) with probability .388 (and therefore
draws with probability .179). Although this game has no emperor, the three
allocations above are part of an emperor cycle in that each of them defeats all
other allocations of 10 tokens.

(1,3,6,10)

('433"3~

(2,4,6, )-----.(.3~O=7.~.•~.~6)---~. (1,4,6,9)

Figure 4. Subset of the emperor cycle in the 20-token game with P = (.1, .2, .3, .4).

An emperor cycle also exists in theS-token game with probability vector P =
(1/6,2/6,3/6). Here, allocation (0,2,3) defeats (0,1,4), who defeats (1,2,2),
who defeats (1, 1,3), who defeats (0,2,3), as illustrated in Figure 5.

When the same game is played with 3 tokens, then allocation (0,1,2) is
an emperor. However, several non-emperor cycles exist in this game, as il
lustrated in Figure 6. One can easily imagine lucrative scams based on these
nontransitive properties, easily played with a single six-sided die.
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(.608, .4g2)

(.330, .311)

(1,2,2)

(,363, .3Y353..336)

(0 2,3) ~(,6~63o,".33~7~)------~ (0 1,4)

~6'2g6>
(1,1,3)

Figure 5. Emperor cycle in the 5-token game with P = (~, ~, ~).

(.318, ,103)

(,626, .475)

(1 0,2)

(,674,"~'878'.422)

(0,2 1) (,607 ..417) (1,1,1)

~3"487>
(0,0,3)

Figure 6. Cycles in the 3-token game with P = (~, ~, ~).

Theoretical Results
Having described some of the surprising results that arise in particular

variations of Knock 'm Down, we now explore some of the general results that
apply to all instances of the game. Ideally, we would like to have a theorem
that could construct directly the emperor or the emperor cycle from the prob
ability distribution and the number of tokens. Unforhmately, the unintuitive
nature of the game suggests that such a theorem would be very complicated.
However, we have made significant progress towards characterizing the allo
cation of tokens that minimizes the expected number of rolls required to clear
the allocation. While we have already demonstrated that this allocation is not
always an emperor, it generally does very well in a tournament and may serve
as a starting point for searching for the emperor or an emperor cycle. In the
interest of space, the proofs of these results are omitted; the interested reader
should see Fluet [1999].

In the following discussion, we are interested in the game played with t
tokens on a board with values having probabilities P = (Pl,P2, ... ,Pn)' Then
a minimal allocation X* = (xi, xi, ... , x~) is one that minimizes the average
number of rolls needed to clear the board, that is, E[X*] :::; E[X] for all t-token
allocations X. Our first result is the following:

If Pa = Pb, then Ix: - xbl :::; 1. (1)

This result largely confirms our intuition that values with equal probability
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should have equal numbers of tokens. Alternatively, we can assert that any
allocation that does not satisfy this result can be improved by "evening out"
the distribution of tokens. Another result suggested by our intuition is that
values with greater probability should have more tokens:

If Pa < Pb then x: ~ Xb' (2)

(3)

When Pa < Pb, it is possible that x~ = xb. For example, in the 2-token game
with P = (i, l, ~),theminimal allocation is X* = (0,1,1).

Our intuitionsuggests that the minimal allocation of tokens should resemble
the histogram of probabilities. The 10-token example in Figure 3 illustrates that
an allocation may have the exact shape as the probability histogram, yet may
not minimize the expected number of rolls. The next result, however, implies
that the minimal allocation must at least "respect" proportions.

f
x~ -1 Pa

I Pa < Pb, then --*- <-.
xb Pb

We note that the 2-token example above illustrates that the stronger conclusion
x~/xb < Pa/Pb is not attainable.

Notice that condition (3) implies condition (2), and that together with (1) it
allows us to reduce drastically the search space for minimal allocations. For
example, in the 6-token game with P = (1/6, 1/3,1/2), there are 28 different
allocations. However, only 5 of these satisfy (3). The savings become more
extreme as the number of values and tokens are increased. In the 10-token
game with P = (.1, .2, .3, .4), there are CO~~-]) = 286 different allocations, but
only 16 are potentially minimal.

The 2-valued game
For games with two values (i.e., P = (p,1 - p», we give an exact solution

to the t-token game. Even here, we have some nice surprises.
From (3), we know thatifp < 1/2, then theminimalallocationX* = (xi, x2)

must satisfy
xi -1 P
--.- < -1-'x 2 - P

which leads to xi < pt + 1 - p. Perhaps for this game, we might expect to see a
normallookinganswerlikexi ~pt,x2 ~ (1-p)t. However, the P = (1/3,2/3)
game with t = 9 tokens yields X* = (2,7) instead of (3,6). When t = 1200, we
have X* = (393,807), not (400,800). What's going on here?

For the t-token game with P = (PI,P2), Fluet [1999] has shown that the
expected time to clear allocation X = (Xl, X2) is

t Xl ( ) ( ) k t X2 ( ) ( ) kE[X] = t + P2 L (XI - k) ~ PI + PI L (X2 _ k) t P2
PI k=O P2 P2 k=O k PI
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Also, it can be shown that as Xl increases from 0 to t (and thus X2 decreases
from t to 0), E[X] decreases and then increases, achieving its minimum at xi,
the smallest number x satisfying

x ( )t k t-kL k PI (1 - Pl) > PI'
k=O

Put another way, xi is the P1 th percentile of the binomial distribution with
parameters t and Pl. For example, if a weighted coin with heads probability
1/3 is flipped 9 times, then H, the number of heads obtained, has a binomial
distribution with

Fr(H = k) = G) (~) k (~) 9-k

Thus, Fr(H = 0) = 0.026, Fr(H = 1) = 0.143, and Fr(H = 2) = 0.234; hence,
xi = 2, since P(H :::; 1) < 1/3 < P(H :::; 2). With 1200 tokens, we have
P(H :::; 400) ~ 1/2, whereas P(H :::; 393) is just over 1/3, whence xi = 393.

In general, when t is large, xi can be estimated quite accurately using a
normal approximation. Specifically,

where ZPl is the P1 th percentile of the standard normal distribution. For exam
ple, with P = (~, ~) and t = 1200, the normal approximation yields

* (800
Xl ~ 400 - 0.43V 3 ~ 392.98,

and similarly, xi ~ 807.02. As t gets larger, xi gets farther away from tP1' But
it cannot get too far away, since

x*
lim ......!. = Pl
t~co t

agreeing with whatever is left of our intuition!
Although allocation X* minimizes the expected number of rolls to bear off,

it may still not be an emperor. For example, when P = (1/3,2/3), the minimal
allocation with 2 tokens is (0,2), but it loses to (1,1) more than half the time.
(Specifically, one can easily show that E[O, 2] = 3 and E[l, 1] = 3.5, but (1,1)
beats (0,2) with probability 5/9.) On the other hand, we have not discovered
any examples of nontransitive behavior in a two-valued game.

Computational Details
We mention some details about the computations used to generate the re

sults of this paper. We compute E[X] by conditioning on the outcome of the first
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roll and taking the appropriate weighted average. For instance, for the game
with P = (.1, .2, .3, .4), we have

E[l, 2, 3 4] = 1 + .1E[O, 2, 3 4] + .2E[l, 1 3,41 + .3E[1, 2, 2 4] + AE[l, 2, 3, 3]1

and

=

E[0,2,3 5] = 1 + .IE[O 2 3,51 + .2E[O, 1 3,5] + .3E[O, 2,2,5] + .4E[0 2,3 4]
109" (1 + .2E[O, 1,3,5] + .3E[0, 2, 2, 5] + .4E[0 2 3 4]).

Notice that if X is an allocation of t tokens, then E[X] depends only on
allocations of (t - 1) tokens (except of course E[O, 0, ... ,0] = 0), and also allo
cation X = (Xl, X2, ..• ,xn ) has (1 + xd (1 + X2) ... (1 + xn ) subconfigurations.
How many t-token allocations must we check to find one that minimizes E[X]?
Theoretically, there are

t-token allocations (Xl, X2,' .. ,xn ). In practice, we usually do not need to
inspect this many, as we now illustrate.

Consider the original 12-token game with P = (P2,P3,'" ,PI2) equal to
:k (1,2,3,4,5,6,5,4,3, 2, 1). There are (i;) = 646,646 possible allocations, but
most need not be considered for minimality. By exploiting symmetry and
conditions (1) and (2), we need consider only allocations that are monotonic in
the following sense. Since Pl2 ::; P2 ::; PI I ::; P3 ::; PIO ::; P4 ::; P9 ::; P5 ::;
Ps ::; P6 ::; P7, there must exist a minimal allocation X* satisfying xh ::; x:;; ::;
xiI::; ... ::; x7' The number of such allocations is 11"(12, 11) = 76, where 1I"(t, n)
denotes the number of partitions of the integer t into at most n parts.

But this number can be reduced to 49 once we factor in condition (3). The
solution to the 12-token game is the allocation X* = (0,0,1,2,2,3,2,1,1,0,0)
shown in Figure 7. Table 1 provides minimal allocations of up to 12 tokens in
the original game.

Figure 7. Minimal allocation of 12 tokens.

Based on Table 1 and other tables like it, we make the following:

Conjecture 1 If X* is a minimal solution to the t-token game defined by a vector
P, then there exists a minimal allocation to the (t + I)-token game that properly
contains X*.



18 The UMAP Journal 20.1 (1999)

Table 1.

Minimal allocations for the original game with t tokens, 1 ~ t ~ 12.

x·
i 2 3 4 5 6 7 8 9 10 11 12 S[X"]

01 0 0 0 0 0 1 0 0 0 0 0 6.0
02 0 0 0 0 1 1 0 0 0 0 0 9.927
03 0 0 0 0 1 1 1 0 0 0 0 12.505
04 0 0 0 1 1 1 1 0 0 0 0 15.476
05 0 0 0 1 1 1 1 1 0 0 0 17.768
06 0 0 0 1 1 2 1 1 0 0 0 19.762
07 0 0 0 1 2 2 1 1 0 0 0 22.279
08 0 0 0 1 2 2 2 1 0 0 0 24.306
09 0 0 1 1 2 2 2 1 0 0 0 26.430
10 0 0 1 1 2 3 2 1 0 0 0 28.267
11 0 0 1 1 2 3 2 1 1 0 0 29.865
12 0 0 1 2 2 3 2 1 1 0 0 31.922

IfConjecture1 is true, then we need consider at most n allocations. For instance,
consider finding the minimal 13-token allocation. By monotonicity, we would
have to consider only adding a token to one of the values 3, 6, 7, and 9. In
fact, (0,0,1,2,2,3,2,2,1,0,0) is the minimal 13-token allocation. Ifwe continue this
process of searching for minimal allocations by building on previous ones, we
find for the 36-token game the allocation X* = (0,1,3,4,6,8,6,4,3,1,0), with
E[X*] = 69.569 (see Figure 8). Further calculations verify that X* is indeed
minimal.

,...-.-
III

~§~ ~§~---
12131415 6 7 8 91101111121

Figure 8. Minimal allocation of 36 tokens (but not an emperor).

So, how well do these minimal allocations do in competition with other
allocations? To determine how allocation X performs against allocation Y, we
define the WDL (pronounced "widdle")function as follows. We say WDL (X, Y) =
(w, d, I), where w = Pr(X wins against Y), d = Pr(X draws against Y), and
1 = Pr(X loses against Y). Naturally, it must always be true that w +d+1 = 1.
As we did for E[X], we can compute WDL(X, Y) recursively by conditioning
on the outcome of the first roll. For example, in the game with P = (.1, .2, .3, .4),
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WDL( (1,2,3,4), (0,2,3,5)) is equal to

.1 WDL(O, 2 3 4) (0,2,3 5)) + .2 WDL(1 1,3 4) (0 1 3 5))

+.3WDL(12,2,4),(O,2,2,5))+.4WDL((1,2 3 3) (0234))_

Generally, WDL(X, Y) depends only on "smaller" allocations, until we hit a
base case. Specifically, we have

(0,1,0), if X = Y;

(1,0,0), if all nonzero entries of X are strictly less than

WDL(X, Y) = all corresponding nonzero entries of Y;

(0,0,1), if all nonzero entries of Yare strictly less than

all corresponding nonzero entries of X.

For a more detailed discussion of implementation issues, see Fluet [1999].
Returning to our original game, we find that the 12-token allocation in Fig

ure 7 that minimizes the average number of rolls also does well in competition.
It is at least a local emperor in that it defeats all neighboring allocations, that
is, all allocations reachable by moving a single token. We speculate that it is
a global emperor as well. On the other hand, the minimal 36-token solution
to the same game fails to be even a local emperor, losing to 4 of its monotonic
neighbors. For this game, we speculate that (0, 2, 3, 4, 6, 7, 5, 4,3,2,0) is the em
peror, since it defeats all of its neighbors as well as the triangular allocation
(1,2,3,4,5,6,5,4,3,2,1).

Variations and Open Questions
In the original game, the same dice rolls are used for both players. Suppose

instead that each player has his/her own two dice, and the players take turns.
The same techniques discussed in this paper can be used to analyze this game
as well. Although much rarer, some nontransitive behavior is exhibited here
too, as described in Fluet [1999].

Many interesting questions remain unanswered that we hope the reader will
explore. Although we have a simple description of the minimal solution to the
2-valued games, a solution to the n-valued games remains elusive for n ~ 3.
Failing that, we would like to find more properties of solutions. Are local em
perors necessarily global emperors? No, as (1,2,2) in Figure 5 demonstrates;
(0,1,4) beats it. Are local minimal allocations necessarily global minimal allo
cations? We don't believe so, but we have yet to find a counterexample. How
about Conjecture 1? If it's true, is there a simple rule to determine which value
deserves the next token? Are there variations of condition (3) that provide
interesting lower bounds on Xa/Xb, when Pa < Pb? All of these questions are
still standing, but we hope that some of our readers will be able to knock 'em
down!
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