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Theorem. If E an is a divergent series of positive reals, then there exists a sequence 
61, E2 ... of positive numbers that converges to zero, but for which ? En an still di- 
verges. 

Proof: Let Sn = al + a2 + * *- + an. We first show i= I(Sk+I - Sk)/Sk+l diverges. 
For any m E N, choose n E N such that Sn+l > 2s,. Since {Sk}k is non-decreasing, 

Sk+l - k > Sk+1 - Sk 

k=m Sk+1 k=m Sn+1 

1 
+[(Sm+l 

- 
Sm) + (Sm+2 - Sm+l) + . + (Sn+1 - Sn)] 

Sn+l 

Sn+1 - Sm 

Sn+l 

Sn+1 - 5n+1 1 

Sn+1 2 

Thus, the partial sums of the series Y]=l k+ -Sk do not form a Cauchy sequence, and Sk+1 

So EO Sk+ -sk = oo. Since Sk+1 - Sk = ak+, k1 Sk+1 

L Sk+l ~ Sk E ak 

k=1 Sk+1 k=2 Sk 

Now let Ek = 1/Sk. Then Ek -- 0 and ,k=2 Ekak =00. . 

It is worthwhile to make students realize that there is no specific series that can be 
used to establish a boundary between the set of all divergent positive-termed series 
and the set of all convergent series. Readers interested in a more detailed historical 
development of this topic may wish to consult [2]. 
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A standard exercise in mathematical induction in many discrete mathematics 
classes is to prove the identity n=1 k3 = n2(n + 1)2/4. Alternative proofs are 
possible that allow this identity to be appreciated from different perspectives. For 
instance, in [2] seven different geometric proofs are presented. 
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However, since n2(n + 1)2/4 is equal to (n1)2, it seems only natural that a simple 
combinatorial proof should be possible. We present two such proofs. Specifically, we 
find sets S and T where IS\ = Ek= k3 and ITI = (n1)2, then exhibit a bijection (i.e., 
a one-to-one, onto function) between them. 

Let S denote the set of 4-tuples of integers from 0 to n whose last component is 
strictly bigger than the others; that is, 

S = {(h, i, j, k) 0 <h,i,j <k n}. 

For 1 < k < n, there are k3 ways to choose h, i, j given the last component k. Hence, 
isl = E=1 k3. 

Let T denote the set of ordered pairs of two element subsets of {0, ... n}, which 
may be expressed as 

T = {((xl, X2), (X3, x4)) I 0< < X2 <n, 0 < X3 < X4 < n. 

Clearly |IT = (n+1)2 

To see that S and T have the same size, we find a bijection f : S -- T between 
these sets. Specifically, 

((h,i), (j,k)), ifh < i 
f((h,i, j,k)) ((j,k), (i,h)), if h > i 

((i,k), (j,k)), if h = i 

is a bijection since the cases h < i, h > i, and h = i are mapped onto ordered pairs 
((X, X2), (X3, 4)) where x2 < X4, x2 > x4, and x2 = 4, respectively. Thus, ISI = ITI. 

A simpler correspondence arises when we interpret (n2 ) as the number of ways to 
choose two elements from { 1, ..., n with repetition allowed. This time we let 

S = {(h, i, j, k) I 1 < h, i, j < k < n}, 

which has size ISI = E=, k3, and let 

T = {((x, x2), (x3, x4)) I1 < x < X2 < n, 1 < X3 < X4 < n}, 

which has size (n+1)2. Here, our bijection g : S -> T has just two cases: 

g((h, i, j, k)) = ((h, i), (j, k)) if h < i 
g((,ij,)- ((j, k), (i, h - l)) ifh >i. 

The first case maps onto those ((xl, x2), (X3, x4)) where x2 < x4, and the second case 
maps onto those where x2 > x4. Hence g is a bijection, and SIS = IT}. 

Another combinatorial approach to this identity is utilized in [1] and [3] using the 
set S from our first proof. By conditioning on the number of 4-tuples in S with 2, 3 
and 4 distinct elements, it follows that = - k3 = (n2) + (3)6 + f(4)3!, which 

algebraically simplifies to n2(n + 1)2/4. Our motivation in this note was to avoid the 
use of algebra and arrive at (2n+1)2 in a purely combinatorial way. 

We leave the reader with the challenge of finding a combinatorial proof of 

= I 2n+ 2 
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A Generalization of the Mean Value Theorem for Integrals 
Jingcheng Tong (jtong@unf.edu) University of North Florida, Jacksonville, FL 32224 

Let f(x) be a continuous function on [a, b]. The Mean Value Theorem for Integrals 
asserts that there is a point c in (a, b) such that fab f(x) dx = f(c)(b - a). Unlike the 
proof of the Mean Value Theorem for derivatives, the proof of the Mean Value Theo- 
rem for Integrals typically does not use Rolle's Theorem. In this note, we use Rolle's 
Theorem to introduce a generalization of the Mean Value Theorem for Integrals. Our 
generalization involves two functions instead of one, and has a very clear geometric 
explanation. 

Theorem. If f(x) and g(x) are continuous functions on [a, b], then there is a value 
c in (a, b) such that 

f (t) dt + jg(t) dt = f() g(c )( - g(c)(c ). 
J a Jc 

Proof. Let h(x) be the function defined on [a, b] as 

x b 

h(x) = (x -b) f(t) dt + (x - a) g(t)dt. 
Ia Jx 

Since f(x) and g(x) are both continuous on [a, b], the function h(x) is continuous on 
[a, b] and differentiable on (a, b). Furthermore, h(a) = 0 and h(b) = 0. So, by Rolle's 
Theorem, there is a value c in (a, b) such that h'(c) = 0. By the Second Fundamental 
Theorem of Calculus, 

h'(x) = (x - b) f (x) + f (t) dt - (x - a)g(x) + f g(t) dt, 

so from h'(c) = 0, we have 

j f(t) dt + g(t) dt = f(c)(b -c)+ g(c)(c - a). 

The geometric interpretation of this theorem (Figure 1) is that the sum of the area 
under f's graph on [a, c] and the area under g's graph on [c, b] equals the sum of the 
areas of two rectangles, one with base [c, b] and height f(c) and the other with base 
[a, c] and height g(c). U 

Letting g(x) = f(x) and g(x) = 0, we get the following respective corollaries. 
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