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Q954. Proposed by Arthur Benjamin, Harvey Mudd College, Claremont, CA, and
Michel Bataille, Rouen, France.

Show that for positive integer n,
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A954. Let [n] denote the set {1, 2, . . . , n} and S denote the set of ordered pairs
(A, B) where A is a subset of [n] and B is an n-subset of [2n] that is disjoint from
A. We can select elements for S in two ways:

(1) For 0 ≤ k ≤ n, let Z be a k-subset of [n]. The let A = Zc, the complement of
Z, which is an (n− k)-subset of [n], and let B be an n-subset of {n+ 1, . . . , 2n} ∪Z.
This yields
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(2) For 0 ≤ k ≤ n, choose a k-subset B1 from {n+ 1, . . . , 2n} and a k-subset B2

of [n]. Then form B = B1∪Bc2, and choose A from among the 2k subsets of B2. This
leads to
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This completes the proof.
Note. Another proof, using lattice paths, can be found in Robert A. Sulanke’s ar-
ticle, Objects Counted by the Central Delannoy Numbers, The Journal of Integer
Sequences, Vol 6, 2003. A proof by polynomials is in Michel Bataille’s paper Some
Identities about an Old Combinatorial Sum, The Mathematical Gazette, March 2003,
pp. 144-8.
A slight change in the above proof leads to
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form ≥ n, a generalization proved by Li Zhou using lattice paths in The Mathematical
Gazette.
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