10-1-2005

Q. 954 and A. 954 , Quickie Problem and Solution

Arthur T. Benjamin
Harvey Mudd College
Michel Bataille

Recommended Citation

Benjamin, A.T., \& Bataille, M. (2005). Q. 954 and A.954, quickie problem and solution. Mathematics Magazine, 78(4): 324, 329.

Q954. Proposed by Arthur Benjamin, Harvey Mudd College, Claremont, CA, and Michel Bataille, Rouen, France.

Show that for positive integer n,

$$
\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}=\sum_{k=0}^{n} 2^{k}\binom{n}{k}^{2}
$$

A954. Let $[n]$ denote the set $\{1,2, \ldots, n\}$ and S denote the set of ordered pairs (A, B) where A is a subset of $[n]$ and B is an n-subset of $[2 n]$ that is disjoint from A. We can select elements for S in two ways:
(1) For $0 \leq k \leq n$, let Z be a k-subset of $[n]$. The let $A=Z^{c}$, the complement of Z, which is an $(n-k)$-subset of $[n]$, and let B be an n-subset of $\{n+1, \ldots, 2 n\} \cup Z$. This yields

$$
|S|=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}
$$

(2) For $0 \leq k \leq n$, choose a k-subset B_{1} from $\{n+1, \ldots, 2 n\}$ and a k-subset B_{2} of $[n]$. Then form $B=B_{1} \cup B_{2}^{c}$, and choose A from among the 2^{k} subsets of B_{2}. This leads to

$$
|S|=\sum_{k=0}^{n} 2^{k}\binom{n}{k}^{2}
$$

This completes the proof.
Note. Another proof, using lattice paths, can be found in Robert A. Sulanke's article, Objects Counted by the Central Delannoy Numbers, The Journal of Integer Sequences, Vol 6, 2003. A proof by polynomials is in Michel Bataille's paper Some Identities about an Old Combinatorial Sum, The Mathematical Gazette, March 2003, pp. 144-8.
A slight change in the above proof leads to

$$
\sum_{k=0}^{n}\binom{n}{k}\binom{m+k}{n}=\sum_{k=0}^{n} 2^{k}\binom{n}{k}\binom{m}{k}
$$

for $m \geq n$, a generalization proved by Li Zhou using lattice paths in The Mathematical Gazette.

