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Abstract

We provide combinatorial derivations of solutions to intertwined second
order linear recurrences (such as a, = pb,_1 +qan_2, by = ra,_1+ sb,_»)
by counting tilings of length n strips with squares and dominoes of various
colors and shades. A similar approach can be applied to intertwined third
order recurrences with coefficients equal to one. Here we find that all
solutions can be expressed in terms of tribonacci numbers. The method
can also be easily extended to solve and combinatorially comprehend kth
order Fibonacci recurrences.

1 Introduction

In the recent book [1], the authors asked for solutions to “intertwined” second and
third order linear recurrences. For instance, beginning with arbitrary initial condi-
tions ag, a, bo, by, the authors request a closed form for a, and b, defined for n > 2
by the recurrences
an = pbn—l + qan—2
bn =Trap-1+ Sbn—Z
In addition, they request closed forms for two other systems (where a, depends on
ap—1 and b,—y or a, depends on b,—; and b,_s). Even simply stated third order
recurrences, such as
ap = bn—l + bn—Z + ap-3
bn =Qp-1+ ap-2+ bn73
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(with arbitrary ag, a1, as, bo, b1, by) were presented without a closed form, along with
six other intertwined recurrences. Hirschhorn [5, 6] used generating functions to
derive closed forms for all of these problems. In this paper, we demonstrate how all
of these recurrences can be derived by elementary combinatorial arguments, leading
to alternative solutions. We conclude with a discussion of a general method for
solving intertwined k-th order recurrences like the example above.

As is discussed extensively in [3], every k-th order linear recurrence with constant
coefficients can be given a simple combinatorial interpretation. Suppose cy,...,cx
are nonnegative integers, and consider the problem of counting the ways to tile a
strip of length n with colored tiles, where for 1 < j < k, a tile of length j can be
assigned one of c¢; different colors. If we let u, denote the number of ways to tile
such a strip, then w, satisfies the recurrence: For n > 1,

Up = ClUp_1 + « . Chlp_p (1)

with initial conditions u; = 0 for j < 0 and uy = 1. This is easily proved by induction
on n and considering the length of the last tile, since the number of tilings that end
with a colored tile of length j is cjus—;.

Another way to think about u,, that allows ¢; to be negative or real (or complex)
is that each tile of length j is assigned a weight of c; and the weight of a tiling is
the product of the weights of its tiles. Thus by the same argument as before, wu,
is the sum of the weights of all tilings of length n. Thus we have a combinatorial
interpretation for any recurrence of type (1) subject to the ideal initial conditions
uj =0 for j < 0and uy = 1.

With arbitrary initial conditions, ag,ay,...,a,_1, and for n > k,

Qp = C1Op_1 + ...+ CLp_p (2)

a, can also be given a combinatorial interpretation. As the next theorem indicates,
changing the initial conditions from the ideal ones merely changes the weight of the
wnitial tile.

Theorem 1 For n > 1, if a, satisfies recurrence (2), then a, is the sum of the
weights of all length n tilings, where the weight of a tiling is the product of the weights
of its tiles. Except for the initial tile, the weight of a tile of length j is c;; if the initial
tile has length j, then the initial tile has weight has weight w; = a; — 21;11 Cillj—;.-

Proof. By induction on n. When n =1, w; = a1, as desired. For 1 < j <k, w; is
chosen so that ay,as,...,a; are consistent with their combinatorial interpretation.
Specifically, consider the last tile of a length j tiling, where 2 < j < k. Either this
tile has length j and thus weight w; or it has length 7 < j—1 with weight ¢;, preceded
by a tiling of length n — 4. Thus, by the induction hypothesis, a; = w; + ZZ;E Cillj—-
For n > Fk, the theorem follows by induction and considering the length of the last
tile. d

We note that when the initial tile has maximum length £, the recurrence a; =
Zle ciap—; implies that wy = crap.
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2 Intertwined second order recurrences

We now focus our attention on second order recurrences. Suppose that ag,a1,p,q
are arbitrary real numbers and for n > 2,

Ap = Plp—1 + qQn_2 (3)

It follows from Theorem 1 that for n > 1, a, is the sum of the weights of all
length n tilings with weighted squares and dominoes where, except for the first tile,
all squares (length one) have weight p, and all dominoes (length two) have weight g.
The initial tile has weight w; = a; or wy = qgay, depending on whether it is a square
or domino, respectively.

As is well known, the solution to (3) can be expressed as a linear combination of
the powers of the roots of the characteristic polynomial, A* — pA — ¢. (Even this can
be derived combinatorially, as done in [2, 3].) Alternatively, the solution to (3) can
be expressed as a combinatorial sum.

Theorem 2 Let a, satisfy recurrence (3); then forn > 1,

= ar Z Z (tlzh)pthm + qao Z Z <t1:;t2)ptht2.

t14+2t2 =n—1 t1+2ta =n—2

Proof. The first summand provides the sum of all weighted tilings that begin with
a square tile (with weight a) followed by a tiling with ¢; squares and ¢, dominoes of
length t; 4+ 2t = n — 1. These t; + 5 tiles can be arranged ("1:"2) ways and each of
these tilings has weight p''q2. By the same reasoning, the second summand is the
sum of the weights of those tilings whose initial tile is a domino with weight gao. O

More generally, the k-th order recurrence a,, = c1a,-1 + . .. Cxa,_ has solution

t
Su Y XX (M g

j=1 t142t2 +..+ kty, = n—j

where w; = a; — Y./} ¢jaj_; is the weight of the initial tile of length j, and the
multinomial coefficient (%2 ) — W counts the ways to arrange t;
. i f1,62,..51% 12l gt N

tiles of length one, ¢, tiles of length 2, ..., and t; tiles of length & with total length
n — j, each with weight c{*cl? .. ci’“ Note that under the ideal initial conditions

where a; = 0 for j < 0 and ag = 1, then w; = ¢; for all j, and we have
ti+to+ .o+t 4 .
DI I e et
t = ti,to, ...ty
f1+2to+-+kt, = n

For real numbers p, g, 7, s, we now consider the intertwined recurrence: for n > 2,

an = pbp—1 + qbn 2 by =Tap_1+ SAy_» (4)
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where ag,a1,bp, by are arbitrary real numbers. To view this recurrence combinato-
rially, consider the question of counting the ways to tile a strip of length n with
squares and dominoes as before, but now the tiles come in two different shades, light
or dark. The numbers p,q,r, s denote the respective weights of light squares, light
dominoes, dark squares, and dark dominoes, with the exception of the initial tile,
which is given a weight of ay, qbg,b; or sap, respectively. Furthermore we require
that our tiling obey the Predecessor Rule: Every tile, except for the initial tile, is
preceded by a tile of opposite shade.

Theorem 3 For the tilings described by recurrence (4), for n > 1, a, is the total
weight of all length n shaded tilings that end with a light tile, and b, is the total
weight of all length n shaded tilings that end with a dark tile.

Proof. By induction on n. When n = 1, a single light square has weight a; and
a single dark square has weight b;. When n = 2, there are two tilings that end
in a light tile, namely a single domino with weight ¢by or a dark square followed
by a light square with weight pb;; hence the total weight is pb; + qbo = ay by our
recurrence. Likewise, the total weight of length two tilings that end in a dark tile
is ra; + sag = by. For m > 3, tilings that end in a light square (of weight p) are
preceded by a length n — 1 tiling that ends in a dark tile; tilings that end in a light
domino (of weight ¢) are preceded by a length n — 2 tiling that ends in a dark tile.
Consequently, by induction, a, = pb,_1 + qb,_2, as desired. By the same argument,
b, = ran_1 + Sa,_2, and the induction is complete. O

Theorem 3 was proved by focusing on the last tile. By turning things around, we
can also count a, by breaking it into four cases, depending on the first tile. Except for
renaming our indices, we arrive at the same non-recursive formula for a,, as obtained
in [5].

Theorem 4 Suppose a, and b, are determined by recurrence (4). Then forn > 1,

W= aX XYY X (f)(4 )t

k>0 i+l =k, di+d2 = k
G420+ di + 242 =

rand 5 5 () (et

k>0 li+Ll =k, di+d2 = k
f1+242+ di + 22 =

ERIPIPIPIPD ("“)( st

k>0 li+4l =k, di+ds =
G420+ dy + 22 =

OIDID DS z (’”“)(Z)WH

k>0 li+4l =k, ditds =
21+212+ dy + 2dp =

Proof. From Theorem 3, a,, is the total weight of all shaded length n tilings that
end with a light tile. The first summand gives the total weight of all length n shaded
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tilings that end with a light tile and begin with a light square. To see this, note that
all such tilings begin with a light tile of weight a1, which, by the Predecessor Rule,
will then be followed by an equal number of dark tiles and light tiles in an alternating
sequence of length n — 1. Let ¢y, (»,dy,ds, and k denote the number of light squares,
light dominoes, dark squares, dark dominoes, and dark tiles, respectively, that occur
after the initial tile. Any such tiling would have weight a;p®¢%ré1s%. By definition,
dy +ds = k, and since there are an equal number of light and dark tiles, we also have
U1 + ¢y = k. The total length of these tiles satisfies ¢; 4+ 205 + d; + 2ds =n — 1. The
number of arrangements with these parameters is ([’”2) (;2) since the k light tiles can
be arranged (4’;) ways (equal to zero when ¢» < 0 or {5 > k) and the dark tiles can
be independently arranged (dl”;) ways. The other three summands can be explained
in exactly the same way, except these tilings begin with a light domino, dark square,
or dark domino, respectively. ]

We remark that by the linear relationship between ¢y, ¢5,d;,ds, and k, we could
simplify the quintuple sums above to be double sums. For instance, knowing just
two variables, say k and d, forces the values of the other three parameters and the
first summand could be expressed as

K, sktdation n-1-2k-dy k-
a 2+1—n n—1-2k dgrk d23d2
X (o ) (5

k>0 d2>0

but, for the sake of clarity, we will refrain from writing our formulas this way. Also,
using the same sort of argument as above, and interpreting the parameters in the
exact same way, an analogous expression can also be given for b, as the total weight
of those length n tilings that end with a dark tile. We state that expression here,
but will not state it for most of the remaining identities in this paper.

Corollary 5 Let a,, and b, be determined by recurrence (4). Then forn > 1,

w= w28 5% (5, (0 s

k>0 b1+l =k, di+d2 = k
ll+242+ di + 2d2 =

sy Y8 5 % (Y () e

k>0 i+l =k, di+dx =k
[1+2l2+ di1 + 2d2 = -2

HOIPIDIPD z()( Jptarts

k>0 li+4l =k, di+da =
b14+20+ dy + 2d2 = n—

sy X (1) (5t

k>0 li+4l =k, dit+da = k
21+212+ di + 2d2 =

The combinatorial interpretations and closed forms of the other intertwined re-
currences are more interesting.
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Theorem 6 Given real numbers p,q,r, s, ag, a1, bo, b1, and for n > 2,
n = Dln_1+ qbp_» by =1rbyp_1 + SUp_o. (5)
Then forn > 1,

w = ad Y <k+€1) <k+3i—1>pzlqkrdlsk

4k+L1 +d1 =n—1

+ gby Z Z Z <]»+€1) <k+31 - 1)p41qkrd15k

4k-+01 +d1 =n—2

4 by Z Z Z (7» + €1> (k ;d1>pelqk+1rdlsk

4k+¢1 +dy =n—3

4 sag Z ZZ(A+€1—1> <A+Zl—1> Pyt 1.

4k+Ly; +d1 =n

Proof.  As in the proof of Theorem 4, one can show by induction on n that a,
is the total weight of tilings of a strip of length n, ending with a light tile, using
light squares, light dominoes, dark squares, and dark dominoes where, except for
the initial tile, each tile has respective weight p,q,r, or s, and obeys the following
Predecessor Rule: Every square is preceded by a tile of the same shade, and every
domino is preceded by a tile of opposite shade; the initial tile is given a respective
weight of a1, gby, b1, sag. As before, the weight of a tiling is the product of its weights,
and b, is the total weight of the same objects, but where the last tile is constrained
to be a dark tile.

Now consider the weight of a tiling beginning with a light square, followed by (in
some order) ¢; light squares, {5 light dominoes, d; light squares and d» dark dominoes.
Such a tiling has weight a;p®q®r@1s% and satisfies ¢, + 205 + dy + 2dy = n — 1.
Furthermore, such a string is necessarily of the form

(Initial light square)(S)*°D1(S)"* Dy(S)*2D3(S)*® - - - Doy (S)"?*

for some nonnegative integers k, zo, . . . , 2x, where the dominoes (denoted by Dy, ...,
Dsy) alternate from Dark, Light, Dark, ..., Light, and each (5)** or (S)**+! is a
(possibly empty) string of light squares or a string of dark squares, respectively.
Hence the number of light dominoes equals the number of black dominoes (say s =
dy = k) and therefore 4k + ¢; + d; = n — 1. The number of light squares after the
initial tile satisfies

o+ o+ ... Fxo =40

which has (k+f1) nonnegative integer solutions. The number of dark squares satisfy

1+ a3+ ...+ Tax—1 = dy, which has (Hd: 1) independent solutions. Consequently,
the total welght of these tilings is

@ Z Z Z <]»+€1) <k+ji_1)pllqkrd15k

4k + L1 +d1 =n-1
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which is the first summand. The other three summands, which count the same kind
of tilings, but with a different initial tile, can be derived in exactly the same way. O

The remaining intertwined second order recurrence can be solved with the same
ideas.

Theorem 7 Given real numbers p,q,r, s, ag,a, by, by, and for n > 2,
n = pbn—l + qanp—2, bn =TQp_1 + Sbn_z.
Then forn > 1,

R SIS (k+€2> (’“*jz_l)pkqurksdz

2(k+L2 +d2) =n—1

T YT <k+€2> (k—i—jz - 1)pkqlzrksd2

2(k+L2 +d2) =n—2

‘b Z Z Z (A +f2> <7v ;ZdZ)pk+1qlzrk8d2

2(k+L2 +d2) =n—2

+ Sbo Z Z Z <A+€2) (ln ;2d2> qubrksdz.

2(k+l2 +d2) =n—3

Proof.  The proof is almost exactly the same as in the previous theorem. Here
a, and b, count the total weight of the same tilings as before, but with a different
Predecessor Rule: Except for the initial tile, every square tile is preceded by a tile
of opposite shade, and every domino tile is preceded by a tile of the same shade;
here, the initial tile has weight ay, qag, b1, or sby, depending on whether it is a light
square, light domino, dark square, or dark domino, respectively. respectively. ]

3 Intertwined Third Order Recurrences

We define the tribonacci numbers by the initial conditions T_5 =0, T_; =1, Ty = 1,
and for all n > 1,
Tn=Tha+Ths+Ths (6)

T, can be computed directly from the roots of A* — A2 — X\ — 1, but we shall focus on
its combinatorial interpretation. By Theorem 1, T}, is the sum of the weights of all
tilings of a strip of length n with squares, dominoes, and trominoes (tiles of length
three). Here every tile, and thus every tiling, has weight one, and so T, is also equal
to the number of length n tilings.

For the remainder of this section we define, for m > —2, an m-tiling to be a
tiling of length m using (unweighted, unshaded) squares, squares, dominoes, and
trominoes. The number of m-tilings is T;,,. (Note that there are zero tilings of length
—1 or —2, and one empty tiling length zero, consistent with our initial conditions.)
Later in this section, we will have more to say about 7} for negative values of k.
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When the initial conditions are arbitrary real numbers ag, a1, as and for n > 3,
Ay = Qp—1 + Ap—2 + Qp—3 (7)

then by applying Theorem 1, we have that for n > 1, a,, denotes the total weight
of all length n tilings where all tiles have weight one, except for the initial tile. An
initial square has weight a;, an initial domino has weight ay — ay, and an initial
tromino has weight ao. It immediately follows, by considering the first tile, that for
alln > 1,

n =T 1+ (a2 — a1)Th—s + agTh_3 (8)

In this section, we consider, (as was done in [1] and [6]), the seven ways that
the tribonacci recurrence can be coupled or intertwined with another tribonacci re-
currence. Specifically, we consider sequences generated by arbitrary real numbers
ag, a1, s, by, by, by, and for n > 3,

(p = Cp—1 + dn72 +en-3 bn =Cp1+ d_n72 + én—3 (9)
where ¢ is equal to a or b, and ¢ denotes the opposite choice of ¢; we define d, de, et
same way. For example, the choice of ¢ = a,d = a,e = b, resultsin ¢ = b,d = b, e =
and the recurrence

Qp = Gp—1 + Ap-2 + bn73 bn = bnfl + bn72 + an-3 (10)

There are eight such recurrences, including the uncoupled recurrence where ¢ =
a, d = a, e = a. In the uncoupled case, we showed that a, (and of course b,) can be
expressed entirely in terms of the tribonacci numbers, a result that is algebraically
and combinatorially clear. But surprisingly, all seven other coupled recurrences can
also be expressed in terms of tribonacci numbers (sometimes with negative indices)
as shown in [6]. Here, we derive the same closed form solutions by elementary
combinatorial arguments. We begin by giving a combinatorial interpretation for a,
and b,.

Theorem 8 Let ag,ay,as, by, by,be be arbitrary real numbers, and for n > 3, let a,
and by, be determined by recurrence (9). Then for n > 1, a, is the sum of the weights
of length n tilings with shaded tiles (light or dark) of length 1,2, or 3, that end with a
light tile, subject to the Predecessor Rule: A non-initial tile of length 1 (respectively,
2 or 3) is preceded by a tile of the same shade if and only if c = a (respectively, d = a
or e = a). All tiles, except for the initial tile, have weight one. The weight of an
wnatial tile of length j is w; for light tiles and wj for dark tiles, gwen by wy = ay,
We = Qg — C1, W3 = Gy, W1 = by, Wog = by —Cq, wg = bg. Forn > 1, b, is defined
the same way, but with the restriction that the tiling ends with a dark tile.

For example, from the coupled recurrence of equation (10), a, is the total weight
of all tilings of a length n strip with shaded squares, dominoes, and trominoes, ending
in a light tile, with the restriction that, except for the initial tile, all squares and
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dominoes are preceded by a tile of the same shade, and all trominoes are preceded
by a tile of opposite shade. All tiles have weight one, except for the initial tile, which
has weight equal to one of w; = a;, we = as — a1, w3 = €g, w1 = by, wo = by — by,
or wg = &g, depending on its length and shade.

Proof. By induction on n. The weights of the initial tile are chosen so that
the combinatorial interpretation is valid for ay, as, as, by, be, bs. (Details: For tilings
ending in a light tile, by considering the length of the last light tile, the length one
tiling has weight w;; the length two tilings have total weight ws + c¢1; the length
three tilings have total weight ws + ¢y + d;. Thus we set w; = a;,ws = as — ¢y, and
w3 = ag — ¢a — dy = eg, by recurrence (9). Likewise, w; = by, wy = by — ¢;, and
Wy =by — Gy —dy = €.) For n > 3, the induction is completed by considering the
length of the last tile. |

For the tilings described by Theorem 8, we say that a tile is shade-changing if
it must be preceded by a tile of the opposite shade, otherwise it is called shade-
preserving. For the tilings described by (10), trominoes are shade-changing; squares
and dominoes are shade-preserving. Now consider an n-tiling that ends with a light
tile, as enumerated by a,. If that tiling begins with a light tile (respectively, a
dark tile), then it contains an even number (respectively, an odd number) of shade-
changing tiles after the initial tile. Conversely, given any unshaded tiling with an
even number (odd number) of shade-changing tiles after the initial tile, then there is
exactly one way to shade the tiles so that it begins with a light tile (dark tile) and
ends with a light tile. For m > 0, we let E,, (respectively, O,,) denote the number
of unshaded m-tilings with an even number (respectively, odd number) of shade-
changing tiles. For combinatorial interpretation, we shall let Ey = 1 (the empty
tiling) and let Oy = E_; = O_; = E_y = O_y = 0. Thus, if we can determine E,,
and O,,, we can immediately compute a,, by the following nonrecursive formula.

Theorem 9 For a, and b, defined by recurrence (9), we have, for n > 1,

an = Ep_1+ (a2 —c1)Epog +eEp_3+ 00,1 + (b — €1)Opz + €0p_3
bn = 10,1+ (a2 — ¢1)Op—z + €0O0p_3 + 01 Ep_y + (by — 1) En_a + €0 En_s.

Proof. From the above discussion, by considering the initial tile of the corresponding
tiling problem, we have

ap = w1 By +wiEn s +wsEy_3+w10n_1 +wW20,_2+w30,_3
by = wi1O0p_1 +w20n_5 +wsO0p_3 +wWi1E, 1+ WoE, 3 + w3E, 3.

The theorem follows from Theorem 8, since w; = ay, ws = as — ¢y, W3 = €9, W1 = by,
W2:b2—617W3:éo. O

Since the number of unshaded m-tilings is T, we have for m > 0,
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We define
A, =E, —O,.
Once we determine a closed form for A,,, then we can solve for E,, and O,,:
1 1
E, = §(Tm +A) O, = §(Tm —An). (12)

Hence, by Theorem 9, the problem of finding a closed for a,, and b,, reduces to solving

for A,,.

We note that for the uncoupled system, defined by recurrence (7), there are no
shade-changing tiles, and therefore all tilings have an even number (namely, zero) of
shade-changing tiles. Thus, for this recurrence we have for m > -2, E,, = T}, and
On =0, 1ie., Ay =Ty, and Theorem 9 reduces to equation (8).

In the seven coupled versions of recurrence (9), each has a different set of shade-
changing tiles, yet for each of these recurrences, A,, (and hence E,, and O,,) can
be easily determined by combinatorial considerations. The resulting closed forms
given by are practically the same as those presented in [6], which were derived by
much heavier algebraic machinery. In each problem, the challenge will be to find
an almost one-to-one correspondence between those tilings with an even number of
shade-changing tiles and those with an odd number of shade-changing tilings. We
derive the seven solutions in order of increasing combinatorial complexity. The first
four solutions all take advantage of the same correspondence. We shall sometimes
represent our tilings as words from the alphabet {s,d,t}, where each s,d, or ¢ repre-
sents a square, domino or tromino, respectively. For example, the tiling d*s*dt?s is
a tiling of length 17, consisting of two dominoes, followed by four squares, a domino,
two trominoes, and a square. We begin with the recurrence already described by
recurrence (10).

Theorem 10 For the coupled recurrence
Qp = Qp-1 + Qp—2 + bn—37 bn = bn—l + bn—2 + ap-3

we have, for m > —2, A, = LmT”J

Proof. For this recurrence, the shade-changing tiles are the trominoes, and therefore
A, = E,, — Op, where E,, (respectively, O,,) count the unshaded m-tilings with an
even (respectively, odd number) of trominoes. The items counted by E,, and O,, can
be paired up as follows. For any m-tiling X, find the last occurrence of a “threesome”,
defined to be any tromino or a square immediately followed by a domino. The
m-tiling X is paired up with the m-tiling X’ where the last threesome of X is
transformed into the other kind of threesome. More formally, the m-tiling X = YtZ
(where, for some k > 0, Y is a k-tiling, ¢ is a tromino, and Z is an (m — k — 3)-tiling
that contains no threesome) is paired up with the m-tiling X' = Y'sdZ. Clearly, for
any tiling X, (X') = X, and X’ has one more or one fewer tromino than X and
therefore the parity of the number of trominoes has changed. The only objects that
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are not paired up by this rule are those m-tilings with no trominoes and no square
immediately followed by a domino. There are exactly | 22| of these, namely those
tilings of the form d's™~% for 0 < ¢ < [2]. These exceptional tilings all have zero
trominoes, and therefore belong to the set of tilings enumerated by E,,. Therefore,
A, = [™2], as asserted. O

Corollary 11 For the coupled recurrence
p =bp_1+ ap_a+ anp_3, by = an_1 + bp_2 + bn_s,

we have, for m > —2,
m—+ 2

an= |57
For the coupled recurrence
Qp = Qp—1 + bn—2 + ap-3, bn = bn—l + ap—2 + bn—37
we have, for m > —2,

A = 1, fm=0o0rl (mod4);
™10, fm=2o0r3 (mod4).

For the coupled recurrence
ap = bp1 +bpz + by3, by = ap-1 + An—2 + an_3,
we have, for m > —2,

A (=)™, ifm=0o0rl (mod4);
me 0, ifm=2or3 (mod4).

Proof. In these problems, E,, denotes the number of m-tilings with an even number
of dominoes, an even number of squares, and an even number of tiles, respectively.
Observe that the correspondence given in the proof of Theorem 10 not only changes
the parity of the number of trominoes, but also changes the parity of the number of
squares, dominoes, and tiles, as well. Hence, we need only compute A,, = E,, — O,,
for the exceptional tilings of the form d’s™~* for 0 < i < [2]. For recurrence (11),
notice that the number of squares in each of these exceptional tilings has the same
parity as m; hence, either E,, or O,, will be zero, depnding on whether m is odd or
even. Thus, A, = (—1)™[ 22 ].

For recurrence (11), the number of dominoes in the exceptional tilings ranges
from 0 to [%]. Thus A,, = 1, if [2] is even, i.e., when m = 4k or 4k + 1, and
otherwise, A,, = 0.

For recurrence (11), the number of tiles in the exceptional tilings, ranges from m
down to [F]. Thus, A, = (=1)™ if m — [F] is even, i.e., when m = 4k or 4k + 1,
and otherwise, A,, = 0. |
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Theorem 12 For the coupled recurrence
ap = bnfl +ap—2+ bn73 bn =ap-1+ bn72 + an—3 (13)
we have, for m > —2,

Ap = (=1)"T},.

Proof. Here, the shade-changing tiles are trominoes and squares, so E,, counts the
m-tilings that have an even number of trominoes plus squares. But since dominoes
have even length, such a tiling requires m to be even. Thus, if m is even, then
E, =T, and O,, = 0; if m is odd, then F,, = 0 and O,, = T,,. Thus A,, =
En — Op = (=1)™T,,. O

The solution of our remaining two recurrences make use of negatively indexed
tribonacci numbers. Here are the tribonacci numbers, listed in both directions, with
T 3=1,T,=0,T_1y=0,Tp=1.

...,—47,9,18,-20,7,5,-8,4,1,-3,2,0,-1,1,0,0,1,1,2,4,7,13, . ..
The tribonacci recurrence, when written from “right to left” says for all n,
Thz=-Th o —Th1+T,
If we let u, = T_(n43), then for all n,
Up = —Up—1 — Up—g + Up_3 (14)

with ideal initial conditions ug = 1, u_; = u_» = 0. By our discussion of equation (1),
we know that for n > —2, u, is the sum of the weights of all weighted n-tilings, where
every square and domino has weight —1, and every tromino has weight one. Here,
each tiling will have weight (—1)*, where & is the number of squares and dominoes
in it. Thus, the negatively indexed tribonacci numbers have a simple combinatorial
interpretation.

Theorem 13 For alln > 1, the negatively indexed tribonacci number T_, = u,_3 is
equal to the number of ways to tile a board of length n — 3 (using squares, dominoes,
and trominoes) with an even number of squares and dominoes minus the number of
ways to tile such a board with an odd number of squares and dominoes.

For the coupled recurrence
Ap = bn—l + bn—2 + Gp—3 bn =Qp-1+ Qp_2+ bn—S (15)

the shade-changing tiles are squares and dominoes. As an immediate consequence of
Theorem 13, we have the following.

Corollary 14 For the coupled recurrence (15), we have, for m > —2,

Ay = Tf(m+3)



INTERTWINED RECURRENCES 113

We have only one remaining coupled recurrence, and we give two proofs of its
solution.

Corollary 15 For the coupled recurrence recurrence
A = Qp—1 + bn—Z + bn—3 bn = bn—l + ap—2+ ap-3 (16)

we have, for m > —2,
Ay, = (_1)mT—(m+3)

Proof. The shade-changing tiles of recurrence (16) are dominoes and trominoes.
Consequently, A,, = v, where v, satisfies the recurrence for n > 1,

Up = Unp—1— Un—2 — Up-3

with ideal initial conditions vg = 1, v_; = v_y = 0. Behold, if we let v,, = (—1)"u, =
(—1)"T_(n+3), and multiply equation (14) by (—1)", that v, satisfies the desired
recurrence and initial conditions.

Alternatively, for a more bijective proof, let E!, (respectively, O/ ) denote the
number of m-tilings with an even number (respectively, odd number) of dominoes
and squares, implicitly counted in the proof of Corollary 14. Likewise, define O}, and
Al = E! —O, . Butif mis even, then an m-tiling has an even number of dominoes
and trominoes iff it has an even number of dominoes and squares; whence, E,, = E!,
Op = 0., and A, = Al . By the same logic, if m is odd, then E,, = O! , O,, = E!,
and thus A, = —A! . Therefore, A,, = (=1)"A!, = (=1)"T_(;n43). Either way, we
have established our last intertwined recurrence. d

4 Intertwined k-th Order Fibonacci Recurrences

We remark that we could have used the first proof strategy of Corollary 15 to arrive
at some of the other solutions in the last section. In fact, we can apply the same
ideas to arrive at a general method for solving intertwined k-th order Fibonacci
recurrences.

We define the k-th order Fibonacci number U, as follows. U_—y = ... =U_; =
0, Uy =1, and for n > 1,

Un = Un—l +U7L—2 + ... +Un—k

Thus, U, can be interpreted as the number of ways to tile a strip of length n with tiles
of any length up to length k, where all tiles, including the initial one, have weight
one. Consider the k-th order intertwined recurrence, with arbitrary real numbers
aQ, A1y ..., Ag_1, bo,b1,...,b5_1, and for n > k,

an=Cpatdnsten st Fmny  by=Coatdpotnst. .. tmay (17)

where ¢ is equal to a or b, and & denotes the other choice. We define d, d, e, é,...,m,m
the same way. Associated with this recurrence, we have, for 1 < j < k, a tile of
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length j is shade-changing if the recurrence for a, in equation (17) has a term of
the form b,_;. Then by the same logic used to derive Theorems 8 and 9, we have
that a, is the sum of the weights of all shaded tilings of length n ending in a light
tile, where all tiles except the initial tile, have weight one, and a non-initial tile of
length j is preceded by a tile of oppposite shade if and only j is a shade-changing
tile. The tilings counted by b, end in a dark tile. For 1 < 7 < k, the weights of the
initial tiles of length j (w; and w;) can be chosen as before to be consistent with the
initial conditions. For m > 0, we let E,, and O,, denote the number of (unshaded,
unweighted) m-tilings with an even and odd number of color-changing tiles. Then

k k

U= 35 WiEn 4+ WiOn
k k

b= 3 WiOn—j+ 35 WiEn;

By definition, E,, + O,, = U, and if we define A,, = E,, — O,,, then we determine
E,, and O, by solving Ap,, which satisfies A_x_1) = ... A_; = 0, Ay = 1, and the
uncoupled recurrence: for n > 1,

k
An = Z EjAn—j
j=1

where €; = 1 if tiles of length j are shade-preserving and ¢; = —1 if tiles of length
j are shade-changing. Hence, the solution to recurrence (17) can be expressed as a
linear combination of U,, and A,,, or in terms of E,, and O,,, as desired.

We note that when k& = 2, the solutions to recurrence (17) have an especially
simple form. Here, we consider sequences generated by arbitrary real numbers
ag,a1,bg, by, and for n > 2,

(p = Cp—1+ dn72 bn =Cp1+ d_n—Z (18)

where c is equal to a or b, and ¢ denotes the other choice; likewise, we define d and
d the same way. Proceding exactly as we did in Theorems 8 and 9, we have,

Theorem 16 For a, and b, defined by recurrence (18), we have, for n > 1,

an = a1Ep_ 1+ doEn_s + 01051 + doOn—2
bn = 010, 1+ doOp o+ 01E, 1 +doEy

Recall that the Fibonacci number f,, (with initial conditions f_; = 0, fo = 1)
counts m-tilings with squares and dominoes. We note that in the uncoupled situation,
where a,, = a,_1 4+ a,_», no tiles are shade-changing, therefore O,, = 0 for all m, and
Theorem 16 reduces to the well-known ”Gibonacci” formula a,, = ay f,,—1 + ao fr—s.

We define for m > —1, A,, = E,;,— O,,. As before, the solution to recurrence (18)
is equivalent to finding A,,, since E,, + O, = fm, we have E,, = (fm + Ay,)/2 and
O = (fm — Ap)/2. In the theorems that follow, we provide short bijective proofs
for A,,, resulting in formulas previously obtained (through generating functions and
other means) in [4] and [1]. The first identity and proof is very similar to Theorem 12.
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Theorem 17 For the coupled recurrence
Ap = bn—l + ap-2 bn =Qp-1 + bn—2 (19)

we have, for m > —1,

Am = (_1)m.fm

Proof. E,, counts m-tilings with an even number of squares, equal to f,, when m
is even, and zero when m is odd. A similar conclusion for O,, immediately implies
Ay =Ey, — Op=(=1)"T,,. O

Theorem 18 For the coupled recurrence
Ap = bp—1 + bn s, by = ap_1 + an_2,
we have, for m > —1,
1, fm=0 (mod 3);

Ap=¢ -1, ifm=1 (mod3);
0, fm=2 (mod 3);

For the coupled recurrence
QAp = Qp—1 + bn—Za bn = bn—l + ap—2,
we have, for m > —1,

1, fm=0o0rl (mod®6);
A, =4 -1, ifm=3o0rd4d (mod6);
0, fm=2orb5 (mod6);

Proof. In the first recurrence, all tiles are shade-changing. For any m-tiling that
ends with a domino, then replace the final domino with two squares, and vice versa.
If the tiling ends with square preceded by a domino, then ignore those two tiles and
apply the same procedure to the (m — 3)-tiling. In other words, we associate, for
every m-tiling of the form X = Yd(ds)* the m-tiling X' = Yss(ds)*. The only
unpaired tilings are (ds)* (which has an even number of tiles and can only occur
when m = 3k) and s(ds)* (which has an odd number of tilings and can only occur
when m =3k +1).

In the second recurrence, only the dominoes are shade-changing, but the bijection
from the preceding recurrence also changes the number of dominoes, and therefore
we have no unpaired tilings when m is of the form 3m-+2. Otherwise, we have exactly
one unpaired m-tiling as before. That tiling has an even number of dominoes, when
it is of the form (ds)* or s(ds)* (which can only occur when m = 6k or m = 6k+1);
that tiling has an odd number of dominoes when it is of the form (ds)?**1 or s(ds)?**!
(which can only occur when m = 6k + 3 or m = 6k + 4).
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