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Thus 

S(a) =lb-aI+Ic--aI 

>If-bl+if-aI/2+If-cl+if- al/2 
= S(f). 

Similarly S(b) > S(f), S(c) > S(f). This shows that S does not attain its minimum at 
any vertex. It follows that S must attain its minimum at some interior point R; and 
then, by the Proposition, DS(r) =0. But F is the unique point for which DS(r) = 0; 
so R =F. 

Case 2. Suppose, alternatively, that one of the angles A, B, C is not less than 1200. 
Then there can be no point R such that RA, RB, RC make equal angles with each 
other; so S cannot attain its minimum at an interior point, and must therefore attain 
its minimum at a vertex. Since the longest side of the triangle is the one opposite the 
largest angle, we see that S attains its global minimum at the vertex of the largest 
angle. 

We have demonstrated the following. 

THEOREM. If all the angles of the triangle ABC are less than 1200 then the Ferrnat 
point F is the point stuch that FA, FB, FC meet at 1200; otherwise it is the vertex of 
the largest angle. 

Acknowledgements I am grateful to Messrs. M. Smith anid I. Moss for bringing this topic to my 
attention, to Dr. A. S. Wassermnann and Professor Z. Rubinstein for helpful discussions, and to the Institute 
of Mathemiiatics, Hebrew University of Jerusalem, for affording miie shelter and hospitality during a 
sabbatical year. 
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In a round-robin tournament with n players, each player plays every other player in a 
game where ties are not possible. The results of the tournament can be summarized 
by an n by n touarnment matrtx A whose (i, j) entry is 1 if i beat j,- 1 if j beat i, 
and 0 if i equals j. The matrix below represents a tournament where, for example, 
player 1 beat players 2 and 4, but lost to players 3 and 5. The authors confess that the 
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paper was motivated by word play with the hope of determining that determinants 
and tournaments have more in common than their names suggest. We discovered that 
in fact the concepts are almost -independent, but do provide an opportunity to 
illustrate several powerful types of determinant arguments. 

0 1 I - I I] 
-1 0 1 1 -1 
I -1 0 1 1 
-1 -1 -1 0 1 

Proposition 1. Let A be the matrix representation of a tournament tvith n players. 
The deterninant of A is zero if, and only if, n is odd. 

Proof. Any tournament matrix A is necessarily skew-symmetric, i.e., A = -AT 
Therefore, det(A)= det(-AT) =(-1)" det(AT) =(-1)" det(A). When n is odd, 
det( A) = - det( A) and must therefore be zero. 

For the case where n is even, recall that to compute the determinant, we can 
determine it by summing products of the terms in it according to the formula: 

det( A) = E sign( p) a, p()a2, p(2) 
... 

an, p() 
eSn 

where S,, is the set of all permutations on n elements. We shall show that this 
determinant is odd, and hence nonzero. Since each a j is 0, 1, or -1, so is the 
product sign( p)a1, p()a2, p(2) 

.. a,,, p("), If p(i) = i for some i, then a, p(i) is 0, and 
hence sign(p)aj, p(j)a2 p(2) 

... a, 1,,) is 0. So we only need to take the sum over all 
permutations that do not map any element to itself, since all other permutations 
contribute zero to the sum. Since for each such permutation p, sign(p)aj p(j)a2 p(2) 

t,, p(l) is 1 or -1, we can calculate det(A) modulo 2, simply by counting the 
number of derangements, permutations that do not map any element to itself. 

By the principle of inclusion-exclusion, there are 

n 
E 1)'( n - i ) !(? 

derangements. Since (n - i)! is even for i < n - 2, the previous summation has the 
same parity as 

-1)1-l n 1 + (-i)IO!(n)= -n-n 

which is odd. Thus, det(A) is nonzero. 
Here is another simple proof for the case when n is even. Since det(A)mod2 is 

unaffected by changing (- l)'s into l's, it suffices to compute the parity of the 
determinant of the matrix 

~0 1 1 .. 1 
I 0 1 ... I 

J-I 1 .. 0 j 

where I is the n by n identity matrix, and J is the n by n matrix consisting entirely of 
l's. 
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For any matrix C, we have 

Cx = At=* (C - I)-= (A -)x 

so the eigenvalues of J- I are all one less than the eigenvalues of J. 
The rank of J is 1, so 0 is an eigenvalue with multiplicity n - 1. Since n is also an 

eigenvalue for J (with eigenvector [1,R1,..., 1T), its multiplicity must be 1. So J - I 
has the eigenvalue -1 with multiplicity n - 1 and the eigenvalue n - 1 with 
multiplicity 1. Hence the determinant of J - I equals the product of its eigenvalues, 
namely ( - i) '- 1)(n - 1), which is odd. 

Yet another way to compute det(J - I) is by performing elementary row and 
column operations that do not affect the determinant. (This argument can be applied 
to any square matrix with one number on the main diagonal and another number 
everywhere else. See for instance, [1].) Adding every row of J -I (except the first) to 
the first row gives us the matrix 

n-I n-I n-I1 . n-I 
I 0 1 .. 1 

I I I 0 1 

After subtracting the first column of this matrix from all the other columns we 
obtain the lower triangular matrix below with determinant (- i - ')(n - 1) 

n-1I 0 0 .. O 
1 -1I 0 .. O 
1 0 -1 O 

i 0 0 * i 

In fact, a little more can be said about the "zeroness" of det(A). 

Proposition 2. The ntllspace of a tournamnent mnatrix A has dimension .zero if n is 
even, and d-mension one -f n is odd. 

Proof: If n is even, then A is nonsingular and the proposition follows. For odd n, 
let a,'... ., a, be the columns of A. Let C be the (n - 1) x (n - 1) matrix which 
results from deleting the last row and column from A. This matrix then corresponds 
to some tournament on n - 1 vertices. Hence, since n - 1 is even, the above result 
implies that C is nonsingular. The columns of this matrix are therefore linearly 
independent. It follows that the vectors a ... a, are linearly independent, since 
they are the columns of C with an additional component. So the rank of A is at least 
n - 1. If A had rank n, it would be nonsingular, which we know to be false. So the 
rank of A is n - 1, and the dimension of its nullspace is therefore 1. 

Acknowledgements. Thanks to Professor R. A. Mena for suggesting the eigenivalue proof of Proposi- 
tion 1, anid the anoniymous referees for mally valuable suggestions. 
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