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Some Promising Approaches to Tumor-Immune Modeling

L.G. de Pillis and A .E. Radunskaya

ABSTRACT. Mathematical models of tumor-immune interactions provide an
analytical framework in which to address specific questions regarding tumor-
immune dynamics. We present a brief summary of several approaches we are
currently exploring to model tumor growth, tumor-immune interactions, and
treatments. Results to date have shown that simulations of tumor growth
using different levels of immune stimulating ligands, effector cells, and tumor
challenge, are able to reproduce data from published studies. We additionally
present some of our current efforts in the investigation of optimal control to
aid in determining improved treatment strategies.

1. Introduction

Mathematical models of cancer progression and treatment have been under
development by multiple research groups for a number of years, each new model
tending, of necessity, to focus on simulating one or two important elements of the
multifaceted process of tumor growth and response to therapy. In a cooperative
effort with clinicians and research oncologists, we, too, have been investigating
mathematical models of tumor growth in the context of immune system responses,
with the goal of better understanding how the various aspects of growth, treatment,
and the immune response interact with one another. We have developed a series
of mathematical models, each evolving to address specific issues, all involving some
representation of the immune system.

The question of whether the immune system plays a significant role in tumor
development had been in the past a matter of debate. However, there is now a
growing body of evidence showing that for certain forms of cancer, not only is the
immune response relevant, but has been found to be essential if one is to observe
tumor dormancy and cycling, and is also central to certain treatment programs
(21], [55],[50], [51],(65],[9].

1.1. Treatment Approaches. Chemotherapy, the administration of one or
more drugs designed to kill tumor cells, is one of the most well established treat-
ments for cancer. Many chemotherapy drugs target cells at the division stage.
Unfortunately, this means that normal cells with a rapid cycle, such as those of the
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hair, stomach lining, and those in the bone marrow where immune cells are pro-
duced, are also damaged by chemotherapy [34]. One response to this is to combine
several specific drugs that act on cells in different phases of their cycles. This is
sometimes called combination therapy. Such combination therapy can also be ben-
eficial when targeting tumor populations that may have immunity to one particular
drug type, and to ensure that no one drug needs to be applied at levels toxic to the
body [59].

Combination therapy can also include various forms of immunotherapy. lm-
munotherapy refers to a broad class of treatment techniques designed to boost
the patient’s immune system during treatment so the body’s own defenses can be
enlisted to help eradicate the cancer.

There are multiple approaches to boosting the immune system, among them
I1~2 growth factor injections (in order to increase the production of immune cells},
the direct injection of highly activated specific immune cells, such as CD8*"T cells,
into the blood stream, and vaccine therapy. The first two approaches focus on
strengthening the immune system directly, whereas vaccine therapy challenges the
body with a modified form of the cancer, stimulating the immune system to become
activated against that specific invader.

1.2. Outline of Paper. Our investigations led us to develop our own series
of mathematical models of cancer growth, which incorporate several key elements
of the growth processes, immune responses, the effects of their mutual interactions,
and components that allow us to simulate chemotherapy, general immunotherapy,
and vaccine therapy. In certain cases, we have employed numerical optimal control
methods to search for treatment protocols that are theoretical improvements to the
standard protocols in use today.

The outline of this paper is as follows. In section 2, we present a three dimen-
sional system of ODEs that describe the interactions among tumor cells, immune-
effector cells and normal cells. This model is then used to compare simulations:of
traditional chemotherapy strategies to those suggested by optimal control theory.
In section 3, the ODE system is modified to explore the effect of tumor-specific
and nonspecific cytotoxic immune cells. Mathematically the two cell types can'be
distinguished by their functional response form and model simulations are validated
against published laboratory and clinical data. In section 4, we combine and externd
these first two ODE models to include circulating lymphocytes, immunotherapy and
chemotherapy. This larger model is used to simulate various combination therapy
strategies. In section 5, spatial heterogeneity is added to the model through the
implementation of a hybrid cellular-automata PDE approach, which can then be
used to explore the effect of spatial cell and blood vessel distribution on the infiltra-
tion of immune cells, delivery of nutrients and therapy, and on tumor morphology.
In section 6, we describe another hybrid cellular-automata model. The goal of this
model is to understand the implications of tumor induced acidity and hypoxia in
the spread and treatment of the disease. '

2. Tumor, Normal, Immune Model with Optimal Control

The first model we present incorporates three cell types: tumor cells T'(t), nor-
mal cells N(t), and effector-immune celis I(¢). It also includes one drug treatment
the concentration of a cytotoxic chemotherapy u(t). Model features include:
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(1) Immune response: immune cells, whose growth may be stimulated by the
presence of the tumor, can destroy tumor cells through a kinetic process.

(2) Competition terms: normal cells and tumor cells compete for available
resources.

(3) Optimal control theory for chemotherapy: a set of optimal therapy can-
didates is calculated to minimize the tumor population by the end of the
fixed treatment period.

Full justification for each component can be found in [11], with highlights
provided here. The full system of equations is given by

r IT —u
I:S+£‘7~611T~d1[—a1<1~6 )I

(2.1) T=rT(1~bT)—cIT ~ 3TN — ap(1 — )T
N =r,N(1 = byN) — ¢4 TN — az(l — e"")N
U = ’U(t) - dzu

The normal cells compete with the tumor cells for nutrients, and also serve as an in-
dicator of the level of health, an important component when developing chemother-
apy treatment strategies. Specifically, in this model normal cell levels are con-
strained to stay above a minimum threshold to eliminate those therapy protocols
that would be too toxic. We assume an initially small tumor mass, that is, a tumor
size that is close to zero relative to carrying capacity. Consequently, the choice of
the mathematical growth law to represent tumor cell growth dynamics does not sig-
nificantly affect the qualitative behavior of the model. We compared the results of
the simulations of our system using a variety of standard growth laws, and all gave
results that were qualitatively similar. The logistic and Von Bertalanffy growth
laws provided the best fit to a specific data set, but logistic growth required fewer
parameters than Von Bertalanfy, see Figure (1). Therefore, we use logistic growth
in this model.

In the absence of a tumor, the immune cells are produced at a constant rate
s, and have a natural per capita death rate di, resulting in a long-term population
size of s/d; cells. The presence of tumor cells stimulates the immune response,

[(H)T(t)

represented by the positive nonlinear growth term for the immune cells a T
a
where p and « are positive constants. This type of response term is of the same form

as the terms used in the respective models of Kuznetsov et al. (1994), Kirschner and
Panetta (1998), and Owen and Sherratt (1998) . As a function of T, the response
term is positive, increasing, and concave. Furthermore, the reaction of immune
cells and tumor cells can result in either the death of tumor cells or the inactivation
of the immune cells, resulting in the two competition terms. Both tumor cells and
the normal cells obey a logistic growth law, with parameters r; and b; representing
the per capita growth rates and reciprocal carrying capacities of the tumor and
normal cells, 7 = 1, 2 respectively. In addition, there are two terms representing the
competition for resources between tumor and host cells.

To add the effect of drug on the system, we denote by u(t) the concentration
of drug at the tumor site at time t. We assume that the drug kills all types of cells,
but that the kill rate differs for each type of cell. Letting F(u) be the fractional cell
kill for a given amount of drug, u, at the tumor site, we use F(u) = a; (1 —e %),
where a;, ¢ = 1,2,3 are the three different response coefficients. This form reflects
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F1GURE 1. A comparison of various growth laws to three tumor
growth data sets from published data in [15]. Each data set rep-
resents tumor volume growth over time, with three different inital
tumor burdens: 10%, 105, and 10° cells. The bottom graph in each
set shows the superimposed residuals (model prediction minus data
point) for all three data sets. The smallest pointwise residuals are
achieved with the Von Bertalanfly and the Logistic growth models,
hence these provide the best fit.
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the dose-response curves suggested in [27]. The rate of change of u(t) is determined
by the dose given, v(t), and a per unit elimination rate of the drug.
A full stability analysis is carried out on this model in [11] and [12].

2.1. Formulation of the Optimal Control Problem. In this model, we
have the ability both to simulate a predetermined course of treatment, and to
employ the theory of optimal control to help automate the process of determining
improved treatment strategies. Optimality in treatment might be defined in a
variety of ways. Some studies, for example, have chosen to minimize the total
amount of drug administered while either maximizing healthy cells or minimizing
cancer cells [69], [68], [70]. In contrast, in this model the optimal control problem
with state constraints is framed as follows: for a fixed time interval [0, ¢ 7], find
the points within that interval at which the drug should be administered so that
the number of tumor cells is minimized, while the number of healthy cells is kept
above a prescribed threshold. In particular, we must, determine the function v(t)
that will minimize the number of tumor cells up to some specified time, t7, with
the constraint that normal cells are not overly depleted. The units of cells are
normalized, so the carrying capacity of normal cells is 1 (ie., by = 1). We require
that the number of normal cells stay above three-fourths of the carrying capacity,
or N(t) > .75 for all ¢. Therefore, in the language of optimal control theory we
have:

ty
(22) Objective Functional: J(v) = KiT(v,ts) + thl/ T{v,t)dt
. fJo

Constraint: Nit)>.75 0<t< ty

where K, and K, are prioritizing weights. Note that this objective functional
reduces to J(v) = T(v,ts) if K; = 1 and Ky =0.

In this case, the objective functional is linear in the control. The linearity of the
control leads to solutions that are “bang-bang”. That is, the drug dose v(t) takes
on one of two values: v is either zero, or takes on the value Umaaz, the maximum drug
dose allowed. Details of the derivation of the characterization of this solution can be
found in [11]. The numerical solution of this problem was solved using a collocation
method implemented in the software DIRCOL v1.2 [75]. Bang-bang solutions can
also be found using alternate approaches, such as genetic algorithms [74, 43, 46].
Problems with nonlinear controls and smooth solutions may be more appropriately
solved with traditional methods such as two-point-boundary value problem solvers,
or the collocation technique of DIRCOL. A variety of approaches have been taken
for solving optimal control problems focusing on other areas of cancer treatment,
such as the development of resistence, cell cycle specific chemotherapy, radiotherapy,
or humoral Immunotherapy. See, for example, [42, 71, 19, 25].

2.2. Comparison with Standard Protocols. In most of our experiments,
the protocol suggested by the optimal control algorithm dictated that the drug
be administered continuously over relatively long periods of time—on the order of
days. Standard protocol is to administer the drug for a short time, on the order of
several hours, with periodically repeated treatments every few weeks.

In [11] and [12] a series of experiments comparing pulsed chemotherapy to
optimal control chemotherapy are presented, while [12] also discusses the basins of
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FI1GURE 2. Comparison of tumor growth with two initial immune
strengths. Left: I(0) = 0.15. Right: I(0) = 0.10. Top Row:
No chemotherapy: in both cases, the tumor cell population grows;
Middle Row: Traditional pulsed treatment: with I(0) = .15, the
tumor is controlled, but with I{0) = .10, the tumor grows; Bot-
tom Row: Optimal control treatment: in both cases the tumor is
controlled and does not regrow, even after treatment is stopped.
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attraction to a healthy zero tumor equilibrium. Figure 2 presents numerical exper-
iments highlighting a hypothetical case in which the initial strength of the immune
system determines whether traditional chemotherapy can “cure the patient”, that
is, drive the cancer population to zero. Figure 2, Top Row, shows tumor growth over
time with no drug intervention for two levels of initial immune strength. In Figure
2, Middle Row, we see that traditional pulsed chemotherapy successfully eliminates
the tumor when the immune system is stronger, but fails when the immune Sys-
tem is only slightly weaker. In the case for which traditional chemotherapy fails,
the optimal control chemotherapy strategy is successful, as highlighted by Figure
2, Bottom Row. That is, the optimal control strategy is able to push the tumor
population into the zero basin of attraction even with a weakened immune system.
See [12] for an analysis of the basins of attraction of this system.

2.3. Possible Extensions of the T-N-I Model. One natural extension of
this work is to investigate alternate objective functionals, including those with free
final time, and those whose focus is simply to drive the system into a desirable
basin of attraction. Another extension to this model would take into account the
cell cycle to allow for the modeling of cycle specific chemotherapy. Delay differential
equations can be employed to model cell-cycle specificity. Some progress has been
made in this direction in [60]. Further ideas for model extensions can be found in
(11] and [12].

3. Tumor, Nonspecific-Effector, Specific-Effector Response Model: the
T-N-IL model

This next model focuses more specifically on the interaction of particular com-
ponents of immune system with the growing cancer. This model highlights the
differing roles of the nonspecific-effector cells, represented by Natural Killer (NK),
cells and the specific-effector cells, represented by CD8+T cells, in suppressing tu-
mor cells. NK cells are a constituent of innate immunity, and are able to recognize
and destroy tumor cells, among others, independent of prior exposure. Natural
killer cells are thought to play a key role in preventing the development of can-
cer by killing abnormal cells before they multiply and grow. CD8*T cells are a
critical subpopulation of T-lymphocytes that can be cytotoxic to tumor cells pro-
vided previous sensitization has occurred. In the equations, we denote the three
cell populations by:

e T'(t), tumor cell population at time ¢
e N(t), total level of natural killer cell effectiveness at time ¢
e L(t), total level of tumor specific CD8*T cell effectiveness at time ¢

This model is based upon and validated by experimental studies by Diefenbach
et al. [15], in which mouse tumor cell lines are modified to express higher levels
of immune stimulating NKG2D ligands. The model is further validated against
human data provided in Dudley et al. [17], in which subjects with metastatic
melanoma are treated with highly selected tumor-reactive T cells. Both the mouse
and the human studies provide vital experimental information regarding tumor
growth rates and effector to target lysis rates. The model is used to explore the
dynamics of tumor rejection, the specific role of the NK and CD&*T cells, and the
development of protective inmunity to subsequent tumor rechallenge.
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3.1. Model Development. The specific biological assumptions we took into
account when developing the model equations are based on both accepted knowl-

edge of immune system function and conclusions stated in [15] and [17]. The (3.1)
assumptions include:
(1) The tumor cells grow logistically in the absence of an immune response. (3.2)

See section 2.
(2) Both natural killer cells (NK) and CD8*T cells can kill tumor cells.

(3.3)
(3) Tumor cells have the potential to engender cytolytic activity in previously

naive and non-cytotoxic cells. where
(4) As part of innate immunity, NK cells are always present and active in the
system, even in the absence of tumor cells. (3.4)

(5) As part of specific immunity, tumor-specific CD8*T cells are produced
and recruited once tumor cells are present.
(6) Each natural killer cell and CD8 T cell will eventually become inactivated
after some number of encounters with tumor cells.
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3.2. Model Equations. Using the list of assumptions from above, we de-
scribe the system as three coupled differential equations, where each equation gives
the rate of change of the particular cell population in terms of growth and death,
cell-cell kill, cell recruitment, and cell inactivation. .

The mathematical forms of the growth and death terms for tumor and immune
cell populations reflect assumptions (1), (4) and (5). Assumption (2) is reflected
in the cell-cell kill term, assumption (3) gives rise to the effector cell recruitment
terms, and assumption (6) is incorporated through the effector inactivation terms.

Immune recruitment terms are generally assumed to be of a Michaelis-Menten
form, (see, e.g., [40] in which Michaelis-Menten dynamics are derived for immune
cell recruitment by cancer cells). These dynamics are commonly used in mathe-
matical tumor models that include an immune component, since they allow for a
saturation effect (see, e.g., [37]). In the case of the CD8*T cells, in addition to be-
ing recruited by interactions with T-cell processed tumor cells through a Michaelis-
Menten dynamic, additional CD8*T cells are stimulated by the interaction of NK
cells with tumor cells. This NK stimulation is represented by the »NT term in
equation (3.3). The term rNT, representing a fraction of the number of interac-
tions between NK cells and tumor cells, is the vehicle through which we model
the fact that the specific immune response of the CD84T cells is activated only
after the activation of the earlier response of innate immunity. To determine the
fractional cell kill dynamics, data from standard four hour chromium release assays
published in [15] and {17} were used.

The fractional cell kill term for the NK cells was assumed to be proportional
to the size of the NK cell population. This assumption was consistent with all the
data we examined. However, the same assumption was not consistent with the dat
for tumor-specific CD8'T cells. We therefore introduced a new functional form for
the (CD8*T)-tumor kill term, represented by D in equation (3.1), given explicitl
in equation (3.4) below. This term we say is of a “rational” form. Since this term
is an innovation in this model, its derivation is specifically addressed in the ne
section. ;

Substituting specific mathematical forms for each of the growth, death, recruit-
ment and inactivation terms yields the following system of equations:
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dT
(3.1) — = aT(1-4T)=eNT =D
dN gT?
. dL i D?

where
(5"
(3.4) D=d—L—T
s+ (%)

Reference [12] provides a detailed listing of the parameters in this model, along
with their units, descriptions, numerical values for the simulations, and reference
sources from which these values were taken. Detailed development of all terms,
except for the new fractional cell kill term D discussed below, can be found in [11].

3.2.1. Fractional Cell Kill. A crucial component of the model equations is the
set of terms describing the interaction or “competition” between the tumor cells
and either the NK cells or the CD8*T cells. It is common to assume that that the
action of the effector cells is to reduce the tumor cell population through a mass-
action dynamic (see for example, 52, 20, 49, 41, 40, 11]). In our case, the effect
of the NK cells on the tumor cell population would be expressed with the term
—cNT, while the form of the CD8*+T cell effect would be —dLT, where c and d are
proportionality parameters determined through experiment. As discussed below,
we found that although this simple mass-action term was sufficient to reproduce
in simulations the experimental interaction of NK cells with tumor cells, it did not
accurately reflect the action of the CD81T cells.

We performed data fitting experiments using a generalization of the mass-action
term: a power term that allows for exponential growth. Using cell lysis data from
[15], we employed a least squares fit to find the parameters ¢ and v in eN YT, and d
and A in dL*T. Details can be found in [14]. We found that the best-fit exponent
for the NK kill term was v ~ 1, so we chose to keep the product form, —cNT, to
describe the effect of the NK cells on tumor cells. In fact, the optimal value of ¢
determined using our algorithm reproduced the lysis rate data extremely well (see
14)).

However, when fitting for parameters d and \ for the CD&*+T cell kill term,
we found that the power form produced values for the lysis rate that were not
particularly good fits to the data provided in [15]. Instead, we found that we could
produce curves that better fit the data by allowing this term to have the rational
form given in equation (3.4), for which we also had to determine parameter s. In
(3.4), the exponent A represents how the lysis rate depends on the effector:target
ratio, the parameter s affects the steepness of the curve, and parameter d gives
the maximum lysis rate. The selection of the rational form of the cell-kill term is
further supported by the fact that both in vitro and in vivo experiments indicate
that percent lysis appears to be a function of the ratio of CD8*T cells to tumor
cells, explaining the appearance of (L /T). Furthermore, the data indicate that the
percent of cells lysed never exceeds a maximum, a saturation effect that is reflected
by the rational form given in equation (3.4).
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This saturation effect highlights the fact that the NK cells and CD8*T cells
are interacting with tumor cells in a qualitatively different way, since there is no
saturation level for the NK cell competition term. It may be that the NK-cell kill
rate could achieve saturation as well in theory, but in practice this does not occur.
On the other hand, it may be that the antigen-specific T-cells follow this curve to
saturation because they are targeting a specific tumor type, and are therefore more
effective in terms of cell-cell interactions.

3.3. New Functional Forms. In contrast to NK cells, CD8*T cells have to
be primed in order to be activated. When determining the CD8*T kill term D
there were four different data sets to be fitted. These came from first priming with

either control-transduced cells or with ligand-transduced cells, then challenging FIGUP'»E 3:
with either control-transduced or ligand-transduced cells. In the model, these cages over time i
are distinguished by the estimates of the parameters, d and A, which changed by a pleted; Ce
factor of up to five. Thus, the estimated values of these parameters as components ponents ar
of the rational cell kill term D may be highly significant factors distinguishing tween the
between tumors that are weakly and strongly antigenic. mean tumc
3.3.1. Functional and Numerical Response. In ecology literature, predator-prey whereas in
the maxim

dynamics have been modeled and studied in a variety of ways, frequently framed
using a functional-numerical response approach, in which the rate of prey consump-
tion by an average predator is known as the “functional response.” The form of
the functional response plays a significant role in determining dynamic stability,
responses to environmental influences, and the nature of indirect effects of exter-
nal resources on the predator-prey pair. The functional response is often classified (3.5)
as either prey-dependent, in which prey density alone determines the response, or
predator-dependent, in which both the predator and prey populations are compo-
nents in the response.

It is not unreasonable to counsider the effector-immune to tumor interaction as
a type of predator-prey interaction, in which case D can be framed in the ecologi-
cal functional-numerical response format. Earlier models of tumor-immune interac-
tions, including that of section 2 and [11], and the dynamic representing the NK-cell
to tumor interaction, have employed essentially prey-dependent type dynamics to
describe the immune-tumor interaction. Similarly, until recently, predation theory
in ecology was dominated by prey-dependent models [1]. More recently, however,
ratio-dependent functional response models, a particular subtype of the predator-
dependent model, have been shown to be more appropriate in many ecological
settings [1, 2]. The ratio-dependent model assumes that the response depends on
the ratio of the prey population size to the predator population size, and not on
the absolute number of each species. A cell lysis term of the form D is new in
this tumor modeling context, and does not fit into the traditional prey-depende
categorization. However, since the dynamic we discovered through our data ﬁtﬁng
process led us to a ratio-dependent term, it is interesting to observe that our prob-
lem can be recast in the form of a predator-ratio-dependent functional response.
Namely, ignoring the action of the NK cells, and letting our functional response
term be
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FIGURE 3. Simulations of (tumor-cell)-(immune-cell) interactions
over time in three different situations. Left: CD8*T cells are de-
pleted; Center: NK cells are depleted; Right: all immune com-
ponents are intact. Note the difference in the vertical scale be-
tween the left and center panels, and the right panel. Maximum
mean tumor surface area in the left and center panels is 300mm?,
whereas in the right panel in which the tumor is not established,
the maximum surface area is never greater than 6mm?.
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and our numerical response be a Michaelis-Menten type function of g, the equations
for T' and L can be written in a standard functional-numerical response form:

(35) = TH(D) - LT, L)y, % = Lyl 1))~ mL

where f; is an intrinsic growth function for T, and f, represents the numerical
response of the predator L.

While it is not immediately clear what the individual components of D represent
biologically, the use of phenomenological dynamics in modeling biological processes
is quite common, and can serve to provide predictive capabilities in the model. It is
hoped that future investigations will elucidate the the underlying immune response
mechanisms that give rise to the form of D.
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3.4. Model Simulations. Simulations generated by a validated mathemat-
ical model can be used to detect thresholds for immune efficacy. In Figure 3, we
reproduce with a computational solution of our mathematical model the qualitative
results of three sets of experiments that were presented in Figure 2, page 167 of [15].
For the experiments in [15], groups of mice were challenged with either 104, 10°
or 10° ligand-transduced tumor cells, and then tumor establishment was tracked.
For our in silico simulations, we also challenge the mathematical system with these
three levels of tumor cells. Figure 3 (left) shows simulated tumor cell growth over
time in response to these three initial levels of tumor burden in the absence of
CD8*T cell activity, reflecting the experiments in which the mice were depleted of
CD8*T cells. This simulation represents a system lacking a strong antigen-specific
immune response. The system can control a small tumor, but tumor challenges
of 10° cells or more escape the immune system’s control. Figure 3 (center) shows
simulated tumor growth outcomes for the same three experiments done in the ab-
sence of NK cells, reflecting the experiments with mice depleted of NK cells. The
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system is now able to control initial tumor burdens of up to 10° cells, but a larger
challenge of 10° cells escapes immunosurveillance. Figure 3 (right) shows simulated
results with both NK and CD8*T cells active, reflecting the experiments on mic
with intact immune systems. With both the NK cells and the CD&*T cells working
together, initial tumor burdens of up to 10° cells are controlled.

Our new tumor-immune interaction dynamic form provides a good fit with ex-
perimental data resulting from priming and rechallenge with different combinations
of tumor cell types. This model suggests the value in continuing to research the
mechanisms by which NK cells and CD8+T cells induce tumor cell lysis. The func.
tional descriptions of these cell populations suggest that further laboratory tests
may aid in determining why the two types of immune cells give rise to such different
cell interaction dynamics. We hypothesize that the more effective the immune cel
kill is, the more closely it follows a rational law dynamie.

3.5. Possible extensions of the 7-N-I model. The model currently in-
cludes no self-regulatory terms in the equations, or down-regulation of an activated
immune response. This issue is currently undergoing active attention. These exper-
imental and simulated results, observed together with the cell lysis data presented
here and the parameter sensitivity analysis presented in [14], highlight the impor-
tance of CD8™T cell activation on final outcome. Model results appear to indicate
that in order to promote tumor regression, it may be necessary (although perhaps
not sufficient) to focus on increasing CD81T cell activity. In fact, we propose that
there may be a direct positive correlation between the patient-specific efficacy of
the CD8*T cell response as measured by cytotoxicity assays, and the likelihood
of a patient responding favorably to immunotherapy treatments. This hypothesis
could be tested in clinical studies.

4. Model with IL-2, Circulating Lymphocytes and Chemotherapyr

This model incorporates key elements of both of the previous two models: spe-
cific effector response, along with a way to implement optimal control. With this
model we are able to explore combination chemo-immunotherapy, and we have a
foundation for implementing optimal control (this last is currently under develop-
ment). The model describes the kinetics of four populations (tumor cells and three
types of immune cells), as well as two drug concentrations in the bloodstream, using
a series of coupled ordinary differential equations. The populations, T'(t), N (t) and
L(T) are the same as in the previous model. Additionally we have: -

s C(t), number of circulating lymphocytes (or white blood cells)
* M(t), chemotherapy drug concentration in the bloodstream :
¢ I(t), immunotherapy drug concentration in the bloodstream (e.g. 1L-2).

In contrast to the first model in which the generic normal cell population is used as
a state constraint for the optimal control problem, here the circulating lymphocyte
levels are incorporated to be used as a measure of patient health (see, e.g.,[53, 48,
30]). The advantage to moving to the use of circulating lymphocytes is that these
can actually be measured in a patient’s bloodstream, so realistic parameters can
be obtained. The full system of six differential equations incorporates the same
fractional cell kill dynamic, D = d(L/T)*T/(s + (L/T)*) discussed in detail in
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section 3. The system becomes:

dT
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= =y M +vp(t), - = —prd +vy(t)

This model allows for the administration of traditional chemotherapy as well as
both cellular and humoral immunotherapy. Chemotherapy is administered through
the term vy in the equation for the medicine M, and affects the other cell popula-
tions with a per cell kill rate saturating at the coefficient K 4, where j =T, N, L,C.
A tumor infiltrating lymphocyte (TIL) drug intervention term, vy, in the equation
for the CD8*T cells, L, is a function of time. When v, (t) is non-zero, this repre-
sents the administration of cellular immunotherapy in which the immune-effector
cell levels are boosted directly by the addition of antigen-specific cytolytic T-cells.
Similarly, the drug intervention term v; in the equation for I reflects the amount
of a humoral immune-stimulating drug, such as IL-2, given over time.

A full description of the equations, their derivation, and a stability analysis
can be found in [10]. In [10] a variety of computational experiments is also pre-
sented, including a numerical investigation of the theoretical potential for combining
vaccine therapy with chemotherapy. In one case, a theoretical patient is given a
detectable tumor of size 2 x 107 and a “healthy” immune system of 3 x 10° NK
cells, 102 CD8*T cells, and 10%° circulating lymphocytes. This is a case in which
patient’s immune system is not strong enough to handle a 107 size tumor on its
own. As shown in Figure 4 (left) the body cannot handle this size tumor even
when treated with aggressive pulsed chemotherapy for 50 days. Additionally, vac-
cine therapy, represented by changes to the original parameter set after 10 days,
fails to control the tumor. This simulation is pictured in Figure 4 (center). Only
the combination of both treatments can kill a tumor of this magnitude, as shown
in Figure 4 (right). The parameters for these simulations are all provided in [10].

Such dramatic tumor regression is still uncommon among most patients. The
result is sensitive to the choice of tumor and patient parameters, as well as to
the timing of the treatments, as described in [10]. It has been noted, however,
in the clinical studies of Wheeler [76], that over a period of 50 days, combination
therapy provoked a drastic (> 50%) tumor regression in three of thirteen glioma
patients. Wheeler points out that these tumor regression outcomes are rare in
the literature. This mathematical model is able to reflect these positive clinical
responses to emerging combination therapies, and could be used to identify aspects
of the immune response that are potentially critical to these positive outcomes.
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FIGURE 4. Human data. Left: Chemotherapy alone cannot kill
a 2 x 107 tumor with an immune system of 3 x 10° NK cells, 100
CD8™T cells, and 10'° circulating lymphocytes. Chemotherapy is
administered for 3 consecutive days in a 10 day cycle. Center:
Vaccine therapy alone cannot control the tumor with the same
initial conditions as given in Left figure. Right: Combination
therapy effectively controls the tumor.

5. Hybrid PDE-CA Models

For solid tumors, spatial heterogeneity becomes an important factor in both
growth and treatment. Therefore, the next step in model development extends
the system of ordinary differential equations to a system that includes a spatial
component. This can be realized in more than one way. Traditionally, this has been
accomplished through the implementation of partial differential equations (PDEs),
where both space and time are independent variables.

Alternately, cellular automata (CA) modeling allows for the inclusion of spa-
tial heterogeneity, employing a discrete dynamical system on a discrete, finite state
space. The model presented in [45] allows both temporal and two-dimensional spa-
tial evolution of the system and is comprised of biological cell metabolism rules
derived from both the experimental and mathematical modeling literature. In our
model, as in many CA models of tumor growth, some of the state variables are
continuous and hence the modifier “hybrid”. Here we consider the nutrient limited
growth of an avascular tumor and the dynamic interplay of both the specific (in-
nate) and non-specific components of the cellular immune responses with a growing
tumor. The model involves a combination of reaction-diffusion equations for the nu-
trient species and numerous rules of evolution for the cellular automaton description
of the various cell-types that comprise the tissue-tumor environment. The effects
of the innate and specific immune responses on the growth of the two-dimensional
tumor are explored. Model components are represented by

e N;, mitosis nutrient concentration

e N,, survival nutrient concentration

e H, host cell number

e T tumor cell number

e [, total immune cell number: the sum of the separate NK and cytotoxic
T Iymphocyte (CTL) cell populations.
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Parameter choices distinguish among the actions of the cells. The parameters in-
volved in this model are given in detail in [45].

The detailed CA rules are too extensive even to summarize here, but briefly:
Each tumor cell is given the opportunity to move or divide according to the state of
the cell’s neighbors and some probability distribution, and is killed when the local
survival nutrient levels are too low. The immune system is modeled by the inclusion
of both natural killer cells and cytolytic T lymphocytes, both of which are able to
lyse cancer cells. However, in keeping with the different functions of the innate
and specific responses, the innate response of the NK cells is always present at low
levels, and acts as a “first responder,” while the T cells respond after a delay, first
needing to be primed and recruited to the tumor site before becoming effective.

The diffusion of the chemical species is modeled through PDEs. As in the work
of Ferreira et al. [22], [23], here we consider two nutrient species (such as glucose
and oxygen [26, 67]) — the first nutrient being a necessary component of the cell
division processes, while the second is essential for cellular survival. The nutrients
diffuse throughout the tissue space, and as they do so they are consumed by the
different cells that are resident in tissue. The PDEs describing the dynamics of the
chemical concentrations all have the following general mass-balance form:

(Time change in chemical concentration) =
(Chemical diffusion in space) - (Chemical consumption by each cell population).

Specifically, the nutrient species in this model are governed by the following
partial differential equation:

ON;
ot

Change in time

= D;V®N; — ki, HN; — ks, TN; — ks, IN;,
Nt e’

Consumption

where N; represents the concentration of proliferation (i = 1) or survival (i = 2)
nutrient. The cell species are identified by H for host cells (normal tissue), T
for tumor cells, and I for immune cells. Also, D; is the diffusion coefficient for
the nutrient, while the constants &y, k2, and k3, are the rates of consumption of
nutrient by host cells, tumor cells and immune cells, respectively.

In the absence of the immune system, the model is able to reproduce tumors of
both compact-circular and papillary morphologies. These tumor shapes have direct
dependence on the relative rates of consumption of the survival and mitosis nutri-
ents by both tumor and host tissue cells. For circular tumors, the two-dimensional
analog of the spherical tumor, simulations show the presence of necrotic cores and
outer bands of proliferating cells. These results correspond qualitatively with the
experimental literature (such as Folkman [26]).

The action of the immune system in this model leads to a variety of outcomes
that depend on the choice of T cell recruitment and death parameters. For virtually
all immune system parameter choices, the resulting solutions displayed oscillatory
behavior for tumor and immune cell populations in a similar manner to the purely
temporal results of Kirschner and Panetta [37] where oscillations were also observed
in effector and tumor cell populations. Experimental evidence for such oscillatory
behaviour can also be found in works such as those due to Krikorian et al. [39]
regarding non-Hodgkin’s lymphoma.

Among other things, we used this model to demonstrate T cell infiltration
into tumor growths. Experimental literature has shown that greater survival rates
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F1GURE 5. Six time frames of immune ¢ell infiltration into a grow-
ing tumor leading to tumor destruction. Heavy damage is inflicted
early in the tumor growth process. A grey scale of —1 indicates
necrotic cells.

are observed in patients with lymphocyte infiltrates in tumors. For this model,
we determined the parameter regimes in which infiltration is effective in tumor
destruction. It is the subject of another of our studies to model the effects of
injected T cells and T cell infiltration on pre-grown tumors.

Figure 5 shows the infiltration of T cells into the growing tumor over time and
the resulting tumor destruction. In this simulation, a high T cell recruitment and
low death rate cause an early and strong immune response to the young tumor,
as seen in Figure 5 (second row, center panel). Over the remainder of the period
of growth, up until total destruction at iteration 256, the tumor cell population
undergoes oscillatory growth. The tumor cells grow away from the immune cells
in an attempt to evade them, while the immune cells are constantly directed to
surround and kill the tumor cells. Eventually the cell division of the tumor cells
is not sufficient to exceed the level of cell lysis by immune cells and the tumor is
destroyed.

Further details of this CA model and a variety of numerical experiments are
provided in [45].

6. Micro-environment Driven Hybrid CA Model

Current mathematical models do not adequately consider the effects of the
cellular micro-environment on the metabolism of tumor cells. Evidence suggests
that local conditions, such as nutrient availability, oxygen concentration, and local
pH, play a key role in tumor behavior, having significant effects on tumor growth,
malignancy, and response to treatment {73}, [63]. We have developed a preliminary
model of tumor growth in tissue that describes the diffusion of chemical species
through the tissue, the consumption of nutrients, the production of energy, -and
the production and elimination of metabolic waste. This preliminary model also
describes tumor and normal cell proliferation and tumor necrosis and invasion in
order to describe the system at the macroscopic level.
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In this model, we assume that fuel consumption and ATP production are de-
pendent on local oxygen concentration, available fuel concentration, and pH. Sim-
ulations of the model are compared with the collected experimental data showing
oxygen concentrations, pH and tissue morphologies, and calibration of the model
parameters have been performed so that the output of simulations are consistent
with observations from both in wvitro and in vivo studies (e.g. (61], [35], [31]).
The model describes the dependency of cell metabolism on the vascularization of
the surrounding tissue as well as the concentrations of nutrients and metabolic
by-products. By calculating available energy, the model predicts the effect of the
presence of the tumor on the host, suggesting possible holistic quantifications of
“health” that could be used as constraints in the optimization of therapies (in line
with the techniques we used in [11} and [12]). The implemented model of cancer
tumor growth can be used to suggest and test methods for dealing with hypoxia-
induced resistance to treatments and the effect of the size of the molecules used in
the treatment on delivery [24].

6.1. Modeling tumor metabolism, growth, and vascular collapse. Sev-
eral recent tumor models allow cellular behavior to depend on local chemical con-
centrations, ({16], [58], [16], [58]), and some models also include vascular dynamics,
([3]). See, for example, the excellent review by Araujo and McElwain, and the refer-
ences therein, for other mathematical models of vascular tumors and tumor-induced
vascular stress, [5]. This model adds to these earlier models by incorporating the
interdependency between tumor cell metabolism and local chemical concentrations.
The model currently takes into consideration the delivery of oxygen and other fuels
via micro-vessels, the constriction of blood vessels due to pressure from the sur-
rounding cells, the synthesis of nutrients for the production of ATP, the budgeting
of cellular energy towards growth and maintenance processes, and the production
of acidic byproducts during glycolysis.

6.1.1. Ozygen, cell metabolism and tumor-induced hypozia. While tumor cells
consume a variety of fuels including glutamine, palmitate, oleate and others, oxygen
and glucose are the most significant contributors to cellular energy [32]. We as-
sume, as in [58] that tumor metabolism is characteristically glycolytic, where cells
rely on anaerobic pathways for the majority of ATP production, regardless of local
oxygen availability. While the concept of a glycolytic phenotype was first proposed
in 1929 by Warburg, ([78]), some controversy still surrounds these hypotheses due
to recent experimental evidence that challenges the perception of a glycolytic phe-
notype (see, e.g., Guppy et al. [32] ). On the other hand, because tumor cells often
consume a markedly high rate of glucose, PET (positron emission tomography) has
become a very popular technique for detecting and measuring a variety of tumors,
with varying degrees of success [29], and for many the popularity of PET detec-
tion supports the concept of a glycolytic phenotype. Tumor oxygenation has also
received attention recently after some researchers have found correlations between
low oxygenation and metastatic progression [66], treatment resistance, and patient
survival. We believe that an accurate mathematical model may help to answer
some of the remaining questions regarding the role of glycolysis in tumor growth.

Oxygen is delivered to tissue via an efficient network of microvasculature,
but with increasing size, tumors often compromise blood flow [6], which causes
a decrease in oxygen perfusion leading to hypoxic regions distributed heteroge-
Beously within the tumor (73], [56], [62]. In severely hypoxic regions, metabolism
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is more inefficient and the tumor cells are unable to maintain cell function, be
coming necrotic. This model extends previous work by simulating the progression
of hypoxia, its influence on local cell metabolism and ATP production, and the
consequences for solid tumor growth.

(6.1)

with v, =

(1) Growth and maintenance of cells depends on the rate of cellular energy
(ATP) metabolized from nearby nutrients [32], {72].
(2) Proliferation and death rates depend on the micro-environment, not on the
sizes of the population, or on direct competition between cell populations,
[38]. Note that these two assumptions lead to a different mechanism
for intracellular competition than that described by other mathematical
models. (See, for example, any of the previously cited tumor models.)
(3) Nutrient consumption rates depend on pH levels, glucose and oxygen con-
centrations, [7]. Consumption of nutrients and production of metabolic
waste are all interdependent, [33].
(4) Tumor cells are able to produce ATP glycolytically more easily than no -
mal cells [29], [28], [64], [44], [36].
(5) Tumor cells thrive in a more acidic environment, and compete indirectl
with normal cells by increasing the acidity of the micro-environment.
(6) Oxygen, glucose and lactate diffuse through tissue [18], [16].
(7) Vascular constriction and collapse occurs inside the tumor due to an in-
crease in cell density. .
(8) Tumor cells excrete adhesive factors that can create cell-cell adhesive
forces. '

6.2.1. Ilustrative Example: Modeling the Consumption of Glucose. Assump-
tions (3) and (6) lead to the same general form of mass-balance PDEs describin
the concentration of oxygen, glucose and hydrogen as were used for the chemical
concentrations for the model in section 5. However, the consumption terms-now
depend on the concentration of the other molecules, as well as on the size of the
cell populations. To illustrate the development of equations used in the model, we
briefly discuss the equation modeling the consumption of glucose. The equations
describing the consumption of oxygen and the production of hydrogen follow along
the same lines, and are described in more detail in a forthcoming manuscript.

We use a modification of the empirical equation for oxygen and glucose con-
sumption derived by Casciari et al. in [8] in which cell metabolism and growth rates
for EMT6/Ro tumor cells were determined to be functions of local environmental
factors such as glucose concentrations, oxygen availability, and pH. In Equation
6.1 G, O and H represent the concentrations of glucose, oxygen and hydrogen ions
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(resp.) (in mol - cell ™! 571} and P represents a particular cell population.

G 5 cvba < 1
o e (o) (5 ()

with v, = T}-{C%[ZGTG. The dependence of consumption on cell-type is introduced
through theytwo terms ¢, and q,, where v indicates the type of cell found at the
location in question: proliferating tumor cell, necrotic tumor cell, or normal cell.
This allows the model to reflect the assumption that normal cells should consume
less glucose than tumor cells as oxygen levels decrease, as is seen experimentally
with PET scans, [54]. Oxygen consumption is calculated in a similar fashion, which
then allows the computation of local ATP production. The production of H* jons
is calculated as a by-product of the cell’s metabolism, and is a function of the
number of oxygen and glucose molecules consumed per unit of ATP produced. For
the implementation of the model, the continuous PDEs describing the diffusion of
oxygen, glucose and hydrogen ions (see equation 6.1) are translated into discrete
time rules based on local concentrations. These small molecules diffuse on a time
scale much faster than cell migration or proliferation. In the model of section
5 as well as in other works (see, e.g., [22], (23], [58]), it is assumed that the
concentrations achieve a steady state distribution between each cell proliferation
step, so a time-independent system of PDEs is solved at each step. In contrast, in
this model, the computational step implementing diffusion still incorporates time
dependence, allowing the model to reflect the biological processes more accurately.

6.3. Model Simulations. Results from a simulation of the model are shown
in Figure 6, in which two small tumors were initially placed in vascularized tissue.
After 200 days the tumors have grown considerably, but not uniformly, and have
developed necrotic cores. By calculating the total change in ATP production, the
model can quantify changes in the energy available to the host. The graph of
glucose levels (Figure 6, second row, left panel) highlights the prediction of dynamic
energy budget (DEB) theory [72] that tumor cells will consume more glucose than
normal cells. This reflects the assumption that tumor cells are able to metabolize
glycolytically more readily than normal cells. Glycolysis produces more lactate and
is less efficient than aerobic metabolism, and so the O, concentrations and the pH of
the tissue surrounding the tumor is decreased, and the tissue occupied by the tumor
cells becomes hypoxic and more acidic (shown in Figure 6, bottom row, center and
right panels). These changes in the micro-environment effected by the presence of
the tumor have consequences not only for the normal cells and the overall energy
budget of the host, but can also affect the delivery and bio-distribution of potential
treatments, a factor that we propose to explore with this model.

6.4. Extensions of the hybrid-CA model. The two hybrid-CA models
described in Sections 5 and 6 will be combined, so that effects of the micro-
environment on the effectiveness of the immune response and therapy can be ex-
plored. In particular, treatment of solid tumors with nano-vaccines could be simu-
lated, suggesting protocols that could be tested in the laboratory.

In the avascular phase, solid tumor growth is limited by the ability of nutrients
to diffuse through more than a few cell diameters. In order to continue to grow,
a solid tumor must induce new vascular growth through angiogenesis, a process
crucial to tumor malignancy. With this in mind, we will extend our model to include
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Tumor cetls MNormat celis

Mecrotic cells

Glucoss

FIGURE 6. Simulation showing two tumors with necrotic cores.
The panels from left to right, top to bottom, show concentrations
of tumor cells, normal cells, necrotic cells, glucose, oxygen and pH.

angiogenesis. This requires modeling the production and diffusion of angiogenic
growth factor (AGF), and the chemotactic movement of capillaries. We planito
build on models described in, for example [4], [47], and [77]. We will add the
energy requirements for the construction of new vasculature to the total energy
budget, and in this way tie the local energy requirements to global demands on the
host.

14.

7. Conclusion 16.

In the quest to develop models of tumor growth that hold the promise of becom- 17.

ing clinically relevant, we have presented a progression of models, both developed
and in development, each with a focus that provides insights into how to harness
the potential of combination therapies working with the immune system in control-
ling a growing tumor. Optimal control theory, as an aid to searching for optimized
treatment strategies, has been been employed in the earlier models, while our more
recently developed models have been designed to allow for the application of an:op-
timal control strategy that can employ state constraints as a means of minimizing
the damaging side effects of chemotherapy [11], [12], [13], [14], [10]. Our models
that employ a spatial component will also admit the addition of a vascular network
that can allow for spatially dependent drug, nutrition and immune cell delivery, as
well as consideration of antiangiogenic therapy [45]. Adhesivity factors are included
so that metastasis of the primary tumor can be modeled. Furthermore, the effect of
the disease on the energy-level of the host can be examined through the inclusion
of a glycolytic phenotype and the calculation of the available ATP. As always in
the modeling process, the proper balance of complexity and analytical tractability
must be maintained, with the exact mix depending on the biological question that
drives the model itself. .

18.

19.

20.

21.

22.

23.

24.

10.

11

12,

13.

15.

SOME PR«

. P.A. Abrams and |

or neither?, TREE

. H.R. Akcakaya, R.

that works, Ecology

. T. Alarcon, Byrne

mhomogeneous ent

. A.R. A. Anderson

tumor-induced ang

. R.P. Araujo and D.

Mathematical Biolc
, New insigh
Theoretical Biology

. J.J. Casciari and J.|

cellular spheroids fi
no. 1, 28-36.

. J.J. Casciari, S.V. &

metabolism with oz
of Cellular Physiolo

. C. Colijn and M. M

ogenous leukemsa, J
L.G. de Pillis, W. 1
turnors: Modeling a
(2005), in press.
L.G. de Pillis and :
and drug therapy: ¢
, The dynam
Model. (Special Issu
, Immune re:
Bathe, ed.), vol. 2,1
L.G. de Pillis, A.E.
mediated immune T
A. Diefenbach, E.R
NKG2D receptor sti
S. Dormann and A. |
cellular automaton.,
M.E. Dudley, J.R. W
Topalian, R. Sherry,
Seipp, L. Rogers-Fre
Cancer regression a
lymphocytes, Science
A. Dutta and A.S. |
Theoretical Biology
A. Ergun, K. Camph
inhibitors, Bulletin ¢
Miklos Farkas, Dyna
J.D. Farrar, K.H. Ka
Cancer dormancy. 1
and maintaining the
S. C. Ferreira, M. L
avascular tumor, Ph
, Morphology
67 (2003), 051914.
T. Fifis, A. Gamvrel
and M. Plebanski, S
nano- vaccines agair.




es.

H.

angiogenic
We plan to
ill add the
otal energy
snds on the

e of becom-
1 developed
- to harness
) in control-
r optimized
Je our more
on of an op-
minimizing
Qur models
tlar network

delivery;as
are included
the effect:of

\s always in

!
SOME PROMISING APPROACHES TO TUMOR-IMMUNE MODELING

References

. P.A. Abrams and L.R Ginzburg, The nature of predation: prey dependent, ratio dependent

or neither?, TREE 15 (2000), no. 8, 337-341.

. H.R. Akcakaya, R. Arditi, and L.R. Ginzberg, Ratio-dependent predation: An abstraction

that works, Ecology 76 (1995), no. 3, 995-1004.

3. T. Alarcon, Byrne H.M., and P.K. Maini, A cellular automaton model for tumour growth in

inhomogeneous environment., Journal of Theoretical Biology 225 (2003), 257-274.

- A R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of

tumor-induced angiogenesis, Bulletin of Mathematical Biclogy 60 (1998), 857900.

. R.P. Araujo and D.L.S. McElwain, A history of the study of solid tumour growth, Bulletin of

Mathematical Biology 66 (2004), no. 5, 1039-1091.
» New insights into vascular collapse and growth dynamics in solid tumors, Journal of

Theoretical Biology 228 (2004), no. 3, 335-346.
. J.J. Casciari and J.S. Rasey, Determination of the radiobiologically hypoxic fraction in mults-

cellular spheroids from data on the uptake of SHftuoromisonidazole, Radiat Res. 141 (1995},
no. 1, 28-36.

8. J.J. Casciari, S.V. Sotirchos, and R.M. Sutherland, Variations in tumor cell growth rates and

metabolism with oxygen concentration, glucose concentration, and extracellular ph., Journal
of Cellular Physiology 151 (1992), 386-394.

. C. Colijn and M. Mackey, A mathematical model of hematopoiesis — i. periodic chronic myel-

ogenous leukemia, Journal of Theoretical Biology in press (2005), 1-16.

- L.G. de Pillis, W. Gu, and A.E. Radunskaya, Mized mmmaunotherapy and chemotherapy of

tumors: Modeling applications and biological interpretations, Journal of Theoretical Biology
(2005), in press.

. L.G. de Pillis and A.E. Radunskaya, A mathematical tumor model with wnmune resistance

and drug therapy: an optimal control approach, J Theor Med. 3 (2001), 79--100.

, The dynamics of an optimally controlled tumor model: A case study, Math Comput
Model. (Special Issue) 37 (2003), no. 11, 1221-1244.

» Immune response to tumor invasion, Computational Fluid and Solid Mechanics (K.J.
Bathe, ed.), vol. 2, M.IT., 2003, pp. 1661-1668.

. L.G. de Pillis, A.E. Radunskaya, and C.L. Wiseman, A validated mathematical model of cell-

mediated immune response to tumor growth, Cancer Research 65 (2005), 7950-7958.

5. A. Diefenbach, E.R. Jensen, A.M. Jamieson, and D). Raulet, Rael and H60 ligands of the

NKG2D receptor stimulate twmor immunity, Nature 413 (2001), 165-171.

. 3. Dormann and A. Deutsch, Modeling of self-organized avascular tumor growth with a hybrid

cellular automaton., In Silico Biology 2 (2002}, 0035.

. MLE. Dudley, J.R. Wunderlich, P.F. Robbins, J.C. Yang, P. Hwu, D.J. Schwartzentruber, S.L.

Topalian, R. Sherry, N.P. Restifo, A.M. Hubicki, M.R. Robinson, M. Raffeld, P. Duray, C.A.
Seipp, L. Rogers-Freezer, K.E. Morton, S.A. Mavroukakis, D.E. White, and S.A. Rosenberg,
Cancer regression and autormmaunity in patients after clonal repopulation with antitumor
lymphocytes, Science 298 (2002), no. 5594, 850--854.

. A. Dutta and A.S. Popel, 4 theoretical anlaysis of intracellular oxygen diffusion, Journal of

Theoretical Biology 176 (1995), 433-445.

- A. Ergun, K. Camphausen, and L.M. Wein, Optimal scheduling of radiotherapy and angtogenic

inhibitors, Bulletin of Mathematical Biology 65 (2003), no. 3, 407-424.

. Miklos Farkas, Dynamical models in biology, Academic Press, San Diego, CA, 2001.
- J.D. Farrar, K.H. Katz, J. Windsor, G. Thrush, R.H. Scheuermann, J.W. Uhr, and N.E. Street,

Cancer dormancy. VIL. A regulatory role for CD8+ T cells and IFN-gamma in establishing
and maintaining the tumor-dormant state, J Immunol. 162 (1999), no. 5, 2842-9.

- 5. C. Ferreira, M. L. Martins, and M. J. Vilela, Reaction-diffusion model for the growth of

avascular tumor, Phys Rev E 65 (2002), 021907.

, Morphology transitions induced by chemotherapy in carcinomas in situ, Phys Rev E
67 (2003), 051914.

- T. Fifis, A. Gamvrellis, B. Crimmen-Irwin, G. Pietersz, J Li, P. Mottram, LF.C. McKenzie,

and M. Plebanski, Size-dependent immunogenicity: Therapeutic and protective properties of
nano- vaccines against tumors, Journal of Immunology (2004), 3148-3154.




110

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

37.

38.

39.

40.

41.

42.

43.

45.

47.

48.

. J.P. Kirkpatrick, D.M. Brizel, and M.W. Dewhirst, A mathematical model of tumor vzy

. J. McCall, Genetic algorithms for modelling and optimisation, Journal of Computatlona.l and

L.G. DE PILLIS AND A.E. RADUQ\ISKAYA

K.R. Fister and J.H. Donnelly, Immunotherapy: An optimal control approach, Mathematical
Biosciences and Engineering 2 (2005), no. 3, 499-510.
J. Folkman and M. Hochberg, Self-requlation of growth in three dimensions, Jowrnal of Ex-
perimental Medicine 138 (1973), 745-753.
SN, Gardner, A mechanistic, predictive model of dose-response curves for cell cycle phase-
specific and nonspecific drugs, Cancer Res. 60 (2000), 1417-1425.
R.A.:Gatenby and E. T. Gawlinski, The glycolytic phenotype in carcinogenesis and tumor
invasion: Insights through mathematical models, Cancer Res. 63 (2003), 3847-3854.
R.A. Gatenby and E.T. Gawlinski, The glycolytic phenotype in carcinogenesis and turior
invasion: Insights through mathematical models., Cancer Research 63 (2003), 3847-3854.
R. Glas, L. Franksson, C. Une, M. Eloranta, C. Ohlen, A. Orn, and K. Karre, Recruitmient
and activation of natural killer (NK) cells in vivo determined by the target cell phenotype: An
adaptive component of NK cell-mediated responses, J. Exp. Med. 191 (2000), no. 1, 129-138
M. Gryczynskia, J. Kobosb, and Pietruszewska W., Intratumoral microvessels density and
morphometric study of angiogenesis as prognostic factor in laryngeal cancer, International
Congress Series 1240 (2003), 1113~1118,
M. Guppy, P. Léedman, X. Zu, and V. Russel, Coniribution by different fuels and metabolic
pathways to the total atp turnover of proliferating mcf-7 breast cancer cells., Biochem. J. 864
(2002), 309-315.
G. Helmlinger, A. Sckell, M. Dellian, N.S. Forbes, and R.K. Jain, Acid production in glycolysis
impaired tumors provides new insights into tumor metabolism, Clinical Cancer Research 8
(2002), 1284-1291.
J.F. Holland and F. Emil III (eds.), Cancer medicine, ch. 11-3, XII, XV, Lea and Febiger,
1973.
M.E. Hystad and E.. Rofstad, Ozygen consumption rate and mitochondrial density in human
melanoma monolayer cultures and multicellular spheroids., Int J Cancer. 57 (1994), no. 4,
532-T7.

gen and glucose mass transport and metabolism with complex reaction kinetics, Radiation
Research 159 (2003), 336-344.
D. Kirschner and J.C. Panetta, Modeling immunotherapy of the tumor-immune interaction,
J Math Biol. 37 (1998), no. 3, 235-52.
S.A.L.M. Kooijman and L.A. Segel, How growth affects the fate of cellular metabolites, Bul-
letin of Mathematical Biology 67 (2005), 57-77.
J.G. Krikorian, C.S. Portlock, D.P. Cooney, and S.A. Rosenberg, Spontaneous regression of
non-hodgkin’s lymphoma: A report of nine cases, Cancer 46 (1980), 2093-2099.
V. Kuznetsov, 1. Makalkin, M. Taylor, and A. Perelson, Nonlinear dynamics of tmmunogenic
tumors: Parameter estimation and global bifurcation analysis, Bulletin of Mathematical Bi-
ology 56 (1994), no. 2, 295-321. ,
V.A. Kuznetsov and G.D. Knott, Modeling tumor regrowth and immunotherapy, Math Com-
put Model. 33°(2001), 1275-1287.
U. Ledzewicz and H. Schattler, Drug resistance in cancer chemotherapy as an optimal centmi
problem, Discrete and Continuous Dynamical Systems - Series B 6 (2006), no. 1, 128~150.
Y Liang, K.S. Leung, and T.S.K. Mok, Evolutionary drug scheduling model for  cancer
chemotherapy, Genetic and Evolutionary Computation (GECCO) 3103 (2004), 1126-1137.
H Lu, RA Forbes, and A. Verma, Hypowia-inducible factor 1 activation by aerobic glycolysis
implicates the Warburg effect in carcinogenesis., J Biol Chem. 277 (2002), no. 26, 23111~
D. Mallet and L.G. de Pillis, A cellular automata model of tumor-immune system mtemciic:m;
Journal of Theoretical ‘Biology (2005), in press.

Applied Mathematics 184 (2005), no. 1, 205-222.
S. McDougall, A. Anderson, M. Chaplain, and J. Sherratt, Mathematical modelling of fiv
through vascular networks: implications for tumor-induced angiogenesis end chemotherap
strategies, Bulletin of Mathematical Biology 64 (2002), 673-702.
B. Melichar, J. Dvorak, P. Jandik, M. Touskova, D. Solichova, J. Megancova, and Voboril Z
Intraarterial chemotherapy of malignant melanoma metastatic to the liver, Hepatogastroer
terology 48 (2001), no. 42, 1711-1715.

SOME

49. S. Michelson an
Metastasis 16 (.
S. Morecki, T. 1
tumor dormanc:
(1996), no. 2, 2(
M. Muller, F. (
turnor dormancy
by CD8+ immu
J. M. Murray, &
M.M. Mustafa,
Q. Ansari, and |
of chemotherapy,
Y. Nakamoto, F
of common sema
posilron emissio
Biology 4 (2002}
K. J. O’'Byrne, ¢/
tionship between
of malignant dis
M. Owen, H. Bx
vehicles for drug
377-391.

M.R. Owen and
growth and comy
(1998), 165-185.
A.A. Patel, E.T.
of early tumor g
anaerobic tumor
R. Pazdur, W
ment: A mu
apy, Ouncology
http://www.canc
A.E. Radunskay:
J.Math.Biol. 47
E.K. Rofstad anc
pozia in human 1
J Radiat Biol. 7&
Sansone BC Scal

Letters 89 (2002)

PA Schornack anc

pH of tumors., N

J.A. Sherratt and

Journal of Mathe

T.H. Stewart, Im

no. 1, 74-82.

P Subarsky and

Clinical & Experi

R.M. Sutherland,

spheroid model, S

A. Swierniak, So

Applied Mathems

A. Swierniak and

Mathematics and

A. Swierniak, A.

specific cancer ch

A. Swierniak and

cancer, Mathemat

50.

51.

52.
53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.



nematical
al of Ex-
sle phase-
nd tumor

nd tumor
-3854.

sruttment
type: An
129-138.
nsity and
rnational

metabolic
n. J. 364

lycolysis-
ssearch 8

Febiger,

n human
), no. 4,

mnor ory-
tadiation

eraction,
ites, Bul-
esston of

unogenic
itical Bi-

th Com-

U control
3-150.

r cancer
3-1137.
lycolysis
3111-5.
ractions;

onal and

7 of flow
otherapy

boril Z.,
astroen-

49.

50.

SOME PROMISING APPROACHES TO/ TUMOR-IMMUNE MODELING 111

S. Michelson and J.T. Leith, Host response in tumor growth and progression, Invasion and
Metastasis 16 (1996), no. 4-5, 235-246.

S. Morecki, T. Pugatsch, S. Levi, Y. Moshel, and S. Slavin, Tumor-cell vaccination induces
tumor dormancy in a murine model of B-cell leukemia/lymphoma (BCL1), Int J Cancer 65
(1996), no. 2, 204-8.

. M. Muller, F. Gounari. S. Prifti, H.J. Hacker, V. Schirrmacher, and K. Khazaie, EblacZ

tumor dormancy in bone marrow and lymph nodes: active control of proliferating tumor cells
by CD8+ immune T cells, Cancer Res. 58 (1998), no. 23, 5439-46.

. J. M. Murray, Mathematical biology, second ed., Springer-Verlag, Berlin, 1993,
. M.M. Mustafa, G.R. Buchanan, N.J. Winick, (.H. McCracken, 1. Tkaczewski, M. Lipscomb,

Q. Ansari, and M.S. Agopian, Immune recovery in children with malignancy after cessation
of chemotherapy, J Pediatr Hematol Oncol. 20 (1998), no. 5, 451-457.

. Y. Nakamoto, K.R. Zasadny, H. Heikki Minn, and R.L. Richard L. Wahl, Reproducibility

of common semi-quantitative parameters for evaluating lung cancer glucose metabolism with
positron ermission tomography using 2-deoxy-2-[ 18 f/ﬂuoro-d-glucose, Molecular Imaging and
Biology 4 (2002), no. 2, 171-178.

- K. J. O'Byrne, A. G. Dalgleish, M. J. Browning, W. P. Steward, and A. L. Harris, The rela-

tionship between, angiogenesis and the immune response in carcinogenesis and the progression
of malignant disease, Eur J Cancer. 36 (2000), 151-169.

. M. Owen, H. Byrne, and C. Lewis, Mathematical modelling of the use of macrophages as

vehicles for drug delivery to hyporic tumour sites, Journal of Theoretical Biology 226 (2004),
377-391.

. M.R. Owen and J.A. Sherratt, Modelling the macrophage invasion of tumours: Effects on

growth and composition, IMA Journal of Mathematics Applied in Medicine and Biology 15
(1998), 165-185.

- AA. Patel, E'T. Gawlinski, $.K. Lemieux, and R.A. Gatenby, A cellular automaton model

of early tumor growth and invasion: The effects of native tissue vascularity and increased
anaerobic tumor metabolism, Journal of Theoretical Biology 213 (2001), 315-331.

. R. Pazdur, W. Hoskins, L. Wagman, and L. Coia (eds.), Cancer manage-

ment: A mulitdisciplinary approach, eighth ed., ch. Principles of Chemother-
apy, Oncology Publishing Group of CMP Healthcare Media, 2004, Available at
http://Www.cancernetwork‘corn/handbook/contents.htm Accessed May 2005.

0. A.E. Radunskaya and M. Villasana, A delay differential equation model for tumor growth,

J.Math.Biol. 47 (2003), 270--294.

- BE.K. Rofstad and K. Maseide, Radiobiological and immunohistochemical assessment of hy-

pozia in human melanoma zenografts: acute and chronic hypozxia in individual tumours., Int
J Radiat Biol. 75 (1999), no. 11, 1377-93.

i2. Sansone BC Scalerandi M, Inhibition of vascularization in tumor growth, Physica Review

Letters 89 (2002), no. 21, Art. No. 218101,

33. PA Schornack and RJ. Gillies, Contributions of cell metabolism and HY diffusion to the acidic

pH of tumors., Neoplasia 5 (2003), no. 2, 135-45.

4. J.A. Sherratt and M.A.J. Chaplain, A new mathematical model for avascular tumour growth,

Journal of Mathematical Biology 43 (2001), no. 4, 291-312.

- T.H. Stewart, Immune mechanisms and tumor dormancy, Medicina - Buenos Aire 56 (1996),

no. 1, 74-82.

36. P Subarsky and RP Hill, The hypozic tumour microenvironment and metastatic progression,

Clinical & Experimental Metastasis 20 (2003), no. 3, 237-250.

- R.M. Sutherland, Cell and environment interactions in tumor macroregions: the multicell

spheroid model, Science 240 (1988), 177-184.

38. A. Swierniak, Some control problems for simplest differentral models of proliferation cycle,

Applied Mathematics and Computer Science 4 (1994), no. 2, 223-232.

i9. A. Swierniak and A. Polanski, Irregularity in scheduling of cancer chemotherapy, Applied

Mathematics and Computer Science 4 (1994), no. 2, 263-271.

- A. Swierniak, A. Polanski, and M. Kimmel, Optimal control problems arising in cell-cycle-

specific cancer chemotherapy, Journal of Cell Proliferation 29 (1996), 117-139.

. A. Swierniak and J. Smetja, Analysis and optimization of drug resistant and phase-specific

cancer, Mathematical Biosciences and Engineering 2 (2005}, no. 3, 657-670.




112 L.G. DE PILLIS AND A.E. RAD(}NSKAYA .
Contemporary Mathe
Volume 410, 2006
72. IMM. van Leeuwen, C. Zonneveld, and SALM. Kooijman, The embedded tumour: host physi-
ology is important for the evaluation of tumour growth., British Journal of Cancer 89 (2003),
2254-2263.
73. P Vaupel, O Thews, DK Kelleher, and M. Hoeckel, Current status of knowledge and critical
1ssues in tumor ozygenation. Results from 25 years research in tumor pathophysiology, Adv
Exp Med Biol. 454 (1998), 591-602.
74. M. Villasana and G. Ochoa, Heuristic design of cancer chemotherapies, IEEE Transactions

on Evolutionary Computation 8 (2004), no. 6, 513-521. Impact
75. Oskar von Stryk, User’s guide for DIRCOL: A direct collocation method for the numeri:
cal solution of optimal control problemns, Lehrstuhl M2 Numerische Mathematik, Technische
Universitaet Muenchen, September 1999, Copyright (C) 1994-1999 Technische Universitaet
Muenchen.
76. C.J. Wheeler, D. Asha, L. Gentao, J.S. Yu, and K.L. Black, Clinical responsiveness of glioblas-
toma multiforme to chemotherapy after vaccination, Clin Cancer Res. 10 (2004), 5316-5326.
77. X. Zheng, SM. Wise, and V. Cristini, Nonlinear simulation of tumor necrosis, neo-
vascularization and tissue invasion via an adaptive finite-element/level-set method, Bulletin
of Mathematical Biology 00 (2003), 1-53.
78. X.L. Zu and M. Guppy, Cancer metabolism: facts, fantasy, and fiction., Biochemical and ABSTRACT
Biophysical Research Communications. 313 (2004), 459-465. carcinoma
- and warts
DEPARTMENT OF MATHEMATICS, HARVEY MUDD CoLLEGE, CLAREMONT, CA 91711 ~ are expect
E-muail address: depillis@hmc.edu determinis
) vaccine th
DEPARTMENT OF MATHEMATICS, POMONA COLLEGE, CLAREMONT, CA 91711 “infectious
E-mail address: aradunskaya@pomona.edu infective-r
thresholds

sure of vac
number is
and a unic
less than 1
methods t
well as con

Genital infect
fection among sex
current infections
Although the ma
certain HPV typ«
lesions. HPV infe
condylomata, anc
health burden anc
29)).

2000 Mathemati
Key words and
stability, endemic equ
The author wisk
Modeling the Dynam
for the opportunity tc
{(Merck Research Lab
This paper is in

©2




	Claremont Colleges
	Scholarship @ Claremont
	1-1-2006

	Some Promising Approaches to Tumor-Immune Modeling
	Lisette G. de Pillis
	Ami E. Radunskaya
	Recommended Citation


	F:\CUCWork\Upload\de Pillis\Some_Promising_Approaches_2006.pdf

