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OPTIMAL 2,3-TREES*

RAYMOND E. MILLER, NICHOLAS PIPPENGER, ARNOLD L. ROSENBERG+
AND LAWRENCE SNYDER$

Abstract. The 2,3-trees that are optimal in the sense of having minimal expected number of nodes
visited per access are characterized in terms of their "profiles". The characterization leads directly to a
linear-time algorithm for constructing a K-key optimal 2,3-tree for a sorted list of K keys. A number of
results are derived that demonstrate how different in structure these optimal 2,3-trees are from their
"average" cousins.

Key words. 2,3-trees, B-trees, enumeration

Introduction. Many algorithms use as their principal data structure a "search
tree" in which records may be located when present, inserted when absent, and
deleted when unwanted in time logarithmic in their number. AVL trees and 2,3-trees
(a/k/a 3-2 trees, a/k/a 2-3 trees) are examples of this kind of structure. Both have the
property that a number of different representations for the same set of records are
permissible within the limits of the definitions of the respective structures. The
logarithmic performance is guaranteed regardless of which structure arises, but a
natural question is, "What, if any, are the quantitative differences among these
different representations?"

This paper addresses that question for 2,3-trees and their generalization, B-trees.
We derive a characterization of those 2,3-trees ( 2) and those B-trees ( 4) that are
optimal in the sense of havirig minimal expected path length per access. Our charac-
terization directly yields a linear-time algorithm for constructing optimal trees. We
round out our study by demonstrating how different in structure these optimal trees
are from their "typical" cousins and how rare they are in the forests of 2,3-trees and
B-trees, respectively ( 3).

1. 2,3-Trees and their costs. In this section we prepare the way for our study of
optimal 2,3-trees. We assume familiarity with trees and their related notions.

(1.1) A 2,3-tree is a rooted, oriented tree each of whose nonleaf nodes has either 2
or 3 successors, and all of whose root-to-leaf paths have the same length. We
assume the root is not a leaf.

The use of 2,3-trees as balanced search trees (which use originates in unpublished
work by Hopcroft) involves placing keys at the nonleaf nodes of the trees--the leaves
are dummy nodesmaccording to the following discipline. A node with s successors
(s 2,3) accomodates s- 1 keys. All keys in the left (resp., right) subtree rooted at a
given node are smaller in magnitude (resp., larger in magnitude) than the key(s)
resident in the node; should s 3, the keys in the center subtree are strictly inter-
mediate in magnitude between the keys resident in the node; see Fig. 1. The reader
familiar with the literature on 2,3-trees will recognize this description as cleaving to
the variant presented by Knuth [2, 6.2.3] rather than that discussed in [1, 4.4,
4.5].
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We now delineate those structural features of 2,3-trees that enter into our
characterization of optimal trees.

(a)

FIG. 1. (a) A bushy 2,3-tree with 8 keys. (b) A scrawny 2,3-tree with 8 keys.

(1.2) The root of a 2,3-tree is said to be at level 0; the direct successors of a node at
level are said to be at level + 1. The depth of the tree is the (common) level d
of its leaves. The height of a node is d-(its level).

With each level of a 2,3-tree, we associate three integers:

/3 the number of binary (2-successor)nodes at level l;
7. the number of ternary (3-successor) nodes at level l;, the number of nodes at level l.

We combine these integers to yield the following descriptors of the tree.

(1.3) (a) The profile of a depth d 2,3-tree is the sequence

1-I- l/o, Pl, Pd.

(b) The detailed profile of the same tree is the sequence

A---(/30 TO>(31, 7.1>’’" (3d, 7.d>.
The reader can easily verify the following useful relationships among the quan-

tities we have been discussing"

(1.4) (a) v0=l;
(b) va 1 + (the number of keys in the tree);
(c) v +;
(d) /t+l 2/3 + 37"1;
(e) (the number of keys at level l)=/3s + 27"s US+l- us.
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The 8-key trees of Fig. 1 enjoy the following descriptors.

Tree of Fig. l(a) Tree of Fig. l(b)

H 1,3,9 1,2,4,9

A (0, 1)(0, 3)(0, 0) (1, 0)(2, 0)(3, 1)(0, 0)

There are at least two significant measures of the cost of a 2,3-tree, the expected
number of key-comparisons per access and the expected number of node-visits per
access. The latter measure would likely be the more significant in an environment
where a ternary comparator were available or in a paging environment where edge-
traversals carried with them the danger of page faults. The former measure would
likely be the more significant in an environment where the entire tree resided in main
memory and only binary comparators were available. In this paper, we study the latter
measure of cost; the last two authors have prepared a paper [3] in which they
characterize those 2,3-trees that are optimal with respect to the expected number of
key-comparisons.

(1.5) The (node-visit) cost of a 2,3-tree T with detailed profile A=
(/30, Zo)""" (/a, za) is

d-1

COST (T) 2 (l + 1)(1i -[- 2zt).
/=0

The cost (1.5) is clearly K times the expected number of nodes per visited access
if T contains K keys. Clearly, all trees having the same detailed profile are equally
costly. In fact this assertion can be strengthened by removing the qualifier "detailed".

LEMMA 1.1. If the 2,3-tree T has profile H Uo, u1,"’, ua, then

d-1

COST(T)=dua- Pl"
/=0

Hence, trees having the same profile are equally costly.
Proof. If one substitutes equation (1.4e) into the expression (1.5) for COST (T),

one finds that

d-1

(1.6) COST (T)=
/=0

Summing (1.6) by parts yields the result directly. !--!
Lemma 1.1 affords us one easy technique for deriving costs of 14 and 20,

respectively, for the trees of Figure 1 (a) and 1 (b). In fact, the greater cost of the tree of
Figure l(b) is predicted by the following result which asserts that added depth means
added cost.

LEMMA 1.2. Let T and T’ be 2,3-trees, both containing K keys, having profiles
H= Uo, uu and H’= PRO,’’" Pte, respectively. If d < e, then COST (T)<
COST (T’).

Proof. The positivity of the difference

e--1 d-1

COST (T’)- COST (T) eut dua E u’ + Pl
k =0 =0

is easily established via the following facts: (a) U’e Ua by (1.4b); (b) e-d => 1 by
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hypothesis; (c)
e--1 , < ’e
k=0

since a 2,3-tree has more leaves than internal nodes; (d)
d-1

l,’ll
l=O

since we insist that roots not be leaves. [3
Lemma 1.2 points at a necessary condition for cost-optimality of a 2,3-tree,

namely, minimum depth. The nonsufficiency of this condition is illustrated by the two
5-key, depth 2 trees of Fig. 2: the tree of Fig. 2(a) has cost 8 while that of Fig. 2(b) has
cost 9. Thus our characterization of optimal trees must await further conditions, which
will be developed in the next section.

For the remainder of the paper, we shall adopt the following abbreviations whose
motivation will become clear in 2"

(1.7) A K-key 2,3-tree is bushy if its cost (1.5) is minimum among K-key 2,3-trees.
The tree is scrawny if its cost is maximum among these trees.

(a

(bl
F. 2. (a) A bushy 2,3-tree with 5 keys. (b) A scrawny 2,3-tree with 5 keys.

2. Bushy trees. In this section we develop the two components of our main
result. We begin with our characterization of bushy trees; and we follow with the
linear-time algorithm that derives from the characterization. We close the section with
a discussion of an interesting sidelight of our development.

2.1. The characterization theorem. We lead up to our theorem with two lemmas
that expose facets of the structure of bushy trees that are needed in the theorem.
These structural properties are of some interest in their own rights.

Let the 2,3-tree T have profile I1 Uo, /’1, /]d. The k-prefix of T (1 -< k <-

d), denoted T(k), is the 2,3-tree obtained by replacing all of T’s level k nodes
by leaves. T(’) thus has profile II(k)= u0, Ul," ", u.
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LEMMA 2.1. Every prefix of a bushy tree is bushy.
Proof. Say for contradiction that the prefix T(k) of the bushy tree T is not bushy.

Let T’ be a bushy tree with the same number of keys--hence, the same number of
leaves--as T(k). Let T* be the tree obtained by appending to each leaf of T’ the
subtree rooted at the corresponding leaf of T(k) in T. The construction of T* should
be obvious from Fig. 3.

Now, T* clearly contains the same number of keys as does T. However, it is
a straightforward matter to verify (using Lemma 1. l) that

COST (T*)<- COST (T)- COST (T(k))+ COST (T’)< COST (T),

which contradicts the alleged bushiness of T. I-1

T

T*

FIG. 3. 7he construction of T* from T and T’ in the proof ofLemma 2.1.

PROPOSITION 2.2. There exist bushy trees with nonbushy subtrees. Thus, Lemma
2.1 cannot be strengthened by replacing "prefix" by "subtree".

Proof. Immediate upon comparing the trees of Fig. 4.

(a)

FIG. 4. Bushy trees with (a) 27 and (b) 7 keys for the proof ofPropositions 2.2.
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The next lemma peers a bit deeper into the structure of bushy trees.
LEMMA 2.3. If a 2,3-tree has a binary node at level (i > O) and two (or more)

ternary nodes at level ] > (z > 1), then it is not bushy.
Proof. Suppose, for contradiction, that the bushy tree T has a binary node at

level and two ternary nodes at level/" > i. We may assume that/" + 1, for if not, we
must have a binary node at level + 1 (since ’i/1 -> 2), and we may shift attention from
the original binary node to this one. Continuing in this way, we must find a level with

l > 0 and ’+ > 1.
Since trees with the same profile are equal in cost (Lemma 1.1), we may assume

further that the ternary nodes are direct successors of the binary node. Thus we have
the configuration

in T (or in a tree that shares T’s profile). It is easy to verify, however, that the cost
(1.5) can be reduced by replacing this configuration with the configuration

This contradicts T’s alleged bushiness.
Although the necessary condition of Lemma 2.3 is not sufficient--cf, the 7-key

trees of Fig. 4--it combines with the depth condition of Lemma 1.2 to yield the sought
characterization. The conjoined conditions are best presented in the following
numerological setting.

(2.2) The profile II ’o, , ud of a K-key 2,3-tree is dense if
(a) d [log3 (K + 1)];
(b) t, min (3 t, [,+1/21 ) for 1 <_- <_- d 1.
Note that ’o 1 and ’a K + 1 automatically.

THEOrEM 2.4. A 2,3-tree is bushy iff it has a dense profile.
Proof. It will suffice to show that a bushy tree has a dense profile, for once this is

done the following argument gives the converse. Let T have a dense profile and let T’
be bushy. Then T’ has a dense profile. Since there is only one dense profile, T’ has the
same profile as T. Since the profile determines the cost (Lemma 1.1), T’ hag the same
cost as T. Thus T is also bushy.

Suppose T is a bushy tree with K keys. We seek to show that its profile satisfies
(2.2a) and (2.2b). The first of these is easy, for d [log3 (K + 1)] is clearly the
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minimum possible depth of a 2,3-tree with K keys, and by Lemma 1.2 a deeper tree
would have a greater cost.

For the rest, we proceed by induction. The result is trivial for 1 or 2 keys; let us
assume that it holds for all trees with fewer than K keys and prove it for those with K
keys.

It will suffice to prove (2.2b) for d- 1, for once this is done, we may consider
the prefix of T of depth d- 1. By Lemma 2.1, this is bushy. By inductive hypothesis, it
has a dense profile. This gives (2.2b) for the remaining values of I.

It remains to prove that

va-1 min (3a-l, [va/2J ).

Clearly,

va_l <= 3a-l,
for a 2,3-tree cannot have more than 3a-1 nodes at level d- 1. Furthermore,

vd-, =< [va/2J,

for every node at level d- 1 has at least 2 successors. We must show that one of these
bounds is attained. Suppose, on the contrary, that

va-1 < 3a-1

and

ld-1 < tltd/gJ"

From the first of these it follows that there is a binary node at or above level d- 2, and
from the second it follows that there are, at least two ternary nodes at level d- 1. Thus,
by Lemma 2.3, T is not bushy, a contradiction. I-1

It follows immediately from the Theorem that a bushy tree has at most two
"active" or unsaturated levels.

PROPOSITION 2.5. If H vo, ", va is a dense profile, then vi 3 for all < d 2.
Proof. Since d= [log3 va] by (2.2a), we know that Vd>3a-a. Hence, Vd/8>

3a-1/8 3a/24> 3d/27 3a-3, SO that va_3 3a-3 by (2.2b), since [[[va/2]/21/21 >
va/8-1. Moreover, since

3 k_-< [3k+/2J for all k,

we are assured that v 3 for all -< d- 3, as was claimed. !1

2.2. An algorithm for constructing bushy trees. Our characterization of bushiness
in terms of dense profiles yields directly an algorithm for constructing a bushy tree for
a given set of keys. If the input set of keys is already sorted, then the algorithm is
linear in the size of the set; otherwise, the algorithm operates in time O(K log K). (No
better timing could be expected since the set is sorted once it resides in the tree.)

We interlace our description of the algorithm with an example.
THE ALGORITHM. Our algorithm can best be described in four phases.
Phase 1. Given the cardinality K of the set of keys to be stored, use the

prescription (2.2) to construct the profile of a bushy K-tree.

(2.3) If K 14, then H 1, 3, 7, 15.

Phase 2. Using the equations

(2.4) fli 3Vi-/’i+1, "ri Vi+l- 2vi,
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construct the detailed profile of the tree from its profile.

(2.5) Given the profile H of (2.3), we have z= (0, 1)(2, 1)(6, 1)(0, 0).

Phase 3. Construct the "skeleton" of the tree from its detailed profile; that is,
decide how to place the binary and ternary nodes at those levels that have both.
Clearly, this decision will not affect the cost of the resulting tree, but the layout may
affect the efficiency of subsequent transactions with the key set. Other things being
equal, a decision to left-bias the tree by forcing all ternary nodes as far to the left as
possible is as good as any other.

(2.6) The left-biased tree with the detailed profile A of (2.5) has the following
appearance:

Phase 4. Traverse the tree of Phase 3 in FILLORDER, dropping off the keys in
ascending order as one goes.

(2.7) To traverse a tree in FILLORDER, follow the ensuing recursive prescription.
1. Visit the left subtree in FILLORDER.
2. Visit the root, and deposit a key.
3. Visit the center subtree in FILLORDER )
4. Visit the root, and deposit a key. "i’ for ternary roots only.

5. Visit the right subtree in FILLORDER.

(2.8) We finally complete the example of (2.3), (2.5), (2.6). We use the key set
{1, .’., 14} to illustrate in Figure 5 the FILLORDER of the tree of (2.6).

FIG. 5. The FILLORDER of the tree (2.5).

Timing ot the Algorithm. We assume that our algorithm is to be executed on a
uniform-cost RAM [1, 1]. Accordingly, we assess time O(log K) for the [log3 (g +
1)] operations performed in Phase 1 and for the 2 [log3 (K + 1)] linear-form .evalua-
tions in Phase 2. Phases 3 and 4, which likely would be done simultaneously in an
efficient implementation, can be seen to take time O(K) to perform if the list of keys is
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sorted, and time O(K log K) otherwise. (Note that FILLORDER traversal of a tree is
almost identical to depth-first traversal.)

Discussion. The obvious algorithm for constructing a bushy 2,3-tree would con-
struct the tree top-down, making it as ternary as possible, with some backtracking at
the high-numbered levels to ensure a "fiat bottom." Our use of profiles and detailed
profiles in our algorithm obviates this backtracking, thus enhancing the efficiency of
the construction. A logical competitor for any direct-construction procedure would be
one that constructs a 2,3-tree by successively inserting, in ascending order, say, the
keys one is given, according to the insertion algorithm for 2,3-trees [2, 6.2.3]. The
reader can easily reproduce the induction that demonstrates that trees produced in
this way are often very far from bushy. Specifically, whenever, K 2"- 1, the tree so
produced is a purely binary tree!

2.3. Characterizing scrawny trees. There is a striking and appealing duality
between our characterization of optimal 2,3-trees on the one hand and the analogous
characterization for pessimal or scrawny 2,3-trees.

MF.TATHEOREM. In order to reproduce the results of 2.1 ]’or scrawny trees,
perform the following transliteration throughout.

For Read

2} even in bases of {33 logs and exponentials 2

min max

floor [xJ ceiling Ix]

ceiling Ix] floor

Details are left to the reader.

3. Typical 2,3-trees. We have found the optimal (bushy) and pessimal (scrawny)
2,3-trees; let us have a look at typical, run-of-the-forest 2,3-trees. We shall find that
almost all n-leaf 2,3-trees share some remarkable statistical properties involving the
golden ratio,

1 +/
&==1.618.-..2

These properties, which will allow us to predict the cost of a typical 2,3-tree, will be
obtained as by-products of an argument for enumerating 2,3-trees.

Let T, denote the number of n-leaf 2,3-trees. We shall show that

(3.1) T. 1,b"U(1),

where U(1) denotes a factor of the form exp O(1). More generally, since we shall be
dealing with "error factors" more often than with "error terms", we shall let U(f(n))
denote a factor of the form exp O(f(n)). In ordinary language, (3.1) determines T,, to
within constant factors.
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The major steps in our derivation of (3.1) will be as follows. First we shall obtain a
recurrence having the sequence T, as its unique fixed point (Lemma 3.1). Then we
shall show that any sequence that is an "approximately fixed" point of the recurrence
must be "approximately equal" to the exact fixed point (Lemma 3.2). Finally we shall
show that

1

n

is an approximately fixed point of the recurrence (Lemmas 3.3, 3.4, 3.5). In the
derivation, the notions "approximately fixed" and "approximately equal" will be
given precise meanings by means of error factors.

This method of proceeding leaves unanswered the question of how the solution
was found in the first place. Experience with the enumeration of unlabeled trees in
general, and consideration of 2,3-trees in particular, suggests that Tn grows exponen-
tially, say as e An. An attempt to prove this, along the lines indicated above, reveals
that A must be In b and that a correction of the form nB is necessary. Another pass
through the proof reveals that B 1. Though with hindsight we might find a more
convincing motivation for the solution (by considering, for example, the singularities
of the generating function for Tn), this method of iteration is extremely robust and
after the first pass one can usually work out the successive corrections wi.th very little
wasted motion. An example of a more formidable problem which was solved in the
same way will be given later.

LEMMA 3.1. T satisfies the recurrence

(3.2) Tn= (/3 + ’) T0/.
2/3+3-r=n

Proof. Given an n-leaf 2,3-tree, consider the nodes at height one, that is, the
nodes whose successors are leaves. If /3 and r denote the number of binary and
ternary nodes, respectively, at height one, then 2/3 + 3r n.

An n-leaf 2,3-tree can be constructed by the following three-step procedure.
First, choose/3 and r satisfying 2/3 + 3r n. Second, choose the structure of the tree
below height one. This amounts to choosing r of the/3 + r nodes at height one to be
ternary nodes, leaving the remaining/3 to be binary nodes. This can be done in

ways. Third, choose the structure of the tree above height one. This amounts to
choosing a (/3 + r)-leaf 2,3-tree, and can be done in T+, ways. Since each n-leaf
2,3-tree can be constructed in exactly one way by this procedure, we arrive at
(3.).

The recurrence (3.2), together with the initial conditions T2= 1 and T3 1,
completely determines T,.

LEMMA 3.2. I[ S, is a positive sequence satisfying

(3.3) S U(f(n ))
2B+3"r=n ’T

where f(n) is an eventually decreasing positive function such that

(3.4) y’. /(2)
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converges, then

(3.5) T,=S,U(1).

Proof. Let AN denote the maximum of $,/T, for 1 <- n <- N. If N is large enough
that f(n) is decreasing beyond N, and if N =< n <- 2N, then

S. U(f(n ))
2/3+3-r=,

<= U(f(n)) E
2/3+3-r=,

U(f(n))ANT,

<= U(f(N))ANT,,

since n =< 2N implies/3 + 7. _-< N, and f(n) <- f(N). Thus

and by induction

A_N <= ANU(f(N)),

Ae’N <=AN rI U(f(2N))
Os<t

ANU(o<=<tf(2sN))
Letting t-> with N fixed, we have

A2’N < U(1),

since AN is positive and (3.4)converges. Thus

S./T. <-_ U();

a similar argument shows that

so (3.5) is proved. 71
It remains for us to show that

S./T. >- U(1),

1

is an approximately fixed point of our recurrence. Specifically, we shall show that

This will be done in three steps as follows. First we shall estimate the summand,
separating our estimate into algebraically varying factors (which are U(log n)) and
exponentially varying factors (which are U(n)). We shall then focus our attention on
the exponentially varying factors and see that they impart to the summand a peaking
reminiscent of the central limit theorem" the greatest contribution to the sum comes
from those terms in which 3 and 7. are in certain fixed ratios to 3 + 7. and hence to n.
Finally we shall use this central peaking to estimate the sum.
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Successive values of/3 and r differ by 3 and 2, respectively; it will be convenient
to have an index whose successive values differ by 1. Thus we introduce the index m
satisfying

n n
r=2m, 3 =-3m, 3+r=-m.

This index assumes integral values if n is even and half-integral values if n is odd.
LEMMA 3.3.

r 3 +r 2rr3r +r
where

E(>)=F(G()), F(A)=
H(A)+ln b

H(a)=-A Ina-(1-a)ln (l-a),

and In denotes the natural logarithm.
Proof. For the binomial coefficient, the estimate

1(/ +r1/2

exp (fl + z) / r

is an immediate consequence of Stirling’s formula. Define a such that

Then

r= a(O +), /3 (1 a )(/3 + r), n (2 + a )(fl + r).

(fl+r) 1 4+’= U()(+ 1
r 3+r 2rr3r(fl+r

Define such that

1/2

exp nF
3 +

Then Z and tz are related by

Thus

A
1-2/z z 2(2+A)

(fl+3fl 1
(b+" U(+)( 1 ))1/2 exp nEr +r 2rrflr(fl+r

as was to be shown. 71
LEMMA 3.4. The function F(A ) assumes its unique maximum (for 0 Z 1) at

A=-2.
At this point

F(A) In b, F’(A) 0, F"(A)
-1

(2 + A)A(1- A)’
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where the primes indicate differentiation. Accordingly, E(lx) assumes its maximum at

and at this point

2(2+A)’

(2 + A)3

E(M) In , U’(l/) 0, E"(m)=-A(I_A--.
Proof. We shall let H(0)= H(1)= 0; this makes H(A), and therefore also F(A),

continuous on the closed interval 0 <-A -< 1. These functions are in fact analytic in the
open interval 0 < A < 1, and thus F(A) can assume its maximum only where its first
derivative vanishes or at an endpoint. We compute the first derivatives

H’(A) In (1-A)/A,

H(A)+ In In (1 A)/A
F’(A)=- (2+A)2 +

2+A

Equating F’(X) with 0 leads to the equation

(1-a)3 a2.
In the interval 0 < a < 1 the left side decreases while the right side increases, so there
can be at most one solution. This occurs at

by virtue of the equation

This gives

1--4)-2= -1"

F(A) In ,
which is obviously larger than F(A) at either of the endpoints. We compute the second
derivatives

-1 H(a)+ln In (1-A)/A 1
H"(A)=A(I_A, F"(A)=2 (2+A)3-2 (2+i)2-(2+I)I(1-I)"

Since the first two terms are a multiple of F’(A), they vanish at A, leaving

F"(A)
-1

(2 + A)A(1 A)"

All of this can be carried over to E(/x), E’(/x), and E"(/z) through the derivatives

4 16 )3a’(/x)=
(1 2ix)2 (2 + A )2, G"(tz)=

(1 2ix /3
2(2 + a

and the chain rule.
LEMMA 3.5.

(3.8) U( )( 1 i)
1/2

+
2rr/3r(/3 + r () r 1og3/2 r/)lbexp nE "\ n 1/2 n
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Proof. The major steps of the derivation are as follows. The central peaking of
the summand will be exploited, allowing the tails of the summation to be neglected.
The decaudated sum can be simplified since the algebraically varying factors behave
like constants in the remaining range of summation. The resulting sum will be
estimated with an integral, to which the tails previously removed will be restored. The
recaudated integral can be evaluated by standard methods.

Our sum is

where
1 ))1/2Wm= U(+)(2zr/3.-/3 + exp

Since E(Ix) is analytic at M, it can be expanded in a Taylor series about M. The result
is

where

E(/x) In & -(Ix -M)2/62 + O((tx M)3),

2A(1- A)) /2
6= (2+f

Thus W,,, can be rewritten as

W.,- U( 71)( 1 i)
1/2

+. 2rr/3r(/3 + r

where

U((m Mn )3/n 2). V,,,,

V,,, exp -(m Mn)2/t2n.
We shall break our sum into three parts,

Ewe= Z w+ Z w+ E w,
m<a am<=b b<m

where

a= Mn (6A(1-A)n In n) 1/2

(2+a)3

(6A(1- A)n In n)1/2b Mn +
(2 + A)3

For any term in the sum over m < a,

and the other factors in W,. are O(&"). Since there are O(n) terms,

ma

A similar argument shows that

b<m
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SO

a--mb

For any term in the sum over a _-< m ---b,

m MnU(lgl/- n)\ n 1/2

from which it follows that

An u(logX/2 n) (1-A)n U(!.ogl/2 n) n u(!ogl/2 n)r=2+A\ /,/1/2 fl-- 2+A ,, //1/2 il+-r 2+A\ n 1/2

and further that

/.log3/2 n)[ (2 + A)3 x/2

Wm ,..,\ nl/2 \2rr{iZ a))
Thus

U(1 ng3/2 )/ (2+A)3

))1/2(3.10/ a<=m<--b2 Wm 0
172

n

\2rrZA ,;b"
_-< =<

V,,.,.

NOW,

(3.11) Y’. V,, | Vxdx +0(1),
aa

since the total variation of the integrand is 0(1). We shall express our integral as the
sum of three integrals"

b +oo

Integration by parts gives

Similar considerations show that

Vx dx =0

SO

(3.12)

Using the transformation

and the well-known integral

b +cx3

x Mn + an 1/2
Y

2 1/2exp-y dy=Tr
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we obtain

I_ (2 + A)3 /

Working backwards through (3.12), (3.11), (3.10), and (3.9), we arrive at (3.8).
At last we have
TeoM 3.6.

1
T, =-&"U(1).

n

Proof. Lemmas 3.3, 3.4, and 3.5, taken together, prove formula (3.6), which,
taken together with Lemmas 3.1 and 3.2, proves the theorem.

The methods we have used to prove this theorem can be used to obtain a fairly
complete picture of what a typical n-leaf 2,3-tree looks like. The argument that
allowed us to neglect the tails of the sum in Lemma 3.5 shows that, with probability
approaching 1 as n ,

n u(lOgnX/2n) (1-A)nu(lOgnl/2n) An (lOng1/2 n)/3 +r=2+---- 1/2 /3
2+A 1/2 r=2+ A U 1/2

Thus the number of nodes at height one is less than the number of leaves by the factor
2 + A 2 + b-2= 2.381 , and these nodes are partitioned into binary and ternary
nodes in the golden ratio 1-A=b-a=0.618 A= b-2= 0.381 The same
ratios manifest themselves at greater heights, with the result that, with probability
approaching 1 as n, a 2,3-tree has height log2/A n + O(1). This implies that it also
has cost n 1ogz/A n +O(n). Typical 2,3-trees thus assume a position intermediate
between their bushy and scrawny forest-mates:

cost

bushy typical scrawny

n log3 n + O(n) n 1og2+A n + O(n) n log2 n + O(n)

(A=0.381...)

It should be observed that 2,3-trees that are "typical" in the static sense in which we
have used the word (with all n-leaf trees considered equally) have nothing to do with
those that are "typical" in the dynamic sense of being grown by the standard insertion
algorithm (with all n! orders of insertion considered equally). This is easily seen by
comparing the average proportions of binary and ternary nodes derived earlier for the
static sense with the corresponding average proportion found by Yao [4] for the
dynamic sense"

binary nodes:/3/(/3 + z)
ternary nodes: r/(/3 + r)

static dynamic

1_A=4-1 2_3
A b-2 13

The methods of this section can be applied to the number T of bushy n-leaf
2,3-trees or to the number T of scrawny trees. These numbers do not behave as
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smoothly with n as Tn does" for n a power of 3, T)= 1 and for n a power of 2,
T 1; for other values of n, T and T may be large. But one can show that

r(n3) O(n-X/2on), r(n2) O(n-X/2On),
where $- 1.324... is the real root of the equation 3= + 1. These upper bounds
are the best possible, in the sense that they become false if O(...) is replaced by
o(...). Since < $, bushy or scrawny trees constitute an exponentially small fraction
of all 2,3-trees.

The methods of this section can also be applied to the number Pn of profiles of
n-leaf 2,3-trees. The recurrence

23+3-r=

is obtained by analogy with Lemma 3.1. The solution of this recurrence is the same in
outline as that of (3.2), but much more elaborate in detail. The result is

P, U(1)n (1/2) lg2 n--lg2 lg2 n+lg2 e--1/2 (log2 n )(1/2)1g2 lg2 n,
which is perhaps not what one would have first conjectured.

4. B-trees. All of the results in 1-3 generalize from 2,3-trees to their more
practical relatives B-trees [2, 6.2.3]. Although these generalized results are often
harder to prove than their 2,3-relatives, the added difficulty is technical rather than
conceptual in nature. Accordingly, we shall discuss the generalizations in only a
cursory fashion, pointing out the slight differences in formulation as we go.

(4.1) A B-tree of order m (>-3) is a rooted, oriented tree whose root has 2_-<s <-m
successors, whose nonroot interior nodes have [m/2] <- s _-< m successors each,
and all of whose root-to-leaf paths have the same length.

(4.2) The detailed profile of an order m B-tree T is a sequence of (m 1)-tuples

a
where o- is the number of s-successor nodes at level of T.

A 2,3-tree is an order 3 B-tree; the quantities earlier denoted/3, and z, are now
denoted o- and o’, respectively. Obviously, if l> 1, all o- 0 for s < [m/2].

(4.3) The cost of the B-tree T with detailed profile A as in (4.2) is

d-1 )(____COST (T)= Y (1+ 1 kr
1=0 k 2

Section 1. The results of 1 and their proofs translate verbatim to our new
setting.

Section 2. Lemma 2.1 and its proof translate verbatim. Lemma 2.3 requires some
translation, as follows.

LEMMA 2.3’. If an order m B-tree has an "unsaturated" node at level (i.e.,
r > 0 for some s < m ), and if it has (at least) [m/2] 1 "available" keys at level j >

(i.e., (k- [m/2] + 1)ort >_- [m/2]- 1),
\ [m/2] <k _rn !

then it is not bushy.
The proof of Lemma 2.3’, as .well as that of Theorem 2.4 carry over in a

transparent way to B-trees, once one has translated definition (2.2) by replacing 2 and
3 by Ira/2] and m, respectively.
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The linear-time algorithm for constructing bushy trees requires only two emen-
dations of any substance in order to accommodate general B-trees. First, in Phase 2 of
the algorithm, one replaces the equations (2.4) by the equations

(4.4) ui Z o., ’i +1 2 so"

hence, the detailed profile of the tree is no longer uniquely specified by the profile.
However, one can still produce a detailed profile for the tree from the equations (4.4)
in time O(log K), as the reader can easily verify. The second required change is to the
definition (2.7) of FILLORDER; the needed change is obvious.

Finally, the duality between the optimal and pessimal B-tree is almost as striking
as that between the corresponding 2,3-trees. The major distinction results from the
fact that the "2" in 2,3-trees plays the dual role of [m/2] and the minimal degree of
the root. Thus the scrawny order m B-tree profile satisfies the equations

d [log[m/21 (Vd/2)/+ 1,

,, max ([rn/2] ’, [v,+l/rn] ),

Vo 1, V’l= 2.

The proof of the characterization theorem, however, mirrors that of the charac-
terization of bushy trees, as is the case with 2,3-trees.

Section 3. The B-tree generalization of 3 can be done, with much more labor
but no more insight. The major observable change is that the golden ratio b is
replaced by a less familiar algebraic number whose degree depends on the order of the
B-trees studied.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] D. E. KNUTH, The Art of Computer Programming III: Sorting and Searching, Addison-Wesley,
Reading, MA, 1973.

[3] A. L. ROSENBF.RG AND L. SNYDER, Minimal-Comparison 2,3-Trees, this Journal, 7 (1978), pp.
465-480.

[4] A. C.-C. YAO, Random 3-2 Trees, Acta Inform, 9 (1978), pp. 159-170.


	Claremont Colleges
	Scholarship @ Claremont
	1-1-1979

	Optimal 2,3-Trees
	Nicholas J. Pippenger
	Raymond E. Miller
	Arnold L. Rosenberg
	Lawrence Snyder
	Recommended Citation


	tmp.1309472808.pdf.Gczj1

