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PROBABILISTIC SIMULATIONS 

(Preliminary Version) 

Nicholas Pippenger 
IBM Research Laboratory 

San Jose, CA 95193 

I. Introduction 

The results of this paper concern the question of 

how fast machines with one type of storage media can 

simulate machines with a different type of storage 

media. Most work on this question has focused on the 

question of how fast one deterministic machine can 

simulate another. In this paper we shall look at the 

question of how fast a probabilistic machine can 

simulate another. This approach should be of inter- 

est in its own right, in view of the great attention 

that probabilistic algorithms have recently 

attracted. It has, however, two additional claims to 

interest. Firstly, a result concerning a probabilis- 

tic question can lead to an improved result concern- 

ing a traditional deterministic question. Specif- 

ically, we shall give an improved simulation of 

deterministic time-bounded multidimensional 

machines by deterministic space-bounded machines; 

the proof is probabilistic although the final result 

is not. Secondly, the use of probabilistic methods 

opens the way to allied disciplines and allows their 
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power to be brought to bear on our problems. Specif- 

ically, we shall use game-theoretic and 

information-theoretic ideas (which are in turn based 

on probability theory). 

In this paper, all machines will have a one-way 

read-only input tape and a one-way write-only output 

tape. By "simulation", we shall mean on-line simu- 

lation. In addition to their input and output tapes, 

machines may have one or more storage media (which 

may be multidimensional or tree-structured), each 

with one or more access heads. By an "£-dimensional 

machine" or a "tree machine", we shall mean a 

machine whose storage media are all £-dimensional or 

tree-structured, respectively. More specifically, 

an £-dimensional storage medium will have cells 

£ and 3 £ corresponding to points in {0, i, ..., } 

shifts. The distance (minimum number of shifts 

needed to travel between) two cells a = saveUB.lll, 

..., a£) and a' = (a'l, ..., a'£) is given by the 

metric 

d(a, a') = maxl<j< ~ laj - a'jl. 

A tree-structured storage medium will have cells 

* 
corresponding to points in {0, I} and 3 shifts. The 

distance between two cells a and a' is given by the 

metric 

d(a, a') = tall + lla'II - 211£cp(a, a')II, 

where IIall denotes the length of a and £cp(a, a') 
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denotes the longest common prefix of a and a'. 

By a "probabilistic machine", we shall mean one 

that may flip coins but that always gives correct 

outputs. By the "running time" of such a machine, we 

shall mean the maximum (over all inputs) of the 

average (over coin flips) of the number of steps. 

(Babai [I] has suggested the term "Las Vegas" for 

probabilistic algorithms that always give correct 

outputs, as distinguished from "Monte Carlo" algo- 

rithms, which may give incorrect outputs.) 

There is an alternate way of defining probabilis- 

tic machines and their running times that is often 

convenient. A "probabilistic machine" is one that 

may flip coins, always gives either correct outputs 

(success) or an initial segment of the correct 

outputs (failure), and succeeds with probability at 

least 1/2. The "running time" of such a machine is 

the maximum (over inputs and coin flips) of the 

number of steps. The equivalence (to within constant 

factors) of these definitions can be shown by 

routine methods. 

We shall present probabilistic simulations for 

the situation of a probabilistic machine (called the 

"host") simulating a deterministic machine (called 

the "guest"), but these simulations have immediate 

corollaries in which the guests may also be probabi- 

listic. We shall present simulations for the situ- 

ation in which the guest has a single access head on 

a single storage medium, but these simulations have 

immediate corollaries in which the guest may have 

any number of access heads on any number of storage 

media. Finally, we shall assume that the number of 

steps taken by the guest in known in advance to the 

host. This assumption can be eliminated by routine 

methods (see Galil [4]). 

2. An _Up_p_er Bound for Tree Machines 

Our first result concerns the simulation of 

multidimensional machines by tree machines. A multi- 

dimensional machine running in time T can obviously 

be simulated by a deterministic tree machine running 

in time O(T log T). Reischuk [14] improved this to T 

exp O(log T). 

Theorem i: A multidimensional machine running in 

time T can be simulated by a probabilistic tree 

machine running in time O(T). 

Proof: Let the guest run for T = 2 ~ steps. Let y = 

(Yi' "''' y~) be a uniformly distributed random 

point in {0, ..., T-I} £ (obtained from ~ 

independent unbiased coin flips). The position of 

the head of the guest can be regarded as a point a = 

(al, ..., a~) ill {0, ..., T-i} ~. Let b = a + y (that 

is for iNjN~, let b.j = aj + yj modulo T). For iNjE~, 

let bj, 1 (most significant) .... , bj,l (least 

significant) in {0, I} be the binary digits of b.. 
J 

Define the map fy:{O, ..., T-i}~+{O, i} ~ by 

fy(a) = hl,l...b~, I ... hl, ...b~, ~. 

Let the symbol stored in cell a of the guest be 

stored at cell f (a) in the host. Let g denote the 
Y 

metric of the guest and let h denote the metric of 

the host. At each step the guest shifts from a cell a 

to a cell a' satisfying 

g(a, a') ~ I. 
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A simple calculation shows that 

aVey h(fy(a), fy(a')) ~ 2Z0~j<g~(j+l)2-tJ/~J 

This sum is 0(i), independently of T. Thus the host, 

in average time 0(I), can shift from fy(a) to fy(a') 

when the guest shifts from a to a'. This allows the 

host, in average time O(T), to simulate T steps by 

the guest.O 

It is natural to ask if one could use a 

deterministic storage mapping function f instead of 

the random storage mapping function f in this 
Y 

proof. De Millo, Eisenstat and Lipton [3] have shown 

that one cannot: for any function f: {0, ..., 

T-i}2~{0, i}*, there exist points a and a' such that 

g(a, a') N i 

but 

h(f(a), f(a')) = ~(log T). 

The idea of using a random storage mapping func- 

tion f instead of a deterministic storage mapping 
Y 

function f is due to Carter and Wegman [2], who 

introduced it in the context of hashing functions, 

which map a large random-access storage medium into 

a smaller one. We have adapted their idea to the 

context of multidimensional and tree-structured 

storage media, exhibiting an appropriate random 

storage mapping function and formalizing the result 

in terms of simulations. 

It is sometimes of interest to regard 

randomization as a resource: to count the number of 

coin flips used by a probabilistic machine. In this 

simulation, the number is particularly small; with 

care, T steps by the guest can be simulated with 

O(log T) coin flips by the host. 

Theorem i has consequences for the problem of 

simulating a time-bounded machine by a space-bounded 

machine. (In the remainder of this section, all 

machines are deterministic and all simulations are 

off-line.) Hopcroft, Paul and Valiant [7] showed 

that a one-dimensional machine running in time T can 

be simulated by a machine running in space O(T/log 

T). (Space is a sufficiently robust complexity 

measure that it is unnecessary to specify the stor- 

age media of space-bounded machines.) Paul and 

Reischuk [12] showed that a tree machine can be 

simulated in space O(T/log T) and that a multidimen- 

sional machine can be simulated in space 0(T log log 

T/log T). By combining Reischuk's simulation of a 

multidimensional machine by a tree machine (cited 

above) with Paul and Reischuk's simulation of a tree 

machine by a space-bounded machine, a multidimen- 

sional machine can be simulated in space T (exp 

O(log T))/log T. The next result shows that it can 

be simulated in space O(T/log T). 

Corollary I.I: A deterministic multidimensional 

machine running in time T can be simulated off-line 

by a deterministic machine running in space O(T/log 

T). 

This corollary is obtained by combining Theorem 1 

with Paul and Reischuk's simulation of a tree 

machine in space 0(T/log T) (cited above), and 

observing that the space-bounded machine can exhaus- 

tively search for a storage mapping function that 

does at least as well as the expectation (a sequence 

of O(log T) coin flips can certainly be represented 

in space O(T/log T). 
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3. Ra~ Reduction for Multidimensional Machines 

This section describes a result that will be 

needed in the following section. By the range of a 

computation we shall mean the maximum distance moved 

by any head away from its original position at any 

step of the computation. A machine running in time T 

always runs in range T, but for some types of machine 

it is possible to substantially reduce this range 

bound without substantially increasing the time 

bound. Paul and Reischuk [12] showed that a tree 

machine running in time T can be simulated by a tree 

machine running in time O(T) and in range O(log T). 

It would be of interest (as will be seen in the next 

section) to obtain the analogous result for multidi- 

mensional machines: that a £-dimensional machine 

running in time T can be simulated by a 

£-dimensional machine running in time O(T) and in 

range O(Ti/~). The closest approximation to this 

which has thusfar been obtained is time T exp O((log 

T) I/2) and range T I/£ exp O((log T)i/2), which can 

be obtained as a corollary to a result o S Loui [9]. 

For probabilistic simulations we can improve these 

bounds significantly. 

Theorem 2: An £-dimensional machine running in time 

T can be simulated by a probabilistic £-dimensional 

machine running in time O(T(log T) I/£) and in range 

O((T log T)I/~). 

The proof of this theorem will be obtained by 

combining three simulations that involve a new type 

of machine, which will be called a mulilaver 

machine. A multilayer machine is a machine having 

one or more multilayer storage media (which may be 

tree-structured or multidimensional). Each cell of a 

multilayered storage medium is capable of holding an 

unlimited number of symbols, one on each of an 

unlimited number of layers. The layer to be read or 

written is selected in a direct-access fashion by 

writing the index of the desired layer on a special 

one-dimensional l~v3r selection tape. 

Since direct access to layers is much more power- 

ful than local access to cells, multilayer machines 

are interesting only when access to layers is 

restricted in some way, as measured by one or more of 

three new resources that will be introduced here for 

this purpose. By the change of a computation we 

shall mean the number of times that a new layer is 

selected. By the breadth of a computation we shall 

mean the number of different layers written upon 

during the computation. Finally, by the ~ of a 

computation we shall mean the maximum number of 

layers written upon in any one cell during the 

computation. 

Propositio A 2.1: An i-dimensional machine running in 

time T can be simulated by a probabilistic multilay- 

er machine running in time O(T), range O(T I/£) and 

change O(Ti-i/£). 

Proof: Let the guest run for T = 2 £p steps. Let R = 

2 p. Let y be a uniformly distributed random point in 

{0, ..., R-i} £. The position of the head of the guest 

can be regarded as a point a in {0, ..., T-i} £. 

Define the maps ey: {0 .... , T-i}£+{0, ..., T/R} £ 

and fy: {0 .... , T-I)£~{0, ..., R-i} £ by 

a + y = ey(a)R + fy(a). 
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Let the symbol stored at cell a of the guest be 

stored at cell fy(a) of layer ey(a) of the host. It 

is easy to check that T steps by the guest can be 

simulated by the host in average time O(T), range R = 

O(T 1/~) and average change O(T/R) = O(Tl-1 /g) .m 

Proposition 2.2: An g-dimensional multilayer machine 

running in time T, range R = 0(T I/~) and change C = 

0(T I-I/£) can be simulated by a probabilistic 

g-dimensional multi[ayer machine running in time 

0(T), range 0(TI/~), height 0(log T/log log T) and 

breadth 0((log T)~-i). 

Sketch of Proof: We shall begin with a simulation 

that meets the time, range and height bounds. We 

shall then indicate how to modify this stmulation to 

also meet the breadth bound. 

For each layer e of the guest that is written 

upon, let Ye be an independeut uniformly d~stributed 

random point in (0 .... , R-I} ~. Let the symbol 

stored at cell a (in {0, ..., R-I} ~) of layer e of 

the guest be stored at cell a + Ye (in {0 .... , 

2R-i} ~) of layer e in the host. 

The value of Ye for each layer e that is written 

upon can be kept in a directory (on a single addi- 

tional layer) comprising C = O(T l-I/g) records of 

length c = O(log T). If the directory uses universal 

hashing [2], it will fit in volume O(Cc) = O(T) and 

thus in range O(T1/~); it can be accessed once in 

expected time o(Tl/g), and thus it can be accessed C 

times in expected time O(T). With probability at 

least 7/8, the time spent accessing this directory 

will be O(T). 

Consider the height of the resulting computation. 

Let Pa,e denote the probability that cell a of layer 

e of the host is nonblank. It is easy to see that 

Z < T /R  ~ = 0 ( I )  e Pa,e - 

for each cell a. It follows that the probability 

that cell a has H nonblank layers is O(1)H/H!. Thus 

by choosing 

H = O(log T/log log T) 

we can ensure that with probability at least 7/8, 

each of the O(T) cells of the host has at most H 

nonblank layers, so that the height bound is met. 

To modify the simulation so that the breadth is 

also small, partition the cells of the host into 

£-cubes of side L = Llog T], using a grid whose 

origin is a uniformly distributed random point in 

{0, ..., L-i} ~. Let qb,e denote the probability that 

some cell in cube b of layer e of the host is 

nonblank. It is not hard to see that 

Ee qb,e ~ (CL~ + T~L£-i)/R~ 

= O ( L  ~ - 1  ) 

for each cube b. It follows that the probability 

that cube b has B nonblank layers is O(L~-i)B/B!. 

Thus by choosing 

= O(r, g - t )  

we can ensure that with probability at least 7/8, 

none of the O(T) cubes have more than B nonblank 

layers. 
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Within each cube, the layers of the host can be 

reassigned so that at most B layers of the host are 

nonblank (so that the breadth bound is met). The 

host will change layers whenever it shifts from one 

cube to another. It is easy to see that this will 

happen an average of 0(T/L) = 0(T/log T) times. 

For each cube, the reassignment of layers can be 

kept in a directory (on a single additional layer) 

comprising B = O((log T) £-I) records of length b = 

O(log T). If the directories use universal hashing 

[2], they will each fit in volume 0(Bb) = 0((log T) £) 

and thus in range 0(log T); they can be accessed once 

in expected time 0(log T), and thus they can be 

accessed 0(T/log T) times in expected time O(T). 

With probability at least 7/8, the time spent 

accessing these directories will be O(T). 

It is easy to check that with probability at 

least 1 - 1/8 - 1/8 - 1/8 - i/8 = 1/2, the host runs 

in time O(T), range O(Ti/£), height O(log T/log log 

T) and breadth 0((log T)£-i).D 

Proposition 2.3: An g-dimensional multilayer machine 

running in time T, range R, height H and breadth B 

can be simulated by a probabilistic g-dimensional 

machine running in time 0(T(H log B) I/£) and range 

O(R(H log B)i/£). 

Proof: For each cell of the guest, the symbol in each 

layer can be kept in a directory comprising H 

records of length O(log B). If these directories use 

universal hashing [2], each directory will fit in 

volume O(H log B), and thus in range O((H log B)i/~); 

these directories will thus fit in range O(R(H log 

B)i/£). Each directory can be accessed once in 

expected time O((H log B)I/£), and thus these 

directories can be accessed T times in expected time 

O(T(H log B)i/£).D 

These three simulations can be combined by 

routine methods to yield a simulation fulfilling 

Theorem 2. 

4. An Upper Bound for Multidimensional Machines 

The results of this section concern the the 

simulation of £-dimensional machines by 

k-dimensional machines, where k < £. Hennie [6] 

showed that a deterministic one-dimensional machine 

requires time ~(T 2"I/£) to simulate an £-dimensional 

machine running in time T. Pippenger and Fischer 

[13] showed that an £-dimensional machine can be 

simulated by a deterministic one-dimensional machine 

in time 0(T2-I/£). Grigor'ev [5] observed that 

Hennie's argument yields the result that a 

deterministic k-dimensional machine requires time 

~(T l+I/k-I/£) to simulate an £-dimensional machine 

running in time T. Loui [9] showed that an 

£-dimensional machine can be simulated by a 

deterministic k-dimensional machine in time 

o(Tl+i/k-I/£(log T)m), where m depends on k and 

and m ~ as k ~- or ~. We shall obtain a significant- 

ly faster probabilistic simulation. 

Theorem 3: An g-dimensional machine running in time 

T and in range R can be simulated by a probabilistic 

k-dimensional machine running in time O(TR£/k-i). 

22 



Proof: Let the guest run for T = 2 ~ steps in range R 

= 2 kp. Let y = (Yi' "''' Y£) be a uniformly 

distributed random point in {0, ..., R-I} £ (obtained 

from k£p independent unbiased coin flips). The 

position of the head of the guest can be regarded as 

a point a = (al, ..., ag) in {0, ..., R-I} ~. Let b = 

a + y in {0, ..., R-I} £ (that is, for iSjS£, let b. = 
l 

aj + yj modulo R). For i~jS£, let bj, 1 (most 

significant), ..., bj,kp (least significant) in {0, 

l}be the binary digits of b.. For ISiSk and iSjK£p, 
3 

define c. . in {0, i} by the identity 
1,3 

Cl,l...Ck, 1 ..- Cl,£p.-.Ck,£p 

= bl,l...b£, 1 ... bl,kp..-b£,kp 

in {0, I} k£p. Let Q=2 gp. For l~iSk, let c. in {0, 
1 

..., Q-l} be the number with binary digits ci, 1 

(most significant), ..., ci,£p (least significant). 

Define the map fy: {0, ..., R-i}£+{0, ..., Q-I} k by 

fy(a) = (el, ..., Ck). 

Let the symbol stored in cell a of the guest be 

stored in cell fy(a) of the host. Let g be the metric 

of the guest and let h be the metric of the host. At 

each step, the guest shifts from a cell a to a cell 

a' satisfying 

g(a, a') ~ i. 

A simple calculation shows that 

Lj/kj-Lj/~j 
aVey h(fy(a), fy(a')) ~ Z0~j~k£ p 2 

This sum is 0(R£/k-l), independently of T. Thus the 

host, in average time 0(R£/k-l), can shift from 

fy(a) to fy(a') when the guest shifts from a to a'. 

This allows the host, in average time O(TR£'k'i), / to 

simulate T steps by the guest.O 

If in Theorem 3 we use the trivial bound RST, we 

obtain only the poor result that an £-dimensional 

machine running in time T can be simulated by a 

probabilistic k-dlmensional machine running in time 

O(T£/k). If, however, we first apply Theorem 2, we 

obtain the following result. 

Corollary 3.1: An £-dimensional machine running in 

time T can be simulated by a probabilistic 

k-dimensional machine running in time 

0(Tl+i/k-i/£(log T)i/k). 

This simulation improves Loui's in two respects. 

Firstly, it is faster: the factor (log T) m in Loui's 

result exceeds (log T) k3 when £=k+l. Secondly, it is 

simpler: it makes no use of recursion, and the 

processes of range reduction and dimension reduction 

are separated, whereas they are intertwined in 

Loui's simulation, since a certain amount of each 

must he accomplished at each level of the recursion. 

Loui's simulation, of course, has the merit of being 

deterministic. 

5. A Lower Bound for Multidimensional Machines 

The purpose of this secion is to extend Hennie's 

[6] and Grigor'ev's [5] lower bounds from 

deterministic hosts to probabilistic ones. 

Theorem 4: A probabilistic k-dimensional machine 

requires time ~(T l+I/k-I/£) to simulate an 

g-dimensional machine running in time T. 
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For the proof of this theorem, we shall need a 

proposition concerning random variables• If C and B 

are random variables, we shall let C~B (read "C 

determines B") denote the event that C assumes a 

value with which only one value of B is compatible• 

Proposition 4: If C is a random variable assuming c 

distinct values, and if Bi, ..., B N are mutually 

independent uniformly distributed random variables 

assuming bl, ..•, b N distinct values respectively, 

then 

EiSnS N P(C~Bn) log b n S log c. 

Sketch of Proof: The proof, which is 

information-theoretic in nature, is based on the 

following inequalities. Firstly, if B is a 
n 

uniformly distributed random variable assuming b 
n 

distinct values, then 

P(C+Bn) log b n ~ I(C; Bn) , 

where I(C; Bn) denotes the mutual information 

between C and B . Secondly, if B I ... B N are 
n ' ' 

mutually independent random variables, then 

Zi~nSN I(C; Bn) S I(C; B), 

where B = (Bi, ..., BN). Thirdly, 

l(C; B) S H(C), 

where H(C) denotes the entropy of C. Finally, if C 

assumes c distinct values, then 

H(C) ~ log c, 

which completes the proof.[] 

shift the access head in one of the 3 £ possible ways. 

Let the host H be a probabilistic k-dimensional 

machine that simulates G. Let U be the number of 
x,y 

steps taken by H when the input is the finite string 

x and the coin flips are as specified by the appro- 

priate initial segment of the infinite binary string 

y. We shall show that 

max ave = ~2(Tl+I/k- i/£), 
x y,q 

where the maximum is over all input strings x of 

length T and the average is over all infinite binary 

strings y (with the usual uniform probability 

distribution q). 

Let p be an arbitrary probability distribution on 

the input strings of Length T. Then 

max ave U ~ ave ave U 
x y,q x,y x,p y,q x,y 

= ave ave U 
y,q x,p x,y 

inf ave U 
y x,p x,y 

(This inequality has a simple game-theoretic inter- 

pretation: in a two-person zero-sum game, if one 

player must announce a probability distribution on 

his moves, after which the other player must 

announce his move, it cannot be a disadvantage to be 

the second player.) Thus it will suffice to exhibit 

a probability distribution p on the input strings of 

length T such that 

inf ave U = ~(Tl+i/k'i/£). 
y x , p  x,y 

Proof of Theorem 4: Let the guest G be an 

£-dimensional machine with a single access head on a 

single £-dimensional storage medium. Let each input 

symbol read by G command it to write a 0 or 1 in the 

cell currently scanned by the head, write as an 

output the symbol currently scanned by the head, or 

A random input string x of length T is chosen 

according to the probability distribution p as 

follows. First, choose N = 2 £p independent uniformly 

distributed random variables Yi' "''' YN in {0, i}. 
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Second, choose M = 2 (£-l)p independent uniformly 

distributed random variables Xi, ..., X M in {i, ..., 

N}. The string x will be the concatenation of a 

"storage phase" x 0 and M "retrieval phases" Xl, ..., 

x M. Let R = 2 p. The storage phase, of length (2N-1) + 

(R-i), causes the values of Yi' "''' YN to be written 

in the cells {0, ..., R-I) £ and returns the head to 

the origin. For lSm~M, the m-th retrieval phase, of 

length (R-i) + 1 + (R-i), causes YX to be written as 
m 

an output and returns the head to the origin. The 

length of x is thus T = (2N+R-2) + M(2R-i) = 8(N). 

For lNmSM, let the random variable W denote the 
m 

number of steps taken by H between reading the first 

symbol of x and writing the m-th output. We shall 
m 

show that 

E(~l<m~ M W m) = ~(Nl+I/k'i/~). 

Since M = ~(NI-i/£), it will suffice to show that 

E(Wm) = ~(Nl/k). 

We have 

E(Wm) = Ew> 0 P(Wm>W) 

= lw> 0 [l-P(Wm~W)], 

so it will suffice to show that 

P(Wm~W ) = o (wk) .  

We also have 

P(Wm~W ) = El~n< N P(Wm~W]Xm =n) P(Xm=n) 

= El~n~ N P(Wm~WlXm=n)/N, 

so it will suffice to show t h a t  

Zl~n< N P(Wm~W[Xm=n) = o(wk). 

For iNmNM, let the random variable Z denote the 
m 

configuration of H just before reading the first 

symbol of x and, for wZ0, let Z denote that 
m m,w 

portion of Z accessible within w steps. 
m 

If X =n, the event W Nw implies the event 
m m 

Z ~Y . Thus it will suffice to show that 
m,w n 

~l~n~N P(Zm,w~YnlXm=n) = o(wk)' 

~Yn depends only upon Yi' " YN and The event Zm, w .. , 

Xl,  . . . ,  Xm_l, and t h e  e v e n t  Xm=n i s  i n d e p e n d e n t  o f  

t h e s e  random v a r i a b l e s .  Thus P(Zm,w~YnlXm=n ) = 

P(Zm,w~Yn ) ,  and i t  w i l l  s u f f i c e  t o  show t h a t  

~l~n~N P(Zm +Y ) = o(wk)"  ~w n 

S i n c e  H i s  a k - d i m e n s i o n a l  m a c h i n e ,  Z assumes  exp 
m,w 

O(w k) d i s t i n c t  v a l u e s .  Thus P r o p o s t i o n  4 c o m p l e t e s  

t h e  p r o o f . n  

The information-theoretic argument used in the 

proof of Proposition 4 is related to arguments used 

by Paul [ii] and others in the context of 

deterministic machines. The principal difference is 

that we use Shannon's information measure [15] 

rather than Kolmogorov's [8]. 

The game-theoretic argument used in the proof of 

Theorem 4 is related to arguments used by Yao [16] in 

the context of decision trees. The inequality we use 

is the easier and more general half of yon Neumann's 

minimax theorem [I0]. 
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