
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

1-1-1982

Probabilistic Simulations
Nicholas J. Pippenger
Harvey Mudd College

This Conference Proceeding is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more
information, please contact scholarship@cuc.claremont.edu.

Recommended Citation
Pippenger, Nicholas. "Probabilistic Simulations." ACM Symp. on Theory of Computing, 14 (1982), 17-26.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Scholarship@Claremont

https://core.ac.uk/display/70973842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

PROBABILISTIC SIMULATIONS

(Preliminary Version)

Nicholas Pippenger
IBM Research Laboratory

San Jose, CA 95193

I. Introduction

The results of this paper concern the question of

how fast machines with one type of storage media can

simulate machines with a different type of storage

media. Most work on this question has focused on the

question of how fast one deterministic machine can

simulate another. In this paper we shall look at the

question of how fast a probabilistic machine can

simulate another. This approach should be of inter-

est in its own right, in view of the great attention

that probabilistic algorithms have recently

attracted. It has, however, two additional claims to

interest. Firstly, a result concerning a probabilis-

tic question can lead to an improved result concern-

ing a traditional deterministic question. Specif-

ically, we shall give an improved simulation of

deterministic time-bounded multidimensional

machines by deterministic space-bounded machines;

the proof is probabilistic although the final result

is not. Secondly, the use of probabilistic methods

opens the way to allied disciplines and allows their

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1982 ACM 0-89791-067-2/82/005/0017 $00.75

power to be brought to bear on our problems. Specif-

ically, we shall use game-theoretic and

information-theoretic ideas (which are in turn based

on probability theory).

In this paper, all machines will have a one-way

read-only input tape and a one-way write-only output

tape. By "simulation", we shall mean on-line simu-

lation. In addition to their input and output tapes,

machines may have one or more storage media (which

may be multidimensional or tree-structured), each

with one or more access heads. By an "£-dimensional

machine" or a "tree machine", we shall mean a

machine whose storage media are all £-dimensional or

tree-structured, respectively. More specifically,

an £-dimensional storage medium will have cells

£ and 3 £ corresponding to points in {0, i, ..., }

shifts. The distance (minimum number of shifts

needed to travel between) two cells a = saveUB.lll,

..., a£) and a' = (a'l, ..., a'£) is given by the

metric

d(a, a') = maxl<j< ~ laj - a'jl.

A tree-structured storage medium will have cells

*
corresponding to points in {0, I} and 3 shifts. The

distance between two cells a and a' is given by the

metric

d(a, a') = tall + lla'II - 211£cp(a, a')II,

where IIall denotes the length of a and £cp(a, a')

17

denotes the longest common prefix of a and a'.

By a "probabilistic machine", we shall mean one

that may flip coins but that always gives correct

outputs. By the "running time" of such a machine, we

shall mean the maximum (over all inputs) of the

average (over coin flips) of the number of steps.

(Babai [I] has suggested the term "Las Vegas" for

probabilistic algorithms that always give correct

outputs, as distinguished from "Monte Carlo" algo-

rithms, which may give incorrect outputs.)

There is an alternate way of defining probabilis-

tic machines and their running times that is often

convenient. A "probabilistic machine" is one that

may flip coins, always gives either correct outputs

(success) or an initial segment of the correct

outputs (failure), and succeeds with probability at

least 1/2. The "running time" of such a machine is

the maximum (over inputs and coin flips) of the

number of steps. The equivalence (to within constant

factors) of these definitions can be shown by

routine methods.

We shall present probabilistic simulations for

the situation of a probabilistic machine (called the

"host") simulating a deterministic machine (called

the "guest"), but these simulations have immediate

corollaries in which the guests may also be probabi-

listic. We shall present simulations for the situ-

ation in which the guest has a single access head on

a single storage medium, but these simulations have

immediate corollaries in which the guest may have

any number of access heads on any number of storage

media. Finally, we shall assume that the number of

steps taken by the guest in known in advance to the

host. This assumption can be eliminated by routine

methods (see Galil [4]).

2. An _Up_p_er Bound for Tree Machines

Our first result concerns the simulation of

multidimensional machines by tree machines. A multi-

dimensional machine running in time T can obviously

be simulated by a deterministic tree machine running

in time O(T log T). Reischuk [14] improved this to T

exp O(log T).

Theorem i: A multidimensional machine running in

time T can be simulated by a probabilistic tree

machine running in time O(T).

Proof: Let the guest run for T = 2 ~ steps. Let y =

(Yi' "''' y~) be a uniformly distributed random

point in {0, ..., T-I} £ (obtained from ~

independent unbiased coin flips). The position of

the head of the guest can be regarded as a point a =

(al, ..., a~) ill {0, ..., T-i} ~. Let b = a + y (that

is for iNjN~, let b.j = aj + yj modulo T). For iNjE~,

let bj, 1 (most significant) , bj,l (least

significant) in {0, I} be the binary digits of b..
J

Define the map fy:{O, ..., T-i}~+{O, i} ~ by

fy(a) = hl,l...b~, I ... hl, ...b~, ~.

Let the symbol stored in cell a of the guest be

stored at cell f (a) in the host. Let g denote the
Y

metric of the guest and let h denote the metric of

the host. At each step the guest shifts from a cell a

to a cell a' satisfying

g(a, a') ~ I.

18

A simple calculation shows that

aVey h(fy(a), fy(a')) ~ 2Z0~j<g~(j+l)2-tJ/~J

This sum is 0(i), independently of T. Thus the host,

in average time 0(I), can shift from fy(a) to fy(a')

when the guest shifts from a to a'. This allows the

host, in average time O(T), to simulate T steps by

the guest.O

It is natural to ask if one could use a

deterministic storage mapping function f instead of

the random storage mapping function f in this
Y

proof. De Millo, Eisenstat and Lipton [3] have shown

that one cannot: for any function f: {0, ...,

T-i}2~{0, i}*, there exist points a and a' such that

g(a, a') N i

but

h(f(a), f(a')) = ~(log T).

The idea of using a random storage mapping func-

tion f instead of a deterministic storage mapping
Y

function f is due to Carter and Wegman [2], who

introduced it in the context of hashing functions,

which map a large random-access storage medium into

a smaller one. We have adapted their idea to the

context of multidimensional and tree-structured

storage media, exhibiting an appropriate random

storage mapping function and formalizing the result

in terms of simulations.

It is sometimes of interest to regard

randomization as a resource: to count the number of

coin flips used by a probabilistic machine. In this

simulation, the number is particularly small; with

care, T steps by the guest can be simulated with

O(log T) coin flips by the host.

Theorem i has consequences for the problem of

simulating a time-bounded machine by a space-bounded

machine. (In the remainder of this section, all

machines are deterministic and all simulations are

off-line.) Hopcroft, Paul and Valiant [7] showed

that a one-dimensional machine running in time T can

be simulated by a machine running in space O(T/log

T). (Space is a sufficiently robust complexity

measure that it is unnecessary to specify the stor-

age media of space-bounded machines.) Paul and

Reischuk [12] showed that a tree machine can be

simulated in space O(T/log T) and that a multidimen-

sional machine can be simulated in space 0(T log log

T/log T). By combining Reischuk's simulation of a

multidimensional machine by a tree machine (cited

above) with Paul and Reischuk's simulation of a tree

machine by a space-bounded machine, a multidimen-

sional machine can be simulated in space T (exp

O(log T))/log T. The next result shows that it can

be simulated in space O(T/log T).

Corollary I.I: A deterministic multidimensional

machine running in time T can be simulated off-line

by a deterministic machine running in space O(T/log

T).

This corollary is obtained by combining Theorem 1

with Paul and Reischuk's simulation of a tree

machine in space 0(T/log T) (cited above), and

observing that the space-bounded machine can exhaus-

tively search for a storage mapping function that

does at least as well as the expectation (a sequence

of O(log T) coin flips can certainly be represented

in space O(T/log T).

19

3. Ra~ Reduction for Multidimensional Machines

This section describes a result that will be

needed in the following section. By the range of a

computation we shall mean the maximum distance moved

by any head away from its original position at any

step of the computation. A machine running in time T

always runs in range T, but for some types of machine

it is possible to substantially reduce this range

bound without substantially increasing the time

bound. Paul and Reischuk [12] showed that a tree

machine running in time T can be simulated by a tree

machine running in time O(T) and in range O(log T).

It would be of interest (as will be seen in the next

section) to obtain the analogous result for multidi-

mensional machines: that a £-dimensional machine

running in time T can be simulated by a

£-dimensional machine running in time O(T) and in

range O(Ti/~). The closest approximation to this

which has thusfar been obtained is time T exp O((log

T) I/2) and range T I/£ exp O((log T)i/2), which can

be obtained as a corollary to a result o S Loui [9].

For probabilistic simulations we can improve these

bounds significantly.

Theorem 2: An £-dimensional machine running in time

T can be simulated by a probabilistic £-dimensional

machine running in time O(T(log T) I/£) and in range

O((T log T)I/~).

The proof of this theorem will be obtained by

combining three simulations that involve a new type

of machine, which will be called a mulilaver

machine. A multilayer machine is a machine having

one or more multilayer storage media (which may be

tree-structured or multidimensional). Each cell of a

multilayered storage medium is capable of holding an

unlimited number of symbols, one on each of an

unlimited number of layers. The layer to be read or

written is selected in a direct-access fashion by

writing the index of the desired layer on a special

one-dimensional l~v3r selection tape.

Since direct access to layers is much more power-

ful than local access to cells, multilayer machines

are interesting only when access to layers is

restricted in some way, as measured by one or more of

three new resources that will be introduced here for

this purpose. By the change of a computation we

shall mean the number of times that a new layer is

selected. By the breadth of a computation we shall

mean the number of different layers written upon

during the computation. Finally, by the ~ of a

computation we shall mean the maximum number of

layers written upon in any one cell during the

computation.

Propositio A 2.1: An i-dimensional machine running in

time T can be simulated by a probabilistic multilay-

er machine running in time O(T), range O(T I/£) and

change O(Ti-i/£).

Proof: Let the guest run for T = 2 £p steps. Let R =

2 p. Let y be a uniformly distributed random point in

{0, ..., R-i} £. The position of the head of the guest

can be regarded as a point a in {0, ..., T-i} £.

Define the maps ey: {0 , T-i}£+{0, ..., T/R} £

and fy: {0 , T-I)£~{0, ..., R-i} £ by

a + y = ey(a)R + fy(a).

20

Let the symbol stored at cell a of the guest be

stored at cell fy(a) of layer ey(a) of the host. It

is easy to check that T steps by the guest can be

simulated by the host in average time O(T), range R =

O(T 1/~) and average change O(T/R) = O(Tl-1 /g) .m

Proposition 2.2: An g-dimensional multilayer machine

running in time T, range R = 0(T I/~) and change C =

0(T I-I/£) can be simulated by a probabilistic

g-dimensional multi[ayer machine running in time

0(T), range 0(TI/~), height 0(log T/log log T) and

breadth 0((log T)~-i).

Sketch of Proof: We shall begin with a simulation

that meets the time, range and height bounds. We

shall then indicate how to modify this stmulation to

also meet the breadth bound.

For each layer e of the guest that is written

upon, let Ye be an independeut uniformly d~stributed

random point in (0 , R-I} ~. Let the symbol

stored at cell a (in {0, ..., R-I} ~) of layer e of

the guest be stored at cell a + Ye (in {0 ,

2R-i} ~) of layer e in the host.

The value of Ye for each layer e that is written

upon can be kept in a directory (on a single addi-

tional layer) comprising C = O(T l-I/g) records of

length c = O(log T). If the directory uses universal

hashing [2], it will fit in volume O(Cc) = O(T) and

thus in range O(T1/~); it can be accessed once in

expected time o(Tl/g), and thus it can be accessed C

times in expected time O(T). With probability at

least 7/8, the time spent accessing this directory

will be O(T).

Consider the height of the resulting computation.

Let Pa,e denote the probability that cell a of layer

e of the host is nonblank. It is easy to see that

Z < T /R ~ = 0 (I) e Pa,e -

for each cell a. It follows that the probability

that cell a has H nonblank layers is O(1)H/H!. Thus

by choosing

H = O(log T/log log T)

we can ensure that with probability at least 7/8,

each of the O(T) cells of the host has at most H

nonblank layers, so that the height bound is met.

To modify the simulation so that the breadth is

also small, partition the cells of the host into

£-cubes of side L = Llog T], using a grid whose

origin is a uniformly distributed random point in

{0, ..., L-i} ~. Let qb,e denote the probability that

some cell in cube b of layer e of the host is

nonblank. It is not hard to see that

Ee qb,e ~ (CL~ + T~L£-i)/R~

= O (L ~ - 1)

for each cube b. It follows that the probability

that cube b has B nonblank layers is O(L~-i)B/B!.

Thus by choosing

= O(r, g - t)

we can ensure that with probability at least 7/8,

none of the O(T) cubes have more than B nonblank

layers.

21

Within each cube, the layers of the host can be

reassigned so that at most B layers of the host are

nonblank (so that the breadth bound is met). The

host will change layers whenever it shifts from one

cube to another. It is easy to see that this will

happen an average of 0(T/L) = 0(T/log T) times.

For each cube, the reassignment of layers can be

kept in a directory (on a single additional layer)

comprising B = O((log T) £-I) records of length b =

O(log T). If the directories use universal hashing

[2], they will each fit in volume 0(Bb) = 0((log T) £)

and thus in range 0(log T); they can be accessed once

in expected time 0(log T), and thus they can be

accessed 0(T/log T) times in expected time O(T).

With probability at least 7/8, the time spent

accessing these directories will be O(T).

It is easy to check that with probability at

least 1 - 1/8 - 1/8 - 1/8 - i/8 = 1/2, the host runs

in time O(T), range O(Ti/£), height O(log T/log log

T) and breadth 0((log T)£-i).D

Proposition 2.3: An g-dimensional multilayer machine

running in time T, range R, height H and breadth B

can be simulated by a probabilistic g-dimensional

machine running in time 0(T(H log B) I/£) and range

O(R(H log B)i/£).

Proof: For each cell of the guest, the symbol in each

layer can be kept in a directory comprising H

records of length O(log B). If these directories use

universal hashing [2], each directory will fit in

volume O(H log B), and thus in range O((H log B)i/~);

these directories will thus fit in range O(R(H log

B)i/£). Each directory can be accessed once in

expected time O((H log B)I/£), and thus these

directories can be accessed T times in expected time

O(T(H log B)i/£).D

These three simulations can be combined by

routine methods to yield a simulation fulfilling

Theorem 2.

4. An Upper Bound for Multidimensional Machines

The results of this section concern the the

simulation of £-dimensional machines by

k-dimensional machines, where k < £. Hennie [6]

showed that a deterministic one-dimensional machine

requires time ~(T 2"I/£) to simulate an £-dimensional

machine running in time T. Pippenger and Fischer

[13] showed that an £-dimensional machine can be

simulated by a deterministic one-dimensional machine

in time 0(T2-I/£). Grigor'ev [5] observed that

Hennie's argument yields the result that a

deterministic k-dimensional machine requires time

~(T l+I/k-I/£) to simulate an £-dimensional machine

running in time T. Loui [9] showed that an

£-dimensional machine can be simulated by a

deterministic k-dimensional machine in time

o(Tl+i/k-I/£(log T)m), where m depends on k and

and m ~ as k ~- or ~. We shall obtain a significant-

ly faster probabilistic simulation.

Theorem 3: An g-dimensional machine running in time

T and in range R can be simulated by a probabilistic

k-dimensional machine running in time O(TR£/k-i).

22

Proof: Let the guest run for T = 2 ~ steps in range R

= 2 kp. Let y = (Yi' "''' Y£) be a uniformly

distributed random point in {0, ..., R-I} £ (obtained

from k£p independent unbiased coin flips). The

position of the head of the guest can be regarded as

a point a = (al, ..., ag) in {0, ..., R-I} ~. Let b =

a + y in {0, ..., R-I} £ (that is, for iSjS£, let b. =
l

aj + yj modulo R). For i~jS£, let bj, 1 (most

significant), ..., bj,kp (least significant) in {0,

l}be the binary digits of b.. For ISiSk and iSjK£p,
3

define c. . in {0, i} by the identity
1,3

Cl,l...Ck, 1 ..- Cl,£p.-.Ck,£p

= bl,l...b£, 1 ... bl,kp..-b£,kp

in {0, I} k£p. Let Q=2 gp. For l~iSk, let c. in {0,
1

..., Q-l} be the number with binary digits ci, 1

(most significant), ..., ci,£p (least significant).

Define the map fy: {0, ..., R-i}£+{0, ..., Q-I} k by

fy(a) = (el, ..., Ck).

Let the symbol stored in cell a of the guest be

stored in cell fy(a) of the host. Let g be the metric

of the guest and let h be the metric of the host. At

each step, the guest shifts from a cell a to a cell

a' satisfying

g(a, a') ~ i.

A simple calculation shows that

Lj/kj-Lj/~j
aVey h(fy(a), fy(a')) ~ Z0~j~k£ p 2

This sum is 0(R£/k-l), independently of T. Thus the

host, in average time 0(R£/k-l), can shift from

fy(a) to fy(a') when the guest shifts from a to a'.

This allows the host, in average time O(TR£'k'i), / to

simulate T steps by the guest.O

If in Theorem 3 we use the trivial bound RST, we

obtain only the poor result that an £-dimensional

machine running in time T can be simulated by a

probabilistic k-dlmensional machine running in time

O(T£/k). If, however, we first apply Theorem 2, we

obtain the following result.

Corollary 3.1: An £-dimensional machine running in

time T can be simulated by a probabilistic

k-dimensional machine running in time

0(Tl+i/k-i/£(log T)i/k).

This simulation improves Loui's in two respects.

Firstly, it is faster: the factor (log T) m in Loui's

result exceeds (log T) k3 when £=k+l. Secondly, it is

simpler: it makes no use of recursion, and the

processes of range reduction and dimension reduction

are separated, whereas they are intertwined in

Loui's simulation, since a certain amount of each

must he accomplished at each level of the recursion.

Loui's simulation, of course, has the merit of being

deterministic.

5. A Lower Bound for Multidimensional Machines

The purpose of this secion is to extend Hennie's

[6] and Grigor'ev's [5] lower bounds from

deterministic hosts to probabilistic ones.

Theorem 4: A probabilistic k-dimensional machine

requires time ~(T l+I/k-I/£) to simulate an

g-dimensional machine running in time T.

23

For the proof of this theorem, we shall need a

proposition concerning random variables• If C and B

are random variables, we shall let C~B (read "C

determines B") denote the event that C assumes a

value with which only one value of B is compatible•

Proposition 4: If C is a random variable assuming c

distinct values, and if Bi, ..., B N are mutually

independent uniformly distributed random variables

assuming bl, ..•, b N distinct values respectively,

then

EiSnS N P(C~Bn) log b n S log c.

Sketch of Proof: The proof, which is

information-theoretic in nature, is based on the

following inequalities. Firstly, if B is a
n

uniformly distributed random variable assuming b
n

distinct values, then

P(C+Bn) log b n ~ I(C; Bn) ,

where I(C; Bn) denotes the mutual information

between C and B . Secondly, if B I ... B N are
n ' '

mutually independent random variables, then

Zi~nSN I(C; Bn) S I(C; B),

where B = (Bi, ..., BN). Thirdly,

l(C; B) S H(C),

where H(C) denotes the entropy of C. Finally, if C

assumes c distinct values, then

H(C) ~ log c,

which completes the proof.[]

shift the access head in one of the 3 £ possible ways.

Let the host H be a probabilistic k-dimensional

machine that simulates G. Let U be the number of
x,y

steps taken by H when the input is the finite string

x and the coin flips are as specified by the appro-

priate initial segment of the infinite binary string

y. We shall show that

max ave = ~2(Tl+I/k- i/£),
x y,q

where the maximum is over all input strings x of

length T and the average is over all infinite binary

strings y (with the usual uniform probability

distribution q).

Let p be an arbitrary probability distribution on

the input strings of Length T. Then

max ave U ~ ave ave U
x y,q x,y x,p y,q x,y

= ave ave U
y,q x,p x,y

inf ave U
y x,p x,y

(This inequality has a simple game-theoretic inter-

pretation: in a two-person zero-sum game, if one

player must announce a probability distribution on

his moves, after which the other player must

announce his move, it cannot be a disadvantage to be

the second player.) Thus it will suffice to exhibit

a probability distribution p on the input strings of

length T such that

inf ave U = ~(Tl+i/k'i/£).
y x , p x,y

Proof of Theorem 4: Let the guest G be an

£-dimensional machine with a single access head on a

single £-dimensional storage medium. Let each input

symbol read by G command it to write a 0 or 1 in the

cell currently scanned by the head, write as an

output the symbol currently scanned by the head, or

A random input string x of length T is chosen

according to the probability distribution p as

follows. First, choose N = 2 £p independent uniformly

distributed random variables Yi' "''' YN in {0, i}.

24

Second, choose M = 2 (£-l)p independent uniformly

distributed random variables Xi, ..., X M in {i, ...,

N}. The string x will be the concatenation of a

"storage phase" x 0 and M "retrieval phases" Xl, ...,

x M. Let R = 2 p. The storage phase, of length (2N-1) +

(R-i), causes the values of Yi' "''' YN to be written

in the cells {0, ..., R-I) £ and returns the head to

the origin. For lSm~M, the m-th retrieval phase, of

length (R-i) + 1 + (R-i), causes YX to be written as
m

an output and returns the head to the origin. The

length of x is thus T = (2N+R-2) + M(2R-i) = 8(N).

For lNmSM, let the random variable W denote the
m

number of steps taken by H between reading the first

symbol of x and writing the m-th output. We shall
m

show that

E(~l<m~ M W m) = ~(Nl+I/k'i/~).

Since M = ~(NI-i/£), it will suffice to show that

E(Wm) = ~(Nl/k).

We have

E(Wm) = Ew> 0 P(Wm>W)

= lw> 0 [l-P(Wm~W)],

so it will suffice to show that

P(Wm~W) = o (wk) .

We also have

P(Wm~W) = El~n< N P(Wm~W]Xm =n) P(Xm=n)

= El~n~ N P(Wm~WlXm=n)/N,

so it will suffice to show t h a t

Zl~n< N P(Wm~W[Xm=n) = o(wk).

For iNmNM, let the random variable Z denote the
m

configuration of H just before reading the first

symbol of x and, for wZ0, let Z denote that
m m,w

portion of Z accessible within w steps.
m

If X =n, the event W Nw implies the event
m m

Z ~Y . Thus it will suffice to show that
m,w n

~l~n~N P(Zm,w~YnlXm=n) = o(wk)'

~Yn depends only upon Yi' " YN and The event Zm, w .. ,

Xl, . . . , Xm_l, and t h e e v e n t Xm=n i s i n d e p e n d e n t o f

t h e s e random v a r i a b l e s . Thus P(Zm,w~YnlXm=n) =

P(Zm,w~Yn) , and i t w i l l s u f f i c e t o show t h a t

~l~n~N P(Zm +Y) = o(wk)" ~w n

S i n c e H i s a k - d i m e n s i o n a l m a c h i n e , Z assumes exp
m,w

O(w k) d i s t i n c t v a l u e s . Thus P r o p o s t i o n 4 c o m p l e t e s

t h e p r o o f . n

The information-theoretic argument used in the

proof of Proposition 4 is related to arguments used

by Paul [ii] and others in the context of

deterministic machines. The principal difference is

that we use Shannon's information measure [15]

rather than Kolmogorov's [8].

The game-theoretic argument used in the proof of

Theorem 4 is related to arguments used by Yao [16] in

the context of decision trees. The inequality we use

is the easier and more general half of yon Neumann's

minimax theorem [I0].

6. References

[1] L. B a b a i , "Monte C a r l o A l g o r i t h m s
I somorph i sm T e s t i n g , p r e p r i n t .

in Graph

25

[2] J. L. Carter and M. N. Wegman, "Universal
Classes of Hash Functions", J. Comp. and Sys. Sci.,
18 (1979) 143-154.

[3] R.A. DeMillo, S. C. Eisenstat
Lipton, "Preserving Average Proximity
Comm. ACM, 21 (1978) 228-231.

and R. J.
in Arrays",

[4] Z. Galil, "Two Fast Simulations which Imply
Some Fast String Matching and Palindrome Recognition
Algorithms", Info. Proc. Let., 4 (1976) 85-87.

[5] D. Yu. Grigor'ev, "Imbedding Theorems for
Turing Machines of Different Dimensions and
Kolmogorov Algorithms", Soy. Math. Dokl., 18 (]977)
588-592.

[6] F.C. Hennie, "On-Line Turing Machine Computa-
tions", IEEE Trans. on Comp., 15 (1966) 35-44.

[7] J.E. Hopcroft, W. J. Paul and L. G. Valiant,
"On Time versus Space", J. ACM, 24 (1977) 332-337.

[8] A. N. Kolmogorov, "Three Approaches to the
Quantitative Definintion of Information", Prob. of
Info. Trans., 1 (1965) 1-7.

[9] M. C. Loui, "Simulations among Multidimen-
sional Turing Machines", [EEE Symp on Found. of

Comp. Sci., 22 (1981) 58-67.

[i0] J. von Neumann, "Zur Theorie der
Gesellschaftsspiele", Math. Ann., i00 (1928)
295-320.

[Ii] W. J. Paul, "Kolmogorov Complexity and Lower
Bounds", Found. Comp. Theory, 2 (1979) 325-334.

[12] W. J. Paul and R. Reischuk, "On Time versus
Space, II", J. Comp. and Sys. Sci., 22 (1981)
312-327.

[13] N. Pippenger and M. J. Fischer, "Relations
among Complexity Measures", J. ACM, 26 (1979)
361-381.

[14] R. Reischuk, "A Fast Implementation of a
Multidimensional Storage into a Tree Storage",
Automata, Lang. and Prog., 7 (1980) 531-542.

[15] C. E. Shannon, "A Mathematical Theory of
Communication", Bell Sys Teoh. J., 27 (1948)
379-423, 623-656.

[16] A. C. Yao, "Probabilistic
Computations--Toward a Unified Measure of Complexi-
ty", IEEE Symp. on Found. of Comp. Sci., 18 (1977)
222-227.

26

	Claremont Colleges
	Scholarship @ Claremont
	1-1-1982

	Probabilistic Simulations
	Nicholas J. Pippenger
	Recommended Citation

	tmp.1371678732.pdf.bGXxj

