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A COMBINATORIAL APPROACH TO FIBONOMIAL COEFFICIENTS

ARTHUR T. BENJAMIN AND SEAN S. PLOTT

Abstract. A combinatorial argument is used to explain the integrality of Fibonomial
coefficients and their generalizations. The numerator of the Fibonomial coefficient counts
tilings of staggered lengths, which can be decomposed into a sum of integers, such that each
integer is a multiple of the denominator of the Fibonomial coefficient. By colorizing this
argument, we can extend this result from Fibonacci numbers to arbitrary Lucas sequences.

1. Introduction

The Fibonomial Coefficient
(

n
k

)
F

is defined, for 0 < k ≤ n, by replacing each integer

appearing in the numerator and denominator of
(

n
k

)
= n(n−1)···(n−k+1)

k(k−1)···1 with its respective

Fibonacci number. That is, (
n

k

)

F

=
FnFn−1 · · ·Fn−k+1

FkFk−1 · · ·F1

.

For example,
(
7
3

)
F

= F7F6F5

F3F2F1
= 13·8·5

2·1·1 = 260.
It is, at first, surprising that this quantity will always take on integer values. This can be

shown by an induction argument by replacing Fn in the numerator with FkFn−k+1+Fk−1Fn−k,
resulting in (

n

k

)

F

= Fn−k+1

(
n− 1

k − 1

)

F

+ Fk−1

(
n− 1

k

)

F

.

By similar reasoning, this integrality property holds for any Lucas sequence defined by
U0 = 0, U1 = a and for n ≥ 2, Un = aUn−1 + bUn−2, and we define(

n

k

)

U

=
UnUn−1 · · ·Un−k+1

UkUk−1 · · ·U1

.

In this note, we combinatorially explain the integrality of
(

n
k

)
F

and
(

n
k

)
U

by a tiling inter-
pretation, answering a question proposed in Benjamin and Quinn’s book, Proofs That Really
Count [1].

2. Staggered Tilings

It is well-known that for n ≥ 0, fn = Fn+1 counts tilings of a 1 × n board with squares
and dominoes [1]. For example, f4 = 5 counts the five tilings of length four, where s
denotes a square tile and d denotes and domino tile: ssss, ssd, sds, dss, dd. Hence, for(

n
k

)
F

= fn−1fn−2···fn−k

fk−1fk−2···f0
, the numerator counts the ways to simultaneously tile boards of length

n−1, n−2, . . . , n−k. The challenge is to find disjoint “subtilings” of lengths k−1, k−2, . . . , 0
that can be described in a precise way. Suppose T1, T2, . . . , Tk are tilings with respective
lengths n− 1, n− 2, . . . , n− k. We begin by looking for a tiling of length k − 1.
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If T1 is “breakable” at cell k − 1, which can happen fk−1fn−k ways, then we have found a
tiling of length k− 1. We would then look for a tiling of length k− 2, starting with tiling T2.

Otherwise, T1 is breakable at cell k− 2, followed by a domino (which happens fk−2fn−k−1

ways. Here, we “throw away” cells 1 through k, and consider the remaining cells to be a new
tiling, which we call Tk+1. (Note that Tk+1 has length n− k − 1, which is one less than the
length of Tk.) We would then continue our search for a tiling of length k − 1 in T2, then T3,
and so on, creating Tk+2, Tk+3, and so on as we go, until we eventually find a tiling Tx1 that
is breakable at cell k − 1. (We are guaranteed that x1 ≤ n− k + 1 since Tn−k+1 has length
k − 1.) At this point, we disregard everything in Tx1 and look for a tiling of length k − 2,
beginning with tiling Tx1+1.

Following this procedure, we have, for 1 ≤ x1 < x2 < · · · < xk−1 ≤ n, the number of
tilings T1, T2, . . . , Tk that lead to finding a tiling of length k− i at the beginning of tiling Txi

is

fx1−1
k−2 fk−1fn−x1−(k−1)f

x2−x1−1
k−3 fk−2fn−x2−(k−2) · · · fxk−1−xk−2−1

0 f1fn−xk−1−1.

Consequently, if we define x0 = 0, then FnFn−1 · · ·Fn−k+1

= fn−1fn−2 · · · fn−k

= fk−1fk−2fk−3 · · · f1

∑∑
· · ·

∑
1≤x1<x2 <···<xk−1≤n−1

k−1∏
i=1

(fk−1−i)
xi−xi−1−1fn−xi−(k−i)

= FkFk−1Fk−2 · · ·F2F1

∑∑
· · ·

∑
1≤x1<x2<···<xk−1≤n−1

k−1∏
i=1

(Fk−i)
xi−xi−1−1Fn−xi−(k−i)+1.

That is,
(

n

k

)

F

=
∑∑

· · ·
∑

1≤x1<x2<···<xk−1≤n−1

k−1∏
i=1

F
xi−xi−1−1
k−i Fn−xi−(k−i)+1.

This theorem has a natural Lucas sequence generalization. For positive integers a, b, it
is shown in [1] that un = Un+1 counts colored tilings of length n, where there are a colors
of squares and b colors of dominoes. (More generally, if a and b are any complex numbers,
un counts the total weight of length n tilings, where squares and dominoes have respective
weights a and b, and the weight of a tiling is the product of the weights of its tiles.) By
virtually the same argument as before, we have

(
n

k

)

U

=
∑∑

· · ·
∑

1≤x1<x2<···<xk−1≤n−1

k−1∏
i=1

bxk−1−(k−1)U
xi−xi−1−1
k−i Un−xi−(k−i)+1.

The presence of the bxk−1−(k−1) term accounts for the xk−1 − (k − 1) dominoes that caused
xk−1 − (k − 1) tilings to be unbreakable at their desired spot.

As an immediate corollary, we note that the right hand side of this identity is a multiple
of b, unless xi = i for i = 1, 2 . . . , k − 1. It follows that

(
n

k

)

U

≡ Uk−1
n−k+1 (mod b).
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