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The Game "Even Up" is a game of solitaire played with 40 cards from a standard 
deck that has its jacks, queens, and kings removed. The cards are shuffled and dealt in 
a row. If a consecutive pair of cards adds to an even number, then that pair can be 
removed. The object of the game is to remove all of the cards. 

More generally, we can play Even Up with 2n cards, x of them being odd and 
2n - x being even. We require the number of cards to be even since the game cannot 
be won with an odd number of cards. In fact, the game cannot be won when x is odd 
since odd valued cards are removed in pairs. Harkleroad [1] showed that the game 
involves no skill, in that the outcome is predetermined by the original order of the 2n 

cards, and that the probability of winning is p(2nt, x) = (j2 /( 2n) Thus the 
probability of winning the original game is p(40, 20) = 0.248. 

A few remarks about p(2n, x) are called for. Clearly p(2n, 0) = 1 = p(2n, 2un). By 
comparing p(2n, x) with p(2n, x - 2), one sees that for fixed n the probability of 
winning is minimized when x = n. When n is large, we can use Stirling's formula 
(n! = (n/e)" 2 2-T) to obtain p(2 n, n) = 2/ -n. 

For our purposes, any arrangement of 2n cards can be represented as the product 
of a's and b's with a's denoting odd cards and b's denoting even cards. The rules of 
Even Up reduce to the two multiplications a2 = 1 and b2 = 1. Eveiy game simplifies 
to exactly one string of the form (ab)z, where -rn ? z ? n and (ab)- = (ba)z. 
Winning games occur when z = 0. Letting f(2n, x, z) denote the number of arrange- 
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ments of x a's and 2n - x b's that reduce to (ab)^, Harkleroad gives two proofs that 

f(2n x ) =( (x + z)/2 )( (x-z)/2)(1 

One proof used induction and the other used a complicated summation. Here we 
provide a direct combinatorial explanation of equation (1). 

The Proof Consider a string of 2n symbols as n ordered pairs, where each pair is 
either (a, a), (b, b), (a, b), or (b, a). Such a string will reduce to (a, b)^, where z is 
the number of (a, b) pairs minus the number of (b, a) pairs. If we let the four pairs 
have scores of 0, 0, 1, and - 1 respectively, then /z denotes the total score. Another 
way to calculate the score is to assign a value to each symbol as follows: a beginning a 
in an ordered pair gets a score of 1, an ending a in an ordered pair gets a score of 
- 1, and all b's get a score of 0. Hence the total score is equal to the number of 
beginning a's minus the number of ending a's. If x' denotes the number of beginning 
a's (O < x' < x), then the score z = x' - (x - 0') = 2x' - x. Thus to achieve a score of 
z, we must choose x' = (x + z.)/2 of our n pairs to begin with an a and x - x' = (x - 
z)/2 of our n pairs to end with an a. This completes the proof of equation (1). 

The probability that a game with x a's and 2n - x b's reduces to (ab)^ is 
f(2rn, x, z)/( 2'). Notice that z = 2 x' - x will always have the same parity as x. (This 

is reflected in (1) since (j/2) is 0 when k is odd.) Thus, we see again that a game 
with an even number of cards but odd number of odd cards is impossible to win. 

The Scam After explaining the game of Even Up to your mark, challenge him to a 
duel. Wager that you can win the game in strictly fewer attempts than he can. He can 
shuffle your cards before every deal. You play the game until you win. Say it takes you 
4 attempts. Now it's his turn to play. How can you be sure that it will take him at least 
5 attempts? When you play the game, use 10 even cards and 10 odd cards. Each 
attempt has a 34% chance of success. After you win, shuffle the cards, but secretly 
add (or remove, if you prefer) one even and one odd card to his deck. This will make 
his winning probability 0. 
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