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Harmonic numbers are defined to be partial sums of the harmonic series. For n > 1, 
let 

1 1 1 
Hn = 1+-+-+...+_. 

2 3 n 

The first five harmonic numbers are Hl = 1, H2 = 3/2, H3 = 11/6, H4 = 25/12, 
Hs = 137/60. For convenience we define Ho = O. Since the harmonic series diverges, 
Hn can get arbitrarily large, although it does so quite slowly. For instance, Hl,ooosooo t 
14.39. 

Harmonic numbers even appear in real life. If you stack 2-inch long playing cards 
to overhang the edge of a table as far as possible, the maximum distance that n cards 
can hang off the edge of the table is Hn [5]. For example, 4 cards can be stacked to 
extend past the table by just over 2 inches, since H4 = 25/12. 

Harmonic numbers satisfy many interesting properties. For nonnegative integers n 
and m, we list some identities below: 

n-I 
E Hk = nHn-n. (1) 
k=l 

kE (m) k (m + 1) ( n m + 1) (2) 

kE (m) n-k (m) (Hn-Hm) (3) 

Although all of these identities can be proved by algebraic methods (see [5]), the 
presence of binomial coefficients suggests that these identities can also be proved com- 
binatorially. A combinatorial proof is a counting question, which when answered two 
different ways, yields both sides of the identity. Combinatorial proofs often provide 
intuitive and concrete explanations where algebraic proofs may not. For example 

n-I 
Ek k! =n!-1 
k=l 

is a standard exercise in mathematical induction. But to a combinatorialist this identity 
counts permutations in two different ways. The right side counts the number of ways 
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to arrange the numbers 1 through n, excluding the natural arrangement 1 2 3 . . . n. 
The left side counts the same quantity by conditioning on the first number that is not in 
its natural position: for 1 < k < n-1, how many arrangements have n-k as the first 
number to differ from its natural position? Such an arrangement begins as 1 2 3 . . . n- 
k-1 followed by one of k numbers from the set {n-k + 1, n-k + 2, . . ., n}. The 
remaining k numbers (now including the number n-k) can be arranged k! ways. 
Thus there are k k! ways for n-k to be the first misplaced number. Summing over 
all feasible values of k yields the left side of the identity. 

Although Hn is never an integer for n > 1 [5], it can be expressed as a rational num- 
ber whose numerator and denominator have combinatorial significance. Specifically, 
for n > 0 we can always write 

Hn =- (4) 
n! 

as a (typically nonreduced) fraction where Pn is a nonnegative integer. 
Now p0 = Ho = 0. For n > 1, Hn = Hn_1 + 1/n leads to 

Pn Pn-l 1 npn_l + (n-1)! 
n! (n-1)! n n! 

Hence for n > 1, 

Pn = nPn-l + (n-1)! (5) 

The combinatorial interpretation of these numbers is the topic of the next section. 

Stirling numbers 

For integers n > k > 1, let [nk] denote the number of permutations of n elements with 
exactly k cycles. Equivalently [nk] counts the number of ways for n distinct people to 
sit around k identical circular tables, where no tables are allowed to be empty. [nk] is 
called the (unsigned) Stirling number of the first kind. As an example, [2] = 3 since 
one person must sit alone at a table and the other two have one way to sit at the other 
table. We denote these permutations by (1)(23), (13)(2), and (12)(3). 

We can compute the numbers [nk] recursively. From their definition, we see that for 
n > 1, 

n = (n-1)!, 

since the arrangement (ala2a3 . . . an) is the same as arrangements (a2a3 . . . anal) and 
(a3a4 . . . ala2) and so on. Now for k > 2, we will see that 

n+1 n n 
k k-1 k (6) 

On the left, we are directly counting the number of ways to seat n + 1 people around 
k circular tables. On the right we count the same thing while conditioning on what 
happens to person n + 1. If n + 1 is to be alone at a table, then the remaining n people 
can be arranged around k-1 tables in [kn l] ways. If n + 1 is not to be alone, then we 
first arrange 1 through n around k tables (there are [nk] ways to do this); for each of 
these configurations, we insert person n + 1 to the right of any of the n already-seated 
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people. This gives us n[nk] different permutations where n + 1 is not alone. Summing 
gives equation (6). 

Notice that when k = 2, equation (6) becomes 

n+ 1 =n n +(n-1)!, 

which is the same as recurrence (5) with Pn = [n2+1]. Since Pl = 1 = [2], it follows 
that for all n > 1, Pn = [n2+1]. Combining with the definition of Pn in (4) gives 

THEOREM 1. Forn > 1, 

1 n + 1- n n ! 2 

Next we show how to count Theorem 1 directly-without relying on a recurrence. 
First we set some notational conventions. Let fn denote the set of arrangements of 
the numbers 1 through n into two disjoint, nonempty cycles. Thus Ifnl = [n2]. We 
always write our cycles with the smallest element first, and list the cycles in increas- 
ing order according to the first element. For example, S9 includes the permutation 
(185274)(396), but not (195)(2487)(36) nor (123)(4567)(8)(9). By our convention, 
the cycle containing 1 is always written first; consequently we call it the left cycle. 
The remaining cycle is called the right cycle. All permutations in fn are of the form 
(al a2. . . aj ) (aj+l . . . an), where 1 < j < n-1, al = 1, and ay+1 is the smallest ele- 
ment of the right cycle. 

For a purely combinatorial proof of Theorem 1 that does not rely on a recursion, 
we ask, for 1 < k < n, how many permutations of fn+1 have exactly k elements in the 
right cycle? To create such a permutation, first choose k elements from {2, . . ., n + 1 } 
((k) ways), arrange these elements in the right cycle ((k-1)! ways), then arrange the 
remaining n-k elements in the left cycle following the number 1 ((n-k)! ways). 
Hence there are (nk)(k-1)! (n-k)! = n!/k permutations of fn+1 with k elements in 
the right cycle. Since fn+1 has [n2+l] permutations, it follows that 

2 E k 

as desired. 
Another way to prove Theorem 1 is to show that for 2 < r < n + l,-there are 

permutations in fn+1 that have r as the minimum element of the right cycle. 
Here, the permutations being counted have the form (1. . .)(r . . .) where elements 

1 through r-1 all appear in the left cycle, and elements r + 1 through n + 1 can 
go in either cycle. To count this, arrange elements 1 through r-1 into the left cycle, 
listing element 1 first; there are (r-2)! ways to do this. Place element r into the right 
cycle. Now we insert elements r + 1 through n + 1, one at a time, each immediately to 
the right of an already placed element. In this way, elements 1 and r remain first (and 
smallest) in their cycles. Specifically, the element r + 1 can go to the right of any of the 
elements 1 through r. Next, r + 2 can go to the right of any of the elements 1 through 
r + 1. Continuing in this way, the number of ways to insert elements r + 1 through 
n + 1 is r(r + 1)(r + 2) n = n! /(r-1)! . This process creates a permutation in 
fn+1 with r as the smallest element in the right cycle. Thus, there are 

( 2)! n! n! 

97 

(r-1)! r-1 
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such permutations. Since fn+l has [n2 1] perrnutations, and every perrnutation in fn+ 

must have some smallest integer r in the right cycle, where 2 < r < n + 1, we get 

n + 1- E n ! = n ! E - = n ! Hn . 

An alternate way to see that n ! /(r-1) counts perrnutations of the form ( 1 ) (r ) 
is to list the numbers 1 through n + 1 in any order with the provision that 1 be listed 
first. There are n! ways to do this. We then convert our list 1 a2 a3 * *- r an+l to 
the permutation ( 1 a2 a3 * *) (r * * * an+l ) by inserting parentheses. This permutation 
satisfies our conditions if and only if the number r is listed to the right of elements 
2, 3, . . ., r-1. This has probability l/(r-1) since any of the elements 2, 3, . . ., r 
have the same chance of being listed last among them. Hence the number of permuta- 
tions that satisfy our conditions is n! /(r-1). 

Algebraic connection The Stirling numbers can also be defined as coefficients in 
the expansion of the rising factorial function [3]: 

x(x+l)(x+2) (x+ n-1)= xm. (8) 
m=l 

Using this definition, Theorem 1 can be derived algebraically by computing the x2 
coefficient of x(x + l)(x + 2) (x + n). 

To show that this algebraic definition of Stirling numbers is equivalent to the com- 
binatorial definition, one typically proves that both satisfy the same initial conditions 
and recurrence relation. However, a more direct correspondence exists [1], which we 
illustrate with an example. 

By the algebraic definition, the Stirling number [13 ] iS the coefficient of X3 in the 
expansion x(x + l)(x + 2) (x + 9). The combinatorial definition says [130] counts 
the number of ways that elements 0, 1, 2, . . ., 9 can sit around 3 identical circular 
tables. Why are these definitions the same? Each term of the X3 coefficient is a prod- 
uct of seven numbers chosen from among 1 through 9. Surely this must be counting 
something. Whatis atermlike 1 2 3 5 6 8 9counting? 

As illustrated in FIGURE 1, this counts the number of ways elements O through 9 
can seat themselves around 3 identical tables where the smallest elements of the tables 
are the "missing" numbers 0, 4, and 7. To see this, we pre-seat numbers 0, 4, 7 then 
seat the remaining numbers one at a time in increasing order. The number 1 has just 
one option-sit next to 0. The number 2 then has two options-sit to the right of O or 
sit to the right of 1. The number 3 now has three options-sit to the right of O or 1 or 2. 
The number 4 is already seated. Now number S has five options-sit to the right of O 
or 1 or 2 or 3 or 4, and so on. A general combinatorial proof of equation (8) can also 
be done by the preceding (or should that be "pre-seating"?) argument. 

With this understanding of the interactions between harmonic and Stirling numbers, 
we now provide combinatorial explanations of other harmonic identities. 

Recounting harmonic identities 

In this section, we convert identities (1), (2), and (3) into statements about Stirling 
numbers and explain them combinatorially. We view each identity as a story of a 
counting problem waiting to be told. Each side of the identity recounts the story in 
a different, but accurate way. Both of our combinatorial proofs of Theorem 1 were 
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Figure 1 How many ways can the numbers 1, 2, 3, 5, 6, 8, 9 seat themselves around 
these tables? 

obtained by partitioning the set fn+l according to the size of the right cycle or the 
minimum element of the right cycle, respectively. In what follows, we shall transform 
harmonic equations (l), (2) and (3) into three Stirling number identities, each with [n2] 
on the left-hand side. The right-hand sides will be combinatorially explained by par- 
titioning fn according to the location of element 2, the largest of the last t elements, 
or the neighborhood of the elements l through m. Our first identity, after applying 
Theorem l, and re-indexing (n := n-1) gives us 

IDENTITY 1. For n > 2 

2 EI k! 2 

To prove this combinatorially, we note that the left side of the identity, [n2], counts 
the number of permutations in fn. On the right, we know from our second combi- 
natorial proof of Theorem l, that (n-1)! counts the number of permutations in fn 

where the number 2 appears in the right cycle. It remains to show that the summation 
above counts the number of permutations in fn where 2 is in the left cycle. Any such 
permutation has the form 

(l al a2 an_2_k 2bl b2 bj_l)(bj bk), 

for some l < k < n-2 and l < j < k. We assert that the number of these permuta- 
tions with exactly k terms to the right of 2 is given by the kth term of the sum. 
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To see this, select al, a2, . . ., an_2_k from the set {3, . . ., n} in any of (n-2)! /k! 
ways. From the unchosen elements, there are [k2+l] ways to create two nonempty cycles 
of the form (2 bl . . . bj_l)(bj . . . bk) where 1 < j < k. Multiplying the two counts 
gives the kth term of the sum as the number of permutations in fn with exactly k terms 
to the right of 2, as was to be shown. 

We apply a different combinatorial strategy to prove the more general equation (2), 
which, after applying Theorem 1 and re-indexing (n := n-1, m := t-1, and 
k := k-2), gives us 

IDENTITY 2. For 1 < t < n - 1 

n _ (n - 1)! + t E k - 1 (n - 1 - t)! 
2 t k=t+l- 2 (k-1-t)! 

The combinatorial proof of this identity requires a new interpretation of (n-1)! /t. 
For 1 < t < n-1, we define the lastt elements of (la2 aj)(aj+l an) to be the 
elements an, an-l . . . an+l-t even if some of them are in the left cycle. For example, 
the last 5 elements of (185274)(396) are 6, 9, 3, 4, and 7. 

We claim that for 1 < t < n-1, the number of permutations in fn where the 
largest of the last t elements is alone in the right cycle is (n-1)!/t. Here, we 
are counting permutations of the form (la2...an_l)(an), where an is the largest of 
{an+l-t a an+2-t a * * * a an-l a an }- Among all (n-1)! permutations of this form, the 
largest of the last t elements is equally likely to be anywhere among the last t po- 
sitions. Hence (n-1)!/t of them have the largest of the last t elements in the last 
position. 

Next we claim that for 1 < t < n-1, the number of permutations in fn where 
the largest of the last t elements is not alone in the right cycle is the summation in 
Identity 2. 

To see this, we count the number of such permutations where the largest of the last 
t elements is equal to k. Since the number 1 is not listed among the last t elements, we 
have t + 1 < k < n. To construct such a permutation, we begin by arranging numbers 
1 through k-1 into two cycles. Then insert the number k to the right of any of the 
last t elements. There are [ 2l]t ways to do this. The right cycle contains at least one 
element less than k, so k is not alone in the right cycle (and could even be in the 
left cycle). So that k remains the largest among the last t elements, we insert elements 
k + 1 through n, one at a time, to the right of any but the last t elements. There are (k- 
t)(k + 1-t) (n-1-t) = (n-1-t)! /(k-1-t)! ways to do this. Multiplying 
the two counts give the kth term of the sum as the number of permutations where the 
largest of the last t elements equals k, and it is not alone in the right cycle; summing 
over all possible values of k, we count all such permutations. Since for any permutation 
in fn, the largest of the last t elements is either alone in the last cycle, or it isn't, and 
this establishes Identity 2. 

Notice that when t = 1, Identity 2 simplifies to Identity 1. When t = n-1, Iden- 
tity 2 essentially simplifies to equation (7). 

For our final identity, we convert equation (3) to Stirling numbers using Theorem 1 
and re-indexing (n := n - 1, m := m - 1, and k := t - 1). This gives us 

IDENTITY 3. For 1 ' m < n 

n m (n - 1)! + E r t - 1 j (m - 1)! (n - m)! 
2 2 (m - 1)! t=m Vm - 1J (n - t) 

To prove this identity combinatorially, we condition on whether numbers 1 through 

100 

m all appear in the left cycle. First we claim that for 1 < m < n, the first term on 
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the right in the identity counts the number of permutations in fn that do not have ele- 
ments 1, 2, . . . m all in the left cycle: For these permutations, the elements 1 through m 
can be arranged into two cycles in [2] ways. Insert the remaining elements m + 1 
through n, one at a time, to the right of any existing element, finding that there are 
m(m + 1) (n-1) = (n-1)! /(m-1)! ways to insert these elements. Multiplying 
the two counts gives the first term of the right-hand side. 

To complete the proof, we must show that the summation on the right counts the 
number of permutations in gn where elements 1 through m are all in the left cycle. 
To see this, we claim that for m < t < n-1, the summand counts the permutations 
described above with exactly t elements in the left cycle and n-t elements in the 
right cycle. To create such a permutation, we first place the number 1 at the front of 
the left cycle. Now choose m-1 of the remaining t-1 spots in the left cycle to be 
assigned the elements {2, . . ., m}. There are (t-ll) ways to select these m-1 spots 
and (m-1)! ways to arrange elements 2, . . ., m-1 in those spots. For example, to 
guarantee that elements 1, 2, 3, 4 appear in the left cycle of FIGURE 2, we select three 
of the five open spots in which to arrange 2, 3, 4. The insertion of 5, 6, 7, 8, 9 remains. 
Now there are (n-m)! ways to arrange elements m + 1 through n in the remaining 
spots, but only one out of n-t of them will put the smallest element of the right 
cycle at the front of the right cycle. Hence, elements m + 1 through n can be arranged 
in (n-m)!/(n-t) legal ways. Multiplying gives the number of ways to satisfy our 
conditions for a given t, and the total is given by the desired summation. 

, L } S ' < k 

W ,. 

Figure 2 In S9, a permutation with 1, 2, 3, 4 in a left cycle containing exactly six ele- 
ments is created by first selecting three of the five open spots, and then arranging 2, 3, 4 
in them. Subsequently, 5, 6, 7, 8, 9 will be arranged in the remaining spots. 

We have already noted that harmonic numbers arise in real life. A further occurrence 
arises in calculating the average number of cycles in a permutation of n elements. 
Specifically, 

THEOREM 2. On average, a permutation of n elements has Hn cycles. 

There are n! permutations of n elements, of which [kn] have k cycles. Consequently, 
Theorem 2 says 

k=lk[k] 
* = n, 

or equivalently, by Theorem 1, 
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IDENTITY 4. For n > 1, 

n n + 1- 

,k = 
k=l k 2 _ 

The left side counts the number of permutations of {1, . . ., n} with an arbitrary 
number of cycles, where one of the cycles is distinguished in some way. For example 
(1284)(365)(79), (1284)(365)(79), and (1284)(365)(79) are three different arrange- 
ments with k = 3. The right side counts the number of permutations of {0, 1, . . ., n} 

with exactly two cycles. It remains to describe a one-to-one correspondence between 
these two sets of objects. Can you deduce the correspondence between the following 
three examples? 

(1284) (365) (79) < > (079365) (1284) 

(1284)(365)(79) < > (0791284)(365) 

(1284) (365) (79) < > (03651284) (79) 

In general, we transform the permutation with n elements 

(Ck) (Ck-1 ) * * * (Cj+l ) (Cj ) (Cj-1 ) * * * (C2) (C1 ) 

into 

(° C1 C2 * * * Cj-1 Cj+l * * * Ck-1 Ck)(Ci)- 

The process is easily reversed. Given (0 al an_j)(bl bj) in fn+l the right cycle 
becomes the distinguished cycle (bl bj). The distinguished cycle is then inserted 
among the cycles Ck_l, . . . C2, C1, which are generated one at a time as follows: C1 
(the rightmost cycle) begins with al followed by a2 and so on until we encounter a 
number ai that is less than al. Assuming such an ai exists (that is, al 7& 1), begin 
cycle C2 with ai and repeat the procedure, starting a new cycle every time we encounter 
a hew smallest element. The resulting cycles (after inserting the distinguished one in 
its proper place) will be a permutation of n elements written in our standard notation. 
Hence we have a one-to-one correspondence between the sets counted on both sides 
of Identity 4. 

Notice that by distinguishing exactly m of the cycles above, the procedure above 
can be easily modified to prove the more general 

n n zkA n + 1- 

k@ k tmJ m + 1 

Likewise by distinguishing an arbitrary number of cycles, the same kind of procedure 
results in 

n - 

E k 2k=(n+l)!. 
k=O - - 

Beyond harmonic numbers 

We have only scratched the surface of how combinatorics can offer new insights about 
harmonic numbers. Other combinatorial approaches to harmonic identities are pre- 
sented by Preston [6]. We leave the reader with a challenge: A hyperharmonic number 
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H(k) iS defined as follows: Let H(1) = Hn and for k > 1, define H(k) = ,i=l Hi(k 1). 
Now consider the following generalization of identity (1) from The Book of Numbers 
by Conway and Guy [4]: 

H (k) = (n + k l ) (Hn+k_ l-Hk 1 ) - 

Such an identity strongly suggests that there must be a combinatorial interpretation of 
hyperharinonic numbers as well. And indeed there is one [2]. You can count on it! 

Acknowledgment. We thank Michael Raugh, David Gaebler, Robert Gaebler, and the referees for helpful com- 
ments, and Greg Levin for the illustrations. We are grateful to Janet Myhre and the Reed Institute for Decision 
Sciences for supporting this research. 
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