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The Fibonacci Numbers 
Exposed More Discretely 

ARTHUR T. BENJAMIN 
Harvey Mudd College 
Claremont, CA 91711 

benjamin@hmc.edu 

JENNIFERJ. QUINN 
Occidental College 

Los Angeles, CA 90041 
jquinn@oxy.edu* 

In the previous article, Kalman and Mena [5] propose that Fibonacci and Lucas se- 
quences, despite the mathematical favoritism shown them for their abundant patterns, 
are nothing more than ordinary members of a class of super sequences. Their ar- 
guments are beautiful and convinced us to present the same material from a more 
discrete perspective. Indeed, we will present a simple combinatorial context encom- 
passing nearly all of the properties discussed in [5]. 

As in the Kalman-Mena article, we generalize Fibonacci and Lucas numbers: Given 
nonnegative integers a and b, the generalized Fibonacci sequence is 

Fo =0, Fi = 1, and for n > 2, Fn =aF_- + bFn-2. (1) 

The generalized Lucas sequence is 

Lo = 2, Ll =a, and for n > 2, Ln =aLn-l + bLn-2. 

When a = b = 1, these are the celebrity Fibonacci and Lucas sequences. For now, we 
will assume that a and b are nonnegative integers. But at the end of the article, we will 
see how our methods can be extended to noninteger values of a and b. 

Kalman and Mena prove the following generalized Fibonacci identities 

Fn =F FmFn-m+1 + bFm_- Fn-m (2) 

n 

(a + b- ) F = Fn+l + bFn- 1 (3) 
i=l 

a (bnF2 + bn- F + ...+ bF2_ + F2) = FFn+l (4) 

Fn_ F+ -F 2 = (- 1)"lbn- (5) 

gcd(Fn, Fm) = Fgcd(n,m) (6) 

L=aFn + 2bFn_1 (7) 

Ln =Fn+, + bFn_ (8) 

using the tool of difference operators acting on the real vector space of real sequences. 
In this paper, we offer a purely combinatorial approach to achieve the same results. We 
hope that examining these identities from different perspectives, the reader can more 
fully appreciate the unity of mathematics. 

*Editor's Note: Readers interested in clever counting arguments will enjoy reading the authors' upcoming 
book, Proofs That Really Count: The Art of Combinatorial Proof, published by the MAA. 
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Fibonacci numbers-The combinatorial way 

There are many combinatorial interpretations for Fibonacci and Lucas numbers [3]. 
We choose to generalize the "square and domino tiling" interpretation here. We show 
that the classic Fibonacci and Lucas identities naturally generalize to the (a, b) recur- 
rences simply by adding a splash of color. 

For nonnegative integers a, b, and n, let fn count the number of ways to tile a 
1 x n board with 1 x 1 colored squares and 1 x 2 colored dominoes, where there are 
a color choices for squares and b color choices for dominoes. We call these objects 
colored n-tilings. For example, fi = a since a length 1 board must be covered by a 
colored square; f2 = a2 + b since a board of length 2 can be covered with two colored 
squares or one colored domino. Similarly, f3 = a3 + 2ab since a board of length 3 
can be covered by 3 colored squares or a colored square and a colored domino in one 
of 2 orders. We let fo = 1 count the empty board. Then for n > 2, f, satisfies the 
generalized Fibonacci recurrence 

fn = afn-l + bfn-2, 

since a board of length n either ends in a colored square preceded by a colored (n - 1)- 
tiling (tiled in afn_l ways) or a colored domino preceded by a colored (n - 2)-tiling 
(tiled in bfn_2 ways.) Since fo = 1 = Fl and fi = a = F2, we see that for all n > 0, 
fn = F.+1. After defining f_ 0, we now have a combinatorial definition for the 
generalized Fibonacci numbers. 

THEOREM 1. For n > 0, F,, f,n_ counts the number of colored (n - 1)-tilings 
(of a 1 x (n- 1) board) with squares and dominoes where there are a colors for 
squares and b colors for dominoes. 

Using Theorem 1, equations (2) through (6) can be derived and appreciated com- 
binatorially. In most of these, our combinatorial proof will simply ask a question and 
answer it two different ways. 

For instance, if we apply Theorem 1 to equation (2) and reindex by replacing n by 
n + 1 and m by m + 1, we obtain 

IDENTITY 1. ForO < m < n, 

fn 
- fm fn-m + bfm- fn-m- I 

Question: How many ways can a board of length n be tiled with colored squares 
and dominoes? 

Answer 1: By Theorem 1, there are fn colored n-tilings. 
Answer 2: Here we count how many colored n-tilings are breakable at the 

m-th cell and how many are not. To be breakable, our tiling consists of a colored 
m-tiling followed by a colored (n - m)-tiling, and there are fm fn-m such tilings. 
To be unbreakable at the m-th cell, our tiling consists of a colored (m - 1)- 
tiling followed by a colored domino on cells m and m + 1, followed by a col- 
ored (n - m - 1)-tiling; there are bfm_ 1 fn-m- such tilings. Altogether, there are 
fm fn-m + bfm- 1 fn-m-1 colored n-tilings. 

Since our logic was impeccable for both answers, they must be the same. The ad- 
vantage of this proof is that it makes the identity memorable and visualizable. See 
FIGURE 1 for an illustration of the last proof. 
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n-tilings breakable at cell m: 

1 2 m-1 m m+1 m+2 n 

fil 1n-nm 

n-tilings unbreakable at cell m: 

1 2 m-1' m m+1 m+2 n 

fX- l'fi-nl-l 
Figure 1 A colored n-tiling is either breakable or unbreakable at cell m 

Equation (3) can be rewritten as the following identity. 

IDENTITY 2. For n > 0, 

fn 
- 1 = (a - l)fn-l + (a + b - l)[fo + fi + * * + fn-2]. 

Question: How many colored n-tilings exist, excluding the tiling consisting of 
all white squares? 

Answer 1: By definition, fn - 1. (Notice how our question and answer be- 
come shorter with experience!) 

Answer 2: Here we partition our tilings according to the last tile that is not 
a white square. Suppose the last tile that is not a white square begins on cell k. 
If k = n, that tile is a square and there are a - 1 choices for its color. There are 
fn-l colored tilings that can precede it for a total of (a - 1) fn- tilings ending in 
a nonwhite square. If 1 < k < n - 1, the tile covering cell k can be a nonwhite 
square or a domino covering cells k and k + 1. There are a + b - 1 ways to 
pick this tile and the previous cells can be tiled fk-l ways. Altogether, there are 

(a - 1)fn-I + yknl (a + b - l)fk-l colored n-tilings, as desired. 

Notice how easily the argument generalizes if we partition according to the last tile 
that is not a square of color 1 or 2 or... or c. Then the same reasoning gives us for any 

<c <a, 

fn - C = (a - c)fn- + ((a - c)c + b)[focn-2 + ficn-3 + . + fn-2 (9) 

Likewise, by partitioning according to the last tile that is not a black domino, we 
get a slightly different identity, depending on whether the length of the tiling is odd or 
even: 

f2n+1 = a(fo + f2 + * + f2n) + (b - 1)(fl + f3 + '* + f2n-1), 

f2n - 1 = a(f, + f3 + * * * + f2n-1) + (b - 1)(fo + f2 + -* * + f2n-2). 

After applying Theorem 1 to equation (4) and reindexing (n -> n + 1) we have 

IDENTITY 3. For n > 0, 

a Z fb- = fnfn+ 
k=O 
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Question: In how many ways can we create a colored n-tiling and a colored 
(n + 1)-tiling? 

Answer 1: fnfn+l. 
Answer 2: For this answer, we ask for 0 < k < n, how many colored tiling 

pairs exist where cell k is the last cell for which both tilings are breakable? 
(Equivalently, this counts the tiling pairs where the last square occurs on cell 
k + 1 in exactly one tiling.) We claim this can be done afk2bn-k ways, since 
to construct such a tiling pair, cells 1 through k of the tiling pair can be tiled 
f2 ways, the colored square on cell k + 1 can be chosen a ways (it is in the 
n-tiling if and only if n - k is odd), and the remaining 2n - 2k cells are covered 
with n - k colored dominoes in bn-k ways. See FIGURE 2. Altogether, there are 
a YEk= f2b -k tilings, as desired. 

I 2 b '' 

It1 I 

. .i 

Figure 2 A tiling pair where the last mutually breakable cell occurs at cell k 

The next identity uses a slightly different strategy. We hope that the reader does not 
find fault with our argument. 

Consider the two colored 10-tilings offset as in FIGURE 3. The first one tiles cells 
1 through 10; the second one tiles cells 2 through 11. We say that there is a fiault at 
cell i, 2 < i < 10, if both tilings are breakable at cell i. We say there is a fault at cell 1 
if the first tiling is breakable at cell 1. Put another way, the pair of tilings has a fault at 
cell i for 1 < i < 10 if neither tiling has a domino covering cells i and i + 1. The pair 
of tilings in FIGURE 3 has faults at cells 1, 2, 5, and 7. We define the tail of a tiling to 
be the tiles that occur after the last fault. Observe that if we swap the tails of FIGURE 
3 we obtain the 11-tiling and the 9-tiling in FIGURE 4 and it has the same faults. 

I 2 ! 3 4 5 6 7 8 9 1) 11 

. :: :: ~ tails > 

Figure 3 Two 1 0-tilings with their faults (indicated with gray lines) and tails 

L- 2 - 3 4 - 6 7 8 9 I 1I 

tails 

Figure 4 After tail-swapping, we have an 11-tiling and a 9-tiling with exactly the same 
faults 
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Tail swapping is the basis for the identity below, based on (5). At first glance, it 
may appear unsuitable for combinatorial proof due to the presence of the (-1)n term. 
Nonetheless, we will see that this term is merely the error term of an almost one-to-one 
correspondence between two sets whose sizes are easily counted. We use a different 
format for this combinatorial proof. 

IDENTITY 4. fn2 = fn+lfn-l + (-l)nbn 

Set 1: Tilings of two colored n-boards (a top board and a bottom board). By 
definition, this set has size f2. 

Set 2: Tilings of a colored (n + 1)-board and a colored (n - 1)-board. This 
set has size fn+lfn-l. 

Correspondence: First, suppose n is odd. Then the top and bottom board 
must each have at least one square. Notice that a square in cell i ensures that a 
fault must occur at cell i or cell i - 1. Swapping the tails of the two n-tilings 
produces an (n + l)-tiling and an (n - l)-tiling with the same tails. This pro- 
duces a 1-to-I correspondence between all pairs of n-tilings and all tiling pairs 
of sizes n + 1 and n - 1 that have faults. Is it possible for a tiling pair with 
sizes n + 1 and n - 1 to be fault free? Yes, with all colored dominoes in stag- 
geredformation as in FIGURE 5, which can occur bn ways. Thus, when n is odd, 
fn = fn+l fn- - bn. 

Similarly, when n is even, tail swapping creates a 1-to-i correspondence be- 
tween faulty tiling pairs. The only fault-free tiling pair is the all domino tiling 
of FIGURE 6. Hence, fn2 = fn+ fn-l + bn. Considering the odd and even case 

together produces our identity. 

1 2 3 4 5 6 7 8 9 10 

Figure 5 When n is odd, the only fault-free tiling pairs consist of all dominoes 

1 2 3 4 5 6 7 8 9 10 11 

Figure 6 When n is even, the only fault-free tiling pairs consist of all dominoes 

We conclude this section with a combinatorial proof of what we believe to be the 
most beautiful Fibonacci fact of all. 

THEOREM 2. For generalized Fibonacci numbers defined by (1) with relatively 
prime integers a and b, 

gcd(Fn, Fm) = Fgcd(n,m). 
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We will need to work a little harder to prove this theorem combinatorially, but it can 
be done. Fortuitously, we have already combinatorially derived the identities needed 
to prove the following lemma. 

LEMMA 1. For generalized Fibonacci numbers defined by (1) with relatively prime 
integers a and b andfor all m > 1, Fm and bFm _ are relatively prime. 

Proof First we claim that Fm is relatively prime to b. By conditioning on the loca- 
tion of the last colored domino (if any exist), equation (9) says (after letting c = a and 
reindexing), 

m-2 

F, = am-1 + b , a' -Fm i_j. 
j= 1 

Consequently, if d > 1 is a divisor of Fm and b, then d must also divide am-l, which 
is impossible since a and b are relatively prime. 

Next we claim that Fm and F,m_ are relatively prime. This follows from equation (5) 
since if d > 1 divides Fm and Fm-l, then d must divide bm-l. But this is impossible 
since Fm and b are relatively prime. 

Thus since gcd(Fm, b) = 1 and gcd(F,,,, F,,-_) = 1, then gcd(Fm, bFm_\) = 1, as 
desired. ? 

To prove Theorem 2, we exploit Euclid's algorithm for computing greatest common 
divisors: If n = qm + r where 0 < r < m, then 

gcd(n, m) = gcd(m, r). 

Since the second component gets smaller at each iteration, the algorithm eventually 
reaches gcd(g, 0) = g, where g is the greatest common divisor of n and m. The identity 
below shows one way that F,, can be expressed in terms of Fm and Fr. It may look 
formidable at first but makes perfect sense when viewed combinatorially. 

IDENTITY 5. If n = qm + r, where 0 < r < m, then 

q 

Fn = (bF)qFr +) Fm (bFF(q-j)+r+l 
j=l 

Question: How many colored (qm + r - l)-tilings exist? 
Answer 1: fqm+r- = Fqm+r = Fn. 
Answer 2: First we count all such colored tilings that are unbreakable at ev- 

ery cell of the form jm - 1, where 1 < j < q. Such a tiling must have a col- 
ored domino starting on cell m- 1, 2m - 1,..., qm- 1, which can be cho- 
sen bq ways. Before each of these dominoes is an arbitrary (m - 2)-tiling that 
can each be chosen fm-2 ways. Finally, cells qm + 1, qm + 2, ..., qm + r - 1 
can be tiled fr-l ways. See FIGURE 7. Consequently, the number of colored 

m- i 2m- 3m- qm~l (I qi -1 m 1 

~~I I1I>1~eBd~~~~~~__3m 1I Iu 

ft-2 m ? ̂t-2 6t-2 ' ' * X?-2-1 

Figure 7 There are (bFm-_)qFr colored (qm + r- 1)-tilings with no breaks at any cells 
of the form jm- 1 where 1 < j < q 
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tilings with no jm - 1 breaks is bq(f_2)q fr_l = (bFm_ )qFr. Next, we par- 
tition the remaining colored tilings according to the first breakable cell of the 
form jm - 1, 1 < j < q. By similar reasoning as before, this can be done 
(bFm_l)j-l Fm F(qj)m+r+l ways. (See FIGURE 8.) Altogether, the number of col- 
ored tilings is (bFm- )qFr + Fm EYq= (bFm,)j- 1F(q-j)m+r+1. 

I -1 l)m-l m-\ ?qm +-1 

fn-2 */in 4m-2 'n--mI 

Figure 8 There are (bFm-1)j-l FmF(q-j)m+r+l colored (qm + r - 1)-tilings that are break- 
able at cell jm - 1, but not at cells of the form im - 1 where 1 < i < j 

The previous identity explicitly shows that Fn is an integer combination of Fm 
and Fr. Consequently, d is a common divisor of Fn and Fm if and only if d divides 
Fm and (bFm_l)q Fr. But by Lemma 1, since Fm is relatively prime to bFm_1, d must 
be a common divisor of Fm and Fr. Thus Fn and Fm have the same common divisors 
(and hence the same gcd) as Fm and Fr. In other words, 

COROLLARY 1. If n = qm + r, where 0 < r < m, then 

gcd(F,, Fm) = gcd(Fm, Fr). 

But wait!! This corollary is the same as Euclid's algorithm, but with F's inserted 
everywhere. This proves Theorem 2 by following the same steps as Euclid's algorithm. 
The gcd(Fn, Fm) will eventually reduce to gcd(Fg, Fo) = (Fg, O) = Fg, where g is the 
greatest common divisor of m and n. 

Lucas numbers-the combinatorial way 
Generalized Lucas numbers are nothing more than generalized Fibonacci numbers 
running in circles. Specifically, for nonnegative integers a, b, and n, let tn count the 
number of ways to tile a circular 1 x n board with slightly curved colored squares and 
dominoes, where there are a colors for squares and b colors for dominoes. Circular 
tilings of length n will be called n-bracelets. For example, when a = b = 1, 4 = 7, 
as illustrated in FIGURE 9. In general, f4 = a4 + 4a2b + 2b2. 

Figure 9 A circular board of length 4 and its seven 4-bracelets 

From the definition of En it follows that En > fn since an n-bracelet can have a 
domino covering cells n and 1; such a bracelet is called out-of-phase. Otherwise, 
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there is a break between cells n and 1, and the bracelet is called in-phase. The first 5 
bracelets in FIGURE 9 are in-phase and the last 2 are out-of-phase. Notice li = a and 
f2 = a2 + 2b since a circular board of length 2 can be covered with two squares, 
an in-phase domino, or an out-of-phase domino. We define t0 = 2 to allow 2 empty 
bracelets, one in-phase and one out-of-phase. In general for n > 2, we have 

tn = atn-L + btn-2 

because an n-bracelet can be created from an (n - 1)-bracelet by inserting a square to 
the left of the first tile or from an (n - 2)-bracelet by inserting a domino to the left of 
the first tile. The first tile is the one covering cell 1 and it determines the phase of the 
bracelet; it may be a square, a domino covering cells 1 and 2, or a domino covering 
cells n and 1. 

Since t0 = 2 = Lo and 1 = a = LI, we see that for all n > 0, ,n = Ln. This 
becomes our combinatorial definition for the generalized Lucas numbers. 

THEOREM 3. For all n > O, Ln = n, counts the number of n-bracelets created with 
colored squares and dominoes where there are a colors for squares and b colors for 
dominoes. 

Now that we know how to combinatorially think of Lucas numbers, generalized 
identities are a piece of cake. Equation (7), which we rewrite as 

L,, = af,,- + 2bf,_n-2 

reflects the fact that an n-bracelet can begin with a square (af,,_ ways), an in-phase 
domino (bfn-2 ways), or an out-of-phase domino (bjfn_ ways). Likewise, equation (8), 
rewritten as 

Ln, =f, + bf -2, 

conditions on whether or not an n-bracelet is in-phase (f,, ways) or out-of-phase (bf-_2 
ways.) 

You might even think these identities are too easy, so we include a couple more 
generalized Lucas identities for you to ponder along with visual hints. For more details 
see [4]. 

fn-lLn f2n= 1 See FIGURE 10. 

L2 = L2n + 2 (-b)n See FIGURE 11. 

Further generalizations and applications 

Up until now, all of our proofs have depended on the fact that the recurrence coef- 
ficients a and b were nonnegative integers, even though most generalized Fibonacci 
identities remain true when a and b are negative or irrational or even complex numbers. 
Additionally, our sequences have had very specific initial conditions (Fo = O, Fl = 1, 
Lo = 2, L1 = a), yet many identities can be extended to handle arbitrary ones. This 
section illustrates how combinatorial arguments can still be used to overcome these 
apparent obstacles. 

Arbitrary initial conditions Let a, b, Ao, and AI be nonnegative integers and con- 
sider the sequence A, defined by the recurrence, for n > 2, A, = aA,_1 + bAn_2. As 
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Case I: breakable at n 

I!-^^^^^^^ I 
1 2 ? . ? n n--'--1 I . 2n-1 

n 1 ? ? 2n-1 

Case II: not breakable at n 

1 2 ? ? ? n ti 1 * * * 21-1 

n-.2n-1 =l A 2 n-I 71./; -- --A -"-:z- 

F Oi-itef :1LAzf1 

Figure 10 Picture for f_n- Ln = f2n-1 

1 

Figure 11 Picture for L2 = L2 n + 2 (-b)n when n is even n L j VILI1 3LL 
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described in [1] and Chapter 3 of [4], the initial conditions Ao and AI determine the 
number of choices for the initial tile. Just like Fn, An counts the number of colored 
n-tilings where except for the first tile there are a colors for squares and b colors for 
dominoes. For the first tile, we allow A1 choices for a square and bAo choices for a 
domino. So as not to be confused with the situation using ideal initial conditions, we 
assign the first tile a phase instead of a color. 

For example, when Ao = 1 and A = a, the ideal initial conditions, we have a 
choices for the phase of an initial square and b choices for the phase of an initial 
domino. Since all squares have a choices and all dominoes have b choices, it follows 
that An = fn. When Ao = 0 and A1 = 1, A, counts the number of colored n-tilings 
that begin with an "uncolored" square; hence A, = fn-l = Fn. When Ao = 2 and 
A1 = a, An counts the number of colored n-tilings that begin with a square in one of 
a phases or a domino in one of 2b phases. This is equivalent to a colored n-bracelet 
since there are an equal number of square phases as colors and twice as many domino 
phases as colors (representing whether the initial domino is in-phase or out-of-phase.) 
Thus when Ao = 2 and A1 = a, we have An = Ln. 

In general, there are Alfn_l colored tilings that begin with a phased square and 
bAofn-2 colored tilings that being with a phased domino. Hence we obtain the follow- 
ing identity from Kalman and Mena [5]: 

An = bAoF_n- + A,Fn. (11) 

Arbitrary recurrence coefficients Rather than assigning a discrete number of col- 
ors for each tile, we can assign weights. Squares have weight a and dominoes have 
weight b except for the initial tile, which has weight AI as a square and weight bAo 
as a domino. Here a, b, Ao, and A r do not have to be nonnegative integers, but can be 
chosen from the set of complex numbers (or from any commutative ring). We define 
the weight of an n-tiling to be the product of the weights of its individual tiles. For ex- 
ample, the 7-tiling "square-domino-domino-square-square" has weight a3b2 with ideal 
initial conditions and has weight Ala 2b2 with arbitrary initial conditions. Inductively 
one can prove that for n > 1, A, is the sum of the weights of all weighted n-tilings, 
which we call the total weight of an n-board. 

If X is an m-tiling of weight wx and Y is an n-tiling of weight Wy, then X and 
Y can be glued together to create an (m + n)-tiling of weight WXWy. If an m-board 
can be tiled s different ways and has total weight Am = wl + w2 + - " + ws and an 
n-board can be tiled t ways with total weight An = xI + x2 + .. + xt, then the sum 
of the weights of all weighted (m + n)-tilings breakable at cell m is 

s t 

L L WiXj = (WI + W2 + + Ws)(XI + X2 +* +- Xt) = AmAn. 
i=1 j=1 

Now we are prepared to revisit some of our previous identities using the weighted 
approach. For Identity 1, we find the total weights of an n-board in two different ways. 
On the one hand, since the initial conditions are ideal, the total weight is An = fn. On 
the other hand, the total weight is comprised of the total weight of those tilings that are 
breakable at cell m (fm f,-m) plus the total weight of those tilings that are unbreakable 
at cell m (fm-lbfn-m-l). Identities 2, 3, and 5 can be argued in similar fashion. 

For Identity 4, we define the weight of a tiling pair to be the product of the weights 
of all the tiles, and define the total weight as before. Next we observe that tail swapping 
preserves the weight of the tiling pair since no tiles are created or destroyed in the 
process. Consequently, the total weight of the set of faulty tiling pairs (X, Y) where 
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X and Y are n-tilings equals the total weight of the faulty tiling pairs (X', Y'), where 
X' is an (n + l)-tiling and Y' is an (n - l)-tiling. The fault-free tiling pair, for the 
even and odd case, will consist of n dominoes and therefore have weight bn. Hence 
identity 4 remains true even when a and b are complex numbers. 

Kalman and Mena [5] prove Binet's formulas for Fibonacci numbers 

-1 -7 1 /5n- 
n ( 1 lI2 =2 ) (12) 

and for more general sequences. 
These can also be proved combinatorially [2]. Binet's formula follows from consid- 

ering a random tiling of an infinitely long strip with cells 1, 2, 3, ..., where squares 
and dominoes are randomly and independently inserted from left to right. The prob- 
ability of inserting a square is 1/O and the probability of inserting a domino is 1/02, 
where 0 = (1 + V/)/2. (Conveniently, 1/0 + 1/02 = 1.) By computing the proba- 
bility of being breakable at cell n - 1 in two different ways, Binet's formula instantly 
appears. This approach can be extended to generalized Fibonacci numbers and beyond, 
as described in [1]. 

Finally, we observe that the Pythagorean Identity presented in [5] for traditional 
Fibonacci numbers, which can be written as 

(fn- fn+2)2 + (2fnfn+l)2 =f2+2 

can also be proved combinatorially. For details, see [4]. 
We hope that this paper illustrates that Fibonacci and Lucas sequences are members 

of a very special class of sequences satisfying beautiful properties, namely sequences 
defined by second order recurrence relations. But why stop there? Combinatorial in- 

terpretations can be given to sequences that satisfy higher-order recurrences. That is, 
if we define aj = 0 for j < 0 and aO = 1, then for n > 1, an = cla_l + * + Ckan-k 
counts the number of ways to tile a board of length n with colored tiles of length at 
most k, where each tile of length i has ci choices of color. Again, this interpretation can 
be extended to handle complex values of ci and arbitrary initial conditions. See Chap- 
ter 3 of [4]. Of course, the identities tend to be prettier for the two-term recurrences, 
and are usually prettiest for the traditional Fibonacci and Lucas numbers. 
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