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Two of the first identities encountered in a discrete mathematics course are the follow-
ing finite sums of binomial coefficients. For n ≥ 0,

∑
k≥0

(
n

k

)
= 2n (1)

and for n ≥ 1,

∑
k≥0

(
n

2k

)
= 2n−1. (2)

The sums are finite since
(n

k

) = 0 when k > n. Both of these identities have ele-
mentary combinatorial proofs. But when r ≥ 3, the sum

∑
k≥0

( n
rk

)
is rarely mentioned

because its closed form is more complex. (See Gould [1]. A special case appears in [3]
as problem 1.42(f).)

THEOREM 1. For n ≥ 0 and r ≥ 1,

∑
k≥0

(
n

rk

)
= 1

r

r−1∑
j=0

(1 + ω j )n, (3)

where ω = ei2π/r is a primitive r th root of unity.

Notice that when r = 1 or 2, we have ω = 1 or −1, respectively, and the formulas
in equations (1) and (2) are directly obtained. When r = 3, we have

ω = ei2π/3 = −1 + √
3 i

2

and then Theorem 1 yields, for n ≥ 0,

∑
k≥0

(
n

3k

)
= 2n + m

3
,
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where m depends on n and is equal to 2, 1, −1, −2, −1, 1, when n is congruent to
0, 1, 2, 3, 4, 5 (mod 6), respectively. Likewise when r = 4, we have ω = i , and we get

∑
k≥0

(
n

4k

)
= 2n + m2�n/2�

4
,

where m = 2, 1, 0, −1, −2, −1, 0, 1, when n ≥ 1 is congruent, respectively, to
0, 1, 2, 3, 4, 5, 6, 7 (mod 8). (When n = 0, this formula needs to be adjusted, since
00 = 1.)

A generalization of Theorem 1 (which appears in Gould [1] in modified form) also
has an attractive closed form.

THEOREM 2. For any integers 0 ≤ a < r and n ≥ 0,

∑
k≥0

(
n

a + rk

)
= 1

r

r−1∑
j=0

ω− ja(1 + ω j )n, (4)

where ω = ei2π/r is a primitive r th root of unity.

While Theorems 1 and 2 have succinct algebraic explanations using the binomial
theorem (see [2], [3]), our goal is to prove them combinatorially. In a combinato-
rial proof, an identity is proved by counting a problem in two different ways. Our
proofs will utilize the graph Cr , the directed, looped cycle graph with vertex set
V = {0, 1, . . . , r − 1} such that for each vertex j , there is an arc to vertex j and
j + 1 (mod r ). (See Figure 1.) We define an n-walk to be a walk on Cr that takes
exactly n steps. A walk that begins and ends at the same vertex is said to be closed;
otherwise it is open. For example, when r = 5, the walk 3, 4, 4, 0, 1, 1, 1, 2 is an open
7-walk. It makes 4 forward moves and 3 stationary moves. Another way to describe
this walk would be

X = (x0; x1, x2, x3, x4, x5, x6, x7) = (3; F, S, F, F, S, S, F)

where x0 indicates the initial vertex and the other values of xi indicate whether the i th
step is forward or stationary. Clearly, an n-walk that begins at x0 and makes m forward
moves will end up at vertex x0 + m (mod r ).

3 2

1

0

4

Figure 1 The looped cycle graph C5.
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Combinatorial Proof of Theorem 1

QUESTION. How many closed n-walks on Cr begin at vertex 0?

Answer 1. Starting at vertex 0, there are
(n

m

)
n-walks that take m forward steps. For

a walk to be closed, m must be a multiple of r . Consequently, our first answer is simply∑
k≥0

( n
kr

)
.

Answer 2. First we observe that there are as many closed n-walks that start at vertex
0 as start at vertex 1 or 2 or . . . or r − 1. Thus it suffices to prove that the total number
of closed n-walks on Cr is

∑r−1
j=0(1 + ω j )n. We accomplish this by assigning each

n-walk (whether it be open or closed) a weight that will depend on its initial vertex
and the number of forward moves. Specifically, an n-walk with initial vertex x0 = j
that makes m forward moves will be assigned a weight of ω jm . The 7-walk on C5 in
the previous example has j = 3, and m = 4 and therefore has weight ω12 = ω2 since
ω5 = 1. Equivalently, a walk that begins at vertex j and ends at vertex j + m (mod r )
has weight ω jm. In particular, any closed walk will have weight ω0 = 1.

Another way to think of the weight of a walk beginning at vertex j is that each
stationary step is given weight 1 and each forward step in the walk is given weight
ω j , and the weight of the walk is defined as the product of the weights of its steps.
Consequently, the total weight of all n-walks that begin at j is (1 + ω j)n , since each
(1 + ω j) represents a choice in our walk to make a stationary or forward move. (Alter-
natively, (1 + ω j )n = ∑

k≥0

(n
k

)
ω j k is the sum of the weights of all n-walks starting at

j since
(n

k

)
ω j k is the total weight of all such walks with k forward steps.) Summing

over all possible starting points,

r−1∑
j=0

(1 + ω j )n (5)

counts the total weight of all n-walks (open and closed) on Cr .
Our goal is to show that (5) counts the total number of all closed n-walks on Cr .

Since each closed walk has weight 1, it suffices to show that the total weight of all
open walks is zero. Consider an open walk X0 that begins at vertex 0 and ends at
vertex m �= 0. Then X0 generates the orbit {X0, X1, . . . , Xr−1} where walk X j starts
at vertex j , and then follows the same forward and stationary instructions as X0, ending
at vertex j + m (mod r ), with weight ω jm . Summing a finite geometric series, the total
weight of the n-walks in this orbit is

r−1∑
j=0

ω jm = 1 − ωmr

1 − ωm
= 0,

since ωr = 1 and ωm �= 1. Since every open walk appears in exactly one orbit, each
with total weight zero, the total weight of all open walks is zero, as desired. Summa-
rizing, for walks on Cr ,

the number of closed n-walks = the total weight of all closed n-walks

= the total weight of all n-walks

=
r−1∑
j=0

(1 + ω j )n.

Hence, the number of closed n-walks that begin at 0 is 1
r

∑r−1
j=0(1 + ω j )n .
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Combinatorial Proof of Theorem 2

In this proof, an n-walk on Cr that starts at vertex j and makes m forward moves
is defined to have weight ω− jaωmj = ω(m−a) j . Hence any walk that makes a + rk
forward moves has weight ωrk j = 1. Just like in the proof of Theorem 1, the total
weight of all n-walks on Cr is

∑r−1
j=0 ω− ja(1 + ω j )n. The theorem follows since the

walks that make forward progress m �= a + rk can be placed into orbits of total weight∑r−1
j=0 ω(m−a) j = 0.

Theorems 1 and 2 can also be expressed in terms of trigonometric functions [1],
sometimes without mentioning any complex numbers. Suppose ν = eiπ/r is a primitive
2r th root of unity so that ν2 = ω. Then using Euler’s formula, e−iθ + eiθ = 2 cos θ , we
may write the summand as

(1 + ω j )n = [v j (v− j + v j )]n = vnj (e−iπ j/r + eiπ j/r)n = vnj

(
2 cos

π j

r

)n

.

In particular, if n is a multiple of r , say n = qr , then

∑
k≥0

(
n

rk

)
= 2n

r

r−1∑
j=0

(−1)q j

(
cos

π j

r

)n

(6)

can be expressed entirely with real numbers. This is the form presented in [1]. Like-
wise, Theorem 2 simplifies to the same right hand side of (6) when n = qr + 2a.

Where do we go from here? A natural problem might be to try to count walks on
other graphs to discover other identities. Conversely, we hope this technique may allow
us to combinatorially understand other identities that mix binomial coefficients with
complex numbers. For example, Identity 2.24 in [1] says for r > 1,

∑
k≥1

1(kr
r

) =
r−1∑
k=1

−ωk(1 − ωk)r−1 log
1 − ωk

−ωk
,

where ω is a primitive r th root of unity. Perhaps with the right combinatorial perspec-
tive, this identity will not appear nearly so complex after all.

Acknowledgment The authors thank Keith Dsouza and Michael Krebs, whose talk at the Fall 2009 meeting
of the Southern California and Nevada Section of the MAA provided the motivation for this work.
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Summary We provide a combinatorial proof of a formula for the sum of evenly spaced binomial coefficients,∑
k≥0

( n
rk

)
. This identity, along with a generalization, are proved by counting weighted walks on a graph.
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