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Have you experienced a "mathematical yawp" lately? (Not sure you want to answer 
until you know what one is?) Well, the phrase "mathematical yawp" was coined by 
Francis Su in his James R. Leitzel Lecture at the 2006 MathFest. In essence, a math 
ematical yawp is one of those "light bulb" or "aha!" moments when a mathematician 
comes to an understanding of a topic so moving that it is accompanied by a yelp of joy 
or disbelief. By specialization, a combinatorial yawp is one of those moments achieved 
while counting. 

Combinatorial proofs are appreciated for the elegance and/or simplicity of their 

arguments (see [2]). However, the true (and frequently underappreciated) beauty lies 
in their power to generalize results. Understanding the components of a mathematical 

identity in a concrete counting context provides the first clue for exploring natural 
extensions. Investigating and stretching the role of each parameter in turn, leads to 
different generalizations?ones that might not be connected without the combinatorial 

insight. 
Our yawp occurred while exploring Problem #11220, proposed by David Beckwith, 

from the April 2006 issue of the American Mathematical Monthly [1], the innocuous 

looking alternating binomial identity below. 

Identity 1. Forn > 1, 

Equipped with the ability to select subsets, to paint elements black, blue, or white, and 
to count, we will work through a novel proof of this identity and then explore numerous 

45 
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46 MATHEMATICS MAGAZINE 

related results. What qualifies as a natural generalization is open to debate, but the 

greatest surprise is the sheer number of interesting generalizations to be explored. 
To prove Identity 1, begin by understanding the unsigned quantity in the alter 

nating sum, ?)(2^~2r). Consider the set of n consecutive pairs, {{1, 2}, {3, 4}, ... , 

{2n 
? 

1, 2n}}. Given r, 0 < r < n, select r of the pairs to paint black in (") ways. Of 
the remaining 2n ? 2r elements that have not yet been painted, select n ? 1 to paint 
blue. This can be done in (2,"I2r) ways. The remaining elements are then painted white. 

We call such a painted set a configuration. For example, when n = 5, 

X = {{1,2}, {3, 4}, {5, 6}, {7, 8}, {9,10}} 

is a configuration where black elements are bold, blue elements are underlined, and 
the remaining elements are white. 

Now define two sets, denoted ? and ?, that depend on the parameter r, the number 
of black pairs. 

Set ?. All configurations with an even number of black pairs. 
Set ?. All configurations with an odd number of black pairs. 

Since a configuration from ? contributes +1 to the summation while a configuration 
from ? contributes ?1, the left-hand side of Identity 1 is simply |Set ?\ 

? 
|Set ?\. If 

we can show that |Set ?\ = |Set ?\, then Identity 1 is proved. Our goal then is to find 
a bijection between ? and ?. 

Correspondence. Find the minimum integer j such that 1 < j < n and [2j 
? 

1, 2y} contains no blue element, i.e., it is either a black pair or a white pair. Then 

toggle the color of this pair?if it is black, make it white and if it is white, make 
it black. 

Since there are only n ? 1 blue elements (and n total pairs), every configura 
tion has at least one pair containing no blue element. So j always exists and the 

correspondence is a bijection. Hence, |Set ?\ = |Set ?\ and the proof is com 

plete. 

As an illustration, the previously considered configuration 

X = {{\,2), {3, 4}, {5, 6}, {7, 8}, {9,10}}, 

belongs to ? since it contains r = 2 black pairs. By toggling the first blueless pair 
{5, 6}, X is matched with 

X' = {{1,2}, {3, 4}, {5, 6}, {7, 8}, {9,10}}, 

which belongs to ?, since it has r = 1 black pair. 
At this point, many natural questions arise. Can we change the number of blue ele 

ments? What happens if we replace the pairs above by k-setsl Can we say something 
about partial sums? We will consider each of these questions in turn. 

Changing the number of blue elements. If we paint fewer than n ? 1 elements blue 
in our proof above, the argument doesn't change. We are still guaranteed a blueless 

pair, so a toggle point exists. Letting m represent the number of blue elements to be 

painted, this gives 
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Identity 2. /w0 < m < n, 

S<-OcV)" r=0 

What happens when m is larger than n ? 11 Well, the initial set-up is the same. Select 
r pairs to color black and m of the remaining elements to color blue. The sets ? and 
? contain configurations with an even or odd number of black pairs. Again, toggle the 
color of the first blueless pair. Unfortunately, there are now unpaired configurations in 
our correspondence (so it is no longer a bijection). Since m is greater than or equal to n, 
we can no longer guarantee a toggle point exists. However, we know that the unpaired 
configurations have at least one blue element in every pair, so these configurations 
have zero black pairs and hence belong to ?. 

For example, when n = 5 and m = 7, the configuration 

X = {{I, 2], {3, 4}, {5, 6}, {7, 8}, {9,10}} 

has no toggle point. 
How many of these unpaired configurations are there? Such configurations have 

m ? n pairs where both elements are painted blue. So there are ( 
" 

) ways to select 
the blue pairs. Then, the other n ? 

(m 
? 

n) 
= 2n 

? m pairs have one blue element and 

one white element, and there are 22n~m ways to paint them. Thus, there are 
(mn_n)22n~~m 

unpaired configurations, leading to our next generalization. 

Identity 3. Forn,m>0, 

r=0 

2n-2r\ 
=22n_m( 

n 

m / \m 
? n 

Note that this is a generalization of Identity 2 since ( n_ ) 
= 0 when m < n. To some, 

this would be enough for a yawp. But we press on for more! 

From pairs to A>sets. Rather than creating n subsets by pairing consecutive elements 
of the set {1, 2, 3,..., 2n), we ask what would happen if we group k consecutive 
elements from {1, 2, 3, ..., kn}. By mimicking the argument for Identity 1, we can 

immediately generalize Identity 2 as follows. 

Identity 4. For 0 < m < n and k > 1, 

P-or.*)-* 
For example, when n = 5, k = 3, m = 4, the configuration 

X = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, U, 12}, {13,14,15}} 

has r = 2 black 3-sets (and thus belongs to 8) and by toggling the first blueless 3-set, 
we get 

X' = {{I, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13,14,15}} 

(which belongs to O). 
Can we generalize Identity 4, allowing m > n blue elements? Yes and no. We can 

formulate a general answer, but the alternating sum becomes a sum over integer parti 
tions. Although it is not the nice answer we were hoping for, it still has some notable 

specializations. 
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In the general situation with m > n, unpaired objects are configurations with at least 
one blue element in every fc-set. These objects necessarily belong to E since they have 
r ? 0 black fc-sets. For example, when n = 5,k 

? 
3, m ? 

8, the configuration 

{{I, 2, 3], {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13, 14, 15}} 

has no blueless 3-set. We can count these by considering the distribution of m blue 
elements among the n different &-sets. Let x? count the number of k-sets containing / 
blue elements (1 < / < k). In our example, xx ? 3, x2 = 1, x3 = 1. The sum X!?=i xi 
counts the number of /c-sets containing blue elements while the sum ]?/=i ixt counts 
the number of blue elements. Only nonnegative integer solutions (xx, x2,... , xn) to 

n = x\ + x2 H-hxfc 
m = xx + 2x2 + 4- kxk 

contribute to the number of unpaired configurations. Since the number of ways to 
choose which x? k-sots have / blue elements is the multinomial coefficient 

(n 

\ n\ 
xx,x2, ... 

,xk) xx\x2\ -xk\ 

and a fc-set with i blue elements can be painted (*) ways, we get 

Identity 5. Forallk,m,n>l, 

?<-<)( V)- U." ,)nC)" r=0 Vr/V rn ) ixi^tXk)\xl,x2,...,xk/f=i\i/ 

where the sum on the right is taken over all simultaneous nonnegative integer solutions 
to n = xx + x2 + H- xk and m = xx + 2x2 + kxk. 

Note that this is a generalization of Identity 4 since when m is less than n, the sum on 
the right is empty. Some special cases are worth mentioning because their right-hand 
sides reduce to simple one-term expressions: 

m = n 

m = n + 1 

?<-"t)C:;r)? & 
Partial sums. The final generalization considers what happens if we return to creat 

ing pairs from the set {1, 2, 3, ..., 2n} and only consider the first s terms of the original 
sum. To make life easier, we restrict our attention to the situation where m < n and 

consider 

?<-OrV> 
In this case, the development parallels Identity 2 except that only configurations with s 
or fewer black pairs are considered. To match configurations between ? and ?, we tog 
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gle the color of the first blueless pair unless the configuration contains the maximum 
s black pairs and a white pair precedes them. 

For example, when n = 5, m = 
2, s = 3 the configuration 

X = {{1,2}, {3, 4}, {5, 6}, {7, 8}, {9,10}}, 

is unmatched, since by toggling the first blueless set {1, 2}, we would wind up with 
four black pairs, exceeding our upper bound. We note that among the configurations 
with s black pairs and w white pairs, the fraction of those where a white pair comes 
before every black pair is ^. 

To count the number of unmatched objects, let b represent the number of blue 

pairs in a configuration. Since b blue pairs contain 2b blue elements, there must be 
m ? 2b pairs containing one blue and one white element (and since we have s black 

pairs, there are n ? 
b 

? 
(m 

? 
2b) 

? s = n ? m ? s -\- b white pairs). So there are 

2m~2h(s b m_2bn n_m_s+b) configurations with s black pairs, b blue pairs, and a total of 

m blue elements. Of these, 
n~ 

~s_^b 
of the configurations have a white pair coming be 

fore all the black pairs. These unmatched configurations all belong to ? or all belong 
to ? depending on the parity of s. This yields the following identity: 

Identity 6. For 0 <m < n and 0 < s < n, 

POr.*) 
= ( \)sYn~m~s 

+ 
b2m-2b( 

n 
\ 

~^ 
n ? m + b \s, b, m ? 

2b, n ? m ? s 
-\~b) 

Perhaps you don't find this solution satisfactory? Let's make one last restriction in 

hopes of finding a "nice" solution. Restrict the location of the black pairs to only occur 
in the first s positions. Then, for 1 < m, n, the alternating sum becomes 

P-or.*) 
The unsigned quantity in the alternating sum, (*) (2"~2r), counts the ways to select 

r black pairs from {{1, 2}, {3, 4},... , {2s 
? 

1, 2s}} and then paint m of the remain 

ing uncolored elements from {1,2,3, ... ,2n} blue. We then use the same toggling 
argument as before: 

Set ?. All configurations with an even number of black pairs. 
Set ?. All configurations with an odd number of black pairs. 

Correspondence. Find the minimum integer j such that 1 < j < s and {2j 
? 

1, 
2j} contains no blue element, i.e., it is either a black pair or a white pair. Then 

toggle the color of the pair. 

The solutions to this alternating sum depends on the size of m, the number of blue 
elements to be painted. If m < s, a toggle point always exists and our correspondence 
is a bijection, giving the following generalization of Identity 2. 

Identity 7. For 0 < m < s < n, 

P-or.*)-* 
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If m = s, the unmatched configurations are those in which each of the first s pairs 
contains at least one blue element. (Unlike the previous situation, we don't have to 

worry about generating too many black pairs.) All 2s of these unmatched configura 
tions belong to ?, and we get 

Identity 8. ForO < s <n, 

?<-<)<?:*)-* 
Lastly, if m > s, the unmatched configurations are again those in which each of the 

first s pairs contains at least one blue element. We convert the alternating sum into a 

positive sum by counting the configurations that are unmatched by the previous cor 

respondence. Such unmatched configurations have at least one blue element among 
each of the first s pairs (and therefore have zero black elements). For 0 < w < s, 
we claim that there are (* ) (^"^"O unmatched configurations where w of the first 
s pairs begin with a white element. To see this, note that once we choose which s 

pairs begin with a white element (which can be done (*) ways) then those w pairs 
must end with a blue element and the remaining s ? w pairs must begin with a blue 

element. The remaining m ? s blue elements can be chosen among the unspecified 
(s 

? 
w) + (2n 

? 
2s) = 2n ? s ? w elements in (2n~sSsw) ways. Since all of the un 

matched configurations belong to ?, we arrive at our final identity, which actually 

encapsulates Identities 7 and 8 too. 

Identity 9. Forallm,n,s>0, 

B-ot)(\->?(:)(2";:r> 
So starting from a single alternating binomial identity, a concrete counting context, 

and a good correspondence, eight related identities were explored by manipulating the 

roles of the parameters (and sometimes introducing new ones). The resulting identi 
ties were often beautiful generalizations?though occasionally the results didn't quite 

qualify as "simple" or "nice." Regardless, the questions were worth asking, the an 

swers worth exploring, and the connections worth making. We yawped. Did you? 
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