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Summing Cubes by Counting Rectangles 
Arthur T. Benjamin (benjamin@hmc.edu), Harvey Mudd College, Claremont, CA 

91711, Jennifer J. Quinn (jquinn@awm-math.org), Association for Women in Mathe 

matics, University of Puget Sound, Tacoma, WA 98416, and Calyssa Wurtz 

(wurcal@bethel.edu), Bethel University, St. Paul, MN 55112 

Here is a beautiful combinatorial problem for your next homework assignment: 

How many rectangles are contained in an m x n checkerboard? 

(Hint: There is an elegant four-line proof.) 

Many students will solve this problem by noticing that the number of i x j rectangles 
is (m + 1 ? 

/) x in 4- 1 ? 
j) and hence the number of rectangles is 

??m 
+ l-i)(n + l 

i=i j=i -?=(P)(P) 
m(m + 1) n(n + 1) 

When your students ask about the four-line proof, explain that a rectangle is 

uniquely determined by choosing four lines, namely two horizontal lines and two 

vertical lines, which can be done in 
("j'JC?') 

wavs- See Figure 1. 

(0,?) 

(0,0) 

(m,n) 

(*,0) 

Figure 1. Every rectangle is determined by the choice of four lines. 

But that's not the end of the story. As we'll see, we can apply this "checkerboard 

logic" to derive the famous formulas for summing squares and cubes. Recall that the 

sum of the first n cubes is ?*=i ^3 = 
O2 *) 

* Th*s formula can be proved by induction, 

telescoping sums, combinatorially [1], or geometrically [2]. Our four-line proof sug 

gests that we should be able to directly count rectangles on an n x n checkerboard and 
arrive at the same conclusion. But which rectangles are being counted by the k3 term? 

We claim that these rectangles have upper right corner (*, y) with largest coordinate k 

(i.e., max{jc, y] 
= k). Such a rectangle would lie inside a k x k rectangle but not inside 

a (fc 
? 

1) x (? 
? 

1) rectangle. See Figure 2. 

From our four-line proof, there are 

cry-CD' 
(k+ifk2 k\k -1)2 k2(i_~ (it -1)2) 

= k3 

such rectangles. But as combinatorial purists, we prefer to derive the k3 term directly? 

avoiding algebra altogether. After all, the algebra presented is enough to directly prove 
the identity by telescoping sums. 
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(O,?), 

y=k 

(n,n) 

(0,0) x=k (?,0) 

Figure 2. There are k3 rectangles with maximum coordinate k. 

Notice that there are k3 ordered triples (a, b, c) satisfying 0 < a, b, c < k. Each 

of these triples can be paired to a rectangle with upper right corner (x, y) having 
max{jc, y] = k as illustrated in Figure 3 and described below: 

If b < c, (a, b, c) is paired to the rectangle created from vertical lines x = a and 
x ? 

k and horizontal line y = b and y = c + 1. The maximum coordinate of this 

rectangle equals k and it occurs in the x -component. 
If b > c, (a, b, c) is paired to the rectangle created from vertical lines x = c and 
x = b, and horizontal lines y = a and y = k. Here the maximum coordinate equals 
k and it does not occur in the a:-component since c < b < k. 

y-k 
y~c+\ 

y=b 

(0,0) ̂ -^ x=* 

:*?) 

y-k 

y^a 

(0fi)^t???^-j?* 

ft?) 

Figure 3. The bijection between triple (a, b,'c) having 0 < a, b, c < k and rectangle having 
maximum coordinate equal k. 

This process is easily reversed, since every rectangle with maximum coordinate equal 
to k can be uniquely identified with a triple (a, b, c) depending on whether the maxi 

mum occurs in the x -coordinate or not. A similar approach to this identity was given 

by Stein [3] who algebraically showed that there are k3 rectangles with shorter side 

length equal to n + 1 ? k (for 1 < k < n). We leave the reader with this challenge: 
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For 1 < k < n, find a four-line proof to show that there are k3 rectangles on an 
n x n chessboard whose shorter side length is n + \ ? k. (Hint: How can you 

transform a rectangle with upper right corner (jc, y) having maxf*, y] = k into 
a rectangle whose shorter side length equals n + 1 ? 

k?) 

Next we obtain a three-line proof for the sum of the squares, ]?*=i k2. Notice that 

2("V) + CD 
= n(jl + Wn + ^/6 is the familiar closed form for this sum. We now 

ask this question: 

How many squares exist in ann x n checkerboard? 

On the one hand, for 1 < k < n, by considering the coordinates of the upper right 
corner, the number of k x k squares is (n + 1 ? 

k)in + 1 ? 
k). Hence the total number 

of squares is YlLi in + l-k)2 = 
??=1 k2. 

On the other hand, for every ordered triple (<z, b, c) with 0<a<b<c<n (there 
are 

("3l) 
of these), we create the square defined by the three lines x = a, y = b, and 

y = c. This generates all squares with lower left corner above the line y = x. Similarly, 
for the 

("3l) + (n+l) triples (<z, b, c) where 0 < b < a < c < w or 0 < b = a < c < n, 
we use the lines x = a, x = c, arid y = ?> to generate the remaining squares with lower 
left corner on or below the line y = x. (See Figure 4.) Hence the number of squares is 

2C,?1) + CI21)'asdesired 

w x=a (0,0) *^^^^~5 
Figure 4. Counting squares yields ??=1 A:2 = 

2(n+1) + ("+1). 

We conclude with the question of whether similar methods can be applied to sums of 

higher degree terms? We don't know?but we are counting on some reader to explore 
this question. 

Acknowledgment. Thanks to Shai Simonson and Tim Woodcock for ideas that led to the three-line proof pre 
sented here. Thanks to Eric Gossett for directing the Bethel University summer research project "Visualizing 

Combinatorial Proofs" and Phil Kaasa for his skill coding java applets. The results of this project can be viewed 

at (www.mathcs.bethel.edu/~gossett/vcp/). 
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