3-1-2000

A Rational Solution to Cootie

Arthur T. Benjamin
Harvey Mudd College
Matthew T. Fluet '99

Recommended Citation

Benjamin, Arthur T. and Matthew T. Fluet. "A Rational Solution to Cootie." The College Mathematics Journal, Vol 31, No. 2, pp. 124-125, March, 2000.

A Rational Solution to Cootie
Author(s): Arthur T. Benjamin and Matthew T. Fluet
Source: The College Mathematics Journal, Vol. 31, No. 2 (Mar., 2000), pp. 124-125
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2687584
Accessed: 11/06/2013 19:21

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The College Mathematics Journal.

CLASSROOM CAPSULES

EDITOR

Thomas A. Farmer

Department of Mathematics and Statistics Miami University
Oxford, OH 45056-1641

A Classroom Capsule is a short article that contains a new insight on a topic taught in the earlier years of undergraduate mathematics. Please submit manuscripts prepared according to the guidelines on the inside front cover to Tom Farmer.

A Rational Solution to Cootie

Arthur T. Benjamin (benjamin@hmc.edu), and Matthew T. Fluet (mfluet@hmc.edu), Harvey Mudd College, Claremont, CA 91711

A recent Classroom Capsule [1] described the game of Cootie and posed a question about the game's playing time. The authors used an infinite sum of four summations with complicated summand terms to answer this question. Here, we describe a simpler way to obtain an exact answer using only a finite number of calculations.

In Cootie, players race to construct a "cootie bug" by rolling a die to collect component parts. Players must first roll a 1 in order to acquire the body and then roll a 2 for the head. Once a player has both the body and the head, the remaining parts can be obtained in any order by rolling two 3 's for the eyes, one 4 for the nose, two 5's for the antennae, and six 6's for the legs. The previous article asked the question: what is the theoretical expected value of the number of rolls required to make a cootie?

The rules of Cootie naturally break an analysis of the playing time T into three parts:

$$
T=B+H+T_{2,1,2,6}
$$

where B and H denote the number of rolls to obtain the body and head, respectively, and $T_{2,1,2,6}$ is the number of rolls to subsequently obtain two 3 's, one 4, two 5 's, and six 6 's. Since $E[B]=E[H]=6$, we have, by the linearity of expectation,

$$
\begin{equation*}
E[T]=12+E\left[T_{2,1,2,6}\right] \tag{1}
\end{equation*}
$$

We calculate $E\left[T_{2,1,2,6}\right]$ by a recursive calculation that exploits the law of conditional expectation:

$$
\begin{equation*}
E[X]=\sum_{y} E[X \mid Y=y] P[Y=y] . \tag{2}
\end{equation*}
$$

For $a, b, c, d>0$, we let $T_{a, b, c, d}$ denote the number of rolls to obtain $a 3$'s, b 4's, c 5 's, and d 6's. To exploit (2), we condition on Y, the outcome of the first roll. Since
$P[Y=y]=\frac{1}{6}$, we obtain

$$
\begin{equation*}
E\left[T_{a, b, c, d}\right]=\frac{1}{6} \sum_{y=1}^{6} E\left[T_{2,1,2,6} \mid Y=y\right] . \tag{3}
\end{equation*}
$$

Next, we note that

$$
E\left[T_{a, b, c, d} \mid Y=1\right]=1+E\left[T_{a, b, c, d}\right]
$$

since an initial roll of 1 uses a roll and has not changed our situation. However, we note that

$$
E\left[T_{a, b, c,} \mid Y=3\right]=1+E\left[T_{a-1, b, c, d}\right]
$$

since an initial roll of 3 uses a roll and has changed our goal to rolling $a-13$'s, b 4 's, c 5's, and .d 6's. The other cases follow similarly. Solving (3) for $E\left[T_{a, b, c, d}\right]$ yields

$$
E\left[T_{a, b, c, d}\right]=\frac{6+E\left[T_{a-1, b, c, d}\right]+E\left[T_{a, b-1, c, d}\right]+E\left[T_{a, b, c-1, d}\right]+E\left[T_{a, b, c, d-1}\right]}{4} .
$$

Now, if a, b, c, or d is 0 , then $T_{a, b, c, d}$ reduces to a "smaller" problem. For instance, $T_{a, b, c, 0}=T_{a, b, c}$ denotes the number of rolls needed to obtain a rolls of one type, b of another type and c of a third type. Exploiting (2) by again conditioning on the outcome of the first roll, we can derive that

$$
\begin{aligned}
E\left[T_{a, b, c}\right] & =\frac{6+E\left[T_{a-1, b, c}\right]+E\left[T_{a, b-1, c}\right]+E\left[T_{a, b, c-1}\right]}{3} \\
E\left[T_{a, b}\right] & =\frac{6+E\left[T_{a-1, b}\right]+E\left[T_{a, b-1}\right]}{2},
\end{aligned}
$$

with the appropriate reductions to a "smaller" problem if a, b, or c is 0 . Finally, we have the trivial base case

$$
E\left[T_{a}\right]=6 a
$$

These calculations can either be carried out by hand (an arduous task requiring the calculation of 126 intermediate values) or through a computer program. A quick computer calculation yields

$$
E\left[T_{2,1,2,6}\right]=\frac{441357301}{11943936}=36.9524167745+.
$$

From (1) it follows that $E[T]=48.9524167745+$. We note that this value differs with the number calculated in [1]. In the vast majority of Cootie games, the legs will be the last body part completed. Thus it is not too surprising that $E\left[T_{2,1,2,6}\right]$ is only slightly bigger than 36 , the time required to get six 6 's. On the other hand, we were very surprised to notice that the expected number of rolls to get all of the 3 's, 4 's, 5 's, and 6's has a denominator equal to 3456 squared!
Acknowledgment. We thank Professor Janet Myhre and the Institute of Decision Sciences for supporting this research.

Reference

1. Min Deng and Mary T. Whalen. The Mathematics of Cootie. This JOURNAL, 29 (1998) 222-224.
