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An Alternate Approach to Alternating Sums: 
A Method to DIE for 
Arthur T. Benjamin and Jennifer J. Quinn 

Arthur Benjamin (benjamin@hmc.edu) received his PhD 
from Johns Hopkins University in 1989. He is a Professor of 
Mathematics at Harvey Mudd College, where he has taught 
since 1989. 

Jennifer Quinn Gjquinn@ u.washington.edu) received her 
PhD from the University of Wisconsin in 1993. She is a 
Professor of Interdisciplinary Arts & Sciences at the 
University of Washington, Tacoma, where she is building a 
mathematics curriculum on the expanding campus. 

Art and Jenny have written more than 20 research articles 

together, primarily on combinatorics. In 2006, their book 
Proofs That Really Count: The Art of Combinatorial Proof 
received the Beckenbach book prize from the MAA. 
Currently, they are co-Editors of Math Horizons magazine. 
They are both recipients of the MAA's Haimo Award for 
Distinguished College or University Teaching. 

Obsession and confession 

Some people think we are fanatics about combinatorial proofs. Ok, we admit it, we are. 
When we see an identity with a finite sum and an attractive closed form, we are not 
satisfied until we understand what the identity is counting. For example, the identity 
obtained by summing the nth row of Pascal's triangle, 

so-* 
counts the number of subsets of {1, 2,... , n] in two different ways. (The left side 
counts the number of subsets of each size k from 0 to n. The right side counts subsets 

by deciding, for each element, whether or not it is in the subset.) 
But what if the sum has negative entries? For instance, if you saw the sum 

?CH-<-<,> 
or a scarier looking sum (from a recent problem in this journal [5]) like 

??<-.>-(?:!)(r;)(TH 
would you be inclined to try to prove these by counting arguments? Probably not. 
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We confess that there was a time that when we saw alternating sum identities like 
the ones above, we would attack them with noncombinatorial proof techniques, like 
induction or generating functions. After all, how can an object be added a negative 
number of times? Perhaps it can be tackled using the Principle of Inclusion-Exclusion 

(abbreviated RLE.), but that brings another level of complexity to the combinatorial 

proof. But now we have an alternate opinion. Now when we see an alternating sum, 

we can usually prove it combinatorially with a method that is as easy as pie and even 
easier than P.I.E.! As we'll demonstrate, this technique offers new insights to identities 

involving binomial coefficients, Fibonacci numbers, derangements, and other combi 
natorial structures. 

Solution by involution 

We begin with an easy, but important, example. Consider the alternating sum of the 
nth row of Pascal's triangle, 

Combinatorially, this identity says that the number of even-sized subsets of 

{1,2,... , n] minus the number of odd-sized subsets of {1,2,... , n) is zero, that 

is, there are as many even subsets as odd subsets. For example, when n ? 4, we list 

the even subsets on the left and the odd subsets on the right. 

even odd 

~~0 T 
12 2 
13 3 
14 4 
23 123 
24 124 
34 134 
1234 234 

Can you find a rule that matches each subset X with its corresponding subset on the 
other side? Sure. Simply toggle the number 1: If a 1 is in X, take it out; if it's not in 

X, put it in. We call this corresponding subset X 0 1 (a shorthand for the symmetric 
difference of sets X 0 {1}). Note that the sizes of X and X 0 1 differ by ? 1. In general, 
since every subset X in {1, 2, ... , n} "holds hands" with a subset of opposite parity, 
namely X 0 1, this shows that there are equal numbers of subsets of even and odd 

parity. So the identity holds. 

The toggle function f(x) = X 0 1 is an example of a sign-reversing involution. 
An involution is a function / with the property that f(f(x)) = x, for all inputs x. An 
involution / is sign-reversing when x and f{x) are always given opposite signs in the 

alternating sum. The toggle function is an involution since (X 0 1) 0 1 = X for all 
subsets X, and it is sign-reversing since X and X 0 1 have opposite parity. In contrast, 
the involution that maps X to its complement in {1,2,... , n] is not sign-reversing 

when n is even. 
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Now for m, n > 0, consider the partial sum ]? =0 (?)(?1)*. Here, we are looking 
at all subsets of {1, 2, ... , n] that have at most m elements. Again we will try to pair 
up the even subsets with the odd ones using the function f{X) = X?1. This works 
fine except when f(X) has more than m elements (and therefore f(X) is undefined). 
These exceptions occur whenever X has exactly m elements and X does not contain the 

element 1. The number of ways this can happen is (n'ml), and each of these subsets has 
the same sign in the summation, namely (? l)m, since each exception has m elements. 

It follows that 

g(;>->'=<->"(v> 
as desired. 

The D.I.E. method 

Combinatorialist extraordinaire Doron Zeilberger sometimes refers to our last solu 
tion as a "killing involution," since every object X is annihilated in the summation 

by an object of opposite sign f(X), except for the survivors who did not participate 
in the involution revolution. Although we prefer the more peaceful hand-holding in 

terpretation, the acronym for our method is just as violent: D.I.E., which stands for 

Description, Involution, Exception. 

Description: Describe a set of objects that is being counted by the sum when we 

ignore the sign. 
Involution: Find an involution between the objects that are counted positively and the 

objects that are counted negatively in the sum. 

Exception: Describe the exceptions, where the involution is undefined. Count these 

exceptions and note their sign. 

For example, let's use the D.I.E. method to prove the following generalization of 

identity (1). For 0 < m < n, 

sex:)? 
Ignoring the sign factor, we see that for a fixed choice of k between 0 and n, 

(I) (m) 
answers tne question "From a class of n students, in how many ways can you 

choose a committee X of size k and then choose a committee Y of size m that is a 

subcommittee of XT Since the right side of the identity is zero, the challenge (the 
fun part) is to find a simple way to pair up each (X, Y) object with another object 
{X', Y') (where Y' is a size-m subset of X') so that the sizes of X and X' are of 

opposite parity. Can we toggle the number 1, like before, and pair up (X, Y) with 

(X0 1J)? Not quite. Consider what happens when we try with n = 10, k = 5, and 
m = 3. If (X, Y) = ({1,2, 3,4,5}, {2,3, 5}), then toggling with 1 gives (X0 \,Y) = 

({2, 3, 4, 5}, {2, 3, 5}). F is a subset of X 0 1 and the parity of the first subset changed 
from odd to even. So far so good. If (X, Y) = ({6, 7, 8, 9, 10}, {6, 8, 10}), then tog 

gling with 1 gives (X 0 1J) = ({1, 6, 7, 8, 9, 10}, {6, 8, 10}). Again, this poses no 

problems?everything works fine, provided 1 is missing from Y. But if (X, Y) = 

({1,3, 5, 7, 9}, {1, 5, 9}), then Y is not a subset of X 0 1 and our hope for a bijec 
tive involution is squashed. In general, when 1 is an element of Y (and therefore also 
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an element of X), Y is never a subset of X 0 1. So picking a fixed number like 1 to 

toggle with X does not create the desired pairing. However, since m is strictly less than 
n, there is at least one number missing from Y. This forms the basis of the following 
solution. 

Description: For a given value of k between 0 and n, (?)(*) 
counts ordered pairs 

(X, Y) such that Y c X ? {1, 2,... , n], \X\ = k, and \Y\ = m. So ?Lo (?)(*) 
counts all ordered pairs (X, Y) where Y ?. X, the size of Y is m, and the size of X 

ranges from zero to n. 

Involution: Given (X, Y), let x be the smallest element of {1, 2,... , n] such that x 
is not in Y. Then define the involution f(X, 7) = (X? x, Y). Note that since x is not 
in Y, Y remains a subset of X 0 x. 

Exception: Since m < n, the element x always exists, so the involution above is al 

ways defined. Thus there are no exceptions, the involution is a bijection, and the right 
side of the identity is zero. 

The D.I.E. method has a venerable history. It was first used by Fabian Franklin (in 
[3]) to provide an elegant proof of Euler's pentagonal number theorem. (See [6] for a 
nice expostion.) Franklin was one of the first graduate students trained in mathematics 
in the United States. As described in [7], his proof caught the attention of leading 
European mathematicians, and demonstrated to them that mathematicians trained in 
America were capable of contributing to research-level mathematics. 

Fibonacci, binomials, and polynomials 
Fibonacci numbers are ideally suited for combinatorial arguments. Defining /? = 

fn-i + fn-2 with initial conditions, f0 = fx = 1, it is easy to prove (as in [1], [2]) 
that fn counts the ways to tile alx? strip of length n with squares (of length 1) and 
dominoes (of length 2). For example, /4 = 5 counts the tilings given in Figure 1. 

MMMM JHI DU 
Figure 1. The Fibonacci number fa = 5 counts the 5 tilings of length 4. 

It has long been known that the partial sums of the sequence of Fibonacci numbers 
has a beautiful closed form (specifically J2l=o h = fn+i 

? 
1). Is the same true for the 

alternating sequence of Fibonacci numbers? Absolutely, and D.I.E. will show us the 

way. For n > 1, we show that 

?(-i)*/* 
= (-D"/-i 

Description: Since fk counts tilings of length k, YH=\ fk counts tilings of all positive 
lengths up to length n. 
Involution: What is the second easiest way to change the parity of the length of a 

tiling T, where T has length at most nl The easiest way would be to append a square, 
but that would not be an involution. Instead toggle the. last tile of T: If T ends in a 

square, turn that square into a domino; if T ends in a domino, turn that domino into a 

square. This is clearly an involution. 
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Exception: The only exceptions occur when T has maximum length n and ends in a 

square. In this case, toggling the last tile produces a tiling of length n + 1, which is too 

long for our consideration. The number of tilings of length n that end with a square is 

fn-\, and all of these tilings are assigned a sign of (?1)" in our summation (since they 
have length n). Hence, the right side of the identity is (?l)n/?_i, as desired. 

Delightful identities frequently occur when the involution is not a bijection. But 

keeping track of the exceptions can be a challenge. To further illustrate, we consider 
the previous alternating sum with the new twist of multiplying each Fibonacci number 

by its index. How can D.I.E. bring 

?(-i)**/t k=\ 

into the light? 

Description: For a given value of k between 1 and n, kfk counts tilings of length k 
where a coin is placed somewhere on top of the tiling, so there are k choices for the 
location of the coin. So YHc=\ kfk counts tilings of any positive length up to length n 

with a coin on top. 
Involution: Given a tiling T of length at most n, toggle the last tile as before (replace 
a final square with a domino or a final domino with a square) while preserving the 

position of the coin. 

Exception: Two types of exceptions occur: either T has the maximum possible length 
n and ends in a square or T has length k and ends in a domino with a coin above cell 
k. (In the latter case, toggling the last tile would result in the coin being suspended in 

mid-air.) There are nfn_\ exceptions of the first type (since the coin can go on any of 
the n cells). For exceptions of the second type we have, for 2 < j < n, fj_2 tilings of 

length j that end with a domino, each with a sign of (? l)-7'. This gives fo 
? 

fi + fi? 
+ (? \)n fn-2 exceptions of the second type. By the previous identity this reduces 

to 1 + (?l)n_2/n_3. Combining the number of exceptions of both types gives this 

identity: For n > 3, 

n 

J2(-Dkkfk 
= (-iyW?-l + fn-3) +1. 

Fibonacci numbers interact with binomial coefficients in many beautiful ways. Per 

haps the simplest of these comes from the sum of the diagonals of Pascal's Triangle 
(see Figure 2). 

The pattern is unmistakable: 

S("iV 
A quick combinatorial proof of this is based on the fact that the number of length-n 

tilings using exactly k dominoes is (n^k). To see why, note that such a tiling contains 
k dominoes and n ? 2k squares, and thus uses a total ofn ? k tiles. From these n ? k 

tiles, we choose k of them to be dominoes, which can be done in 
(n~kk) ways. (We 

note that when k exceeds n/2, (n~?k) 
= 0, which makes sense combinatorially, since 

the number of dominoes is at most n/2.) 
Now consider the alternating sum ̂ 2k>0(? l)k(n~^k). 
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Figure 2. Diagonal sums of Pascal's Triangle. 
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Figure 3. Diagonal alternating sums of Pascal's Triangle. 

Here the data (see Figure 3) suggest that the right-hand side is always 0, 1, or 
? 1. 

Combinatorially, this suggests that the number of length-n tilings containing an even 
number of dominoes is about the same as the number containing an odd number of 
dominoes. Given a length n tiling T, how can we change the parity of the number 
of dominoes without changing the length of Tl If T begins with a domino, we can 

replace the initial domino with two squares. Likewise, if T begins with two squares, 
we can replace them with a domino, as illustrated in Figure 4. 

But what if T begins with sd, a square followed by a domino? Then we ignore these 
two tiles and look at what happens next. That is, if the tiling begins sdd, we replace 
that string with sdss, and vice versa. Now we are covered unless the tiling begins sdsd 
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Figure 4. We can toggle an initial domino with an initial pair of squares. 

(abbreviated (sd)2), in which case we look at what happens after that. Continuing in 
this way, we arrive at this identity: For n > 0, 

0 ifn = 2or5 (mod 6) 
1 if n == 0 or 1 (mod 6) 

-1 ifn = 3or4 (mod 6). 

Description: For a given value of k, (n~k) counts square-domino tilings of length n 

with exactly k dominoes. So J2k>o (n~?k) 
counts all tilings of length n. 

Involution: Let T be a tiling of length n. If T begins with exactly j > 0 square 
domino pairs, then we write T = (sd)jU, where U is a tiling of length n ? 3j that 
does not begin with sd. If U begins with a domino, then replace that domino with two 

squares; if U begins with two squares, then replace these two squares with a domino. 
This involution changes the number of dominoes by ?1. 

Exception: There is at most one exception, which occurs when U is empty or contains 
a single square, depending on the value of n (mod 3). Here T = (sd)ln/3* or T = 

(sd) Ln/3J5. Notice that if n = 2 (mod 3) (that is, n = 2 or 5 (mod 6)), then no exceptions 
are possible. If n == 0 or 1 (mod 6), say n = 6t or 6t + 1, then the sole exception, 
either T = (sd)2t or (sd)2ts, contains 2t dominoes. This exceptional tiling contains 
an even number of dominoes and as such contributes +1 to the alternating sum. If 
n = 3 or 4 (mod 6), say n = 6t + 3 or 6t + 4, then the sole exception, T = (sd)2t+1 
or (sd)2t+ls, contains 2t + 1 dominoes. Here the exceptional tiling contains an odd 
number of dominoes and contributes ?1 to the alternating sum. 

Now consider the similar-looking polynomial identity 

?(-!)*(" 7 k)(xy)k(x 
+ y)n-2k = 

?>"-V, (2) 

presented in [9] by algebraic arguments. Since both sides of (2) are polynomials, veri 

fying the equality for all nonnegative integer values of x and y is sufficient to prove the 

identity. We will modify the previous D.I.E. argument?giving combinatorial meaning 
to the indeterminants x and y. 

Description: Given nonnegative integers x, y, and k, (n~?k)(xy)k(x + y)n~2k counts 

square-domino tilings of length n with k dominoes (and n ? 2k squares) in which each 
tile is painted with one of x light colors or one of y dark colors as follows: Squares 
can be painted with any of the x + y colors. The left half of a domino is painted one 
of x light colors and the right half is painted one of y dark colors, so a domino can 
be painted xy ways. The sum J2k>o (n**)(*30*(* + y)n~2k counts all square-domino 
tilings of length n subject to the tile painting restrictions using x light and y dark 
colors. 

*>0 \ K / 
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Involution: Scan the tiling from left to right until you encounter a domino or a light 
square followed immediately by a dark square. If a domino occurs first, transform it to 
a light square-dark square combination by chopping the domino down the middle; if 
a light-dark pair of squares appears first, transform them to a domino by gluing them 

together. This process is clearly reversible and changes the parity of the number of 
dominoes in the tiling. 
Exception: The exceptions are those tilings with no dominoes consisting of j dark 

squares followed by n ? j light squares, for some j > 0. There are 
J2j>0xn~jyj 

such 

tilings, all of which are counted positively since they contain no dominoes. 

RLE. can D.I.E.! 

Alternating sums arise in combinatorial problems solved using the Principle of 
Inclusion-Exclusion (RLE.) as described in every combinatorics textbook. For in 
stance, the number of onto functions from an m-element set to an n-element set is 

given by 

f(m, n) = nm- n(n 
- 

l)m + 
("\n 

- 
2)m 

- 
("Xn 

- 
3)m + 

where the first term in the sum counts all functions from {1,2,... , m} to {1, 2,... , n] 
with no restrictions. From this, we subtract those functions that do not hit element 1 

(there are (n 
? 

l)m of these), as well as those functions that miss 2, those that miss 
3, up to those that miss n. But we need to add back those functions that miss 1 and 2 

(there are (n 
? 

2)m of these), and so on. 
But this can also be proved using D.I.E. just as easily. 

Description: Given k,m,n > 0, (nk)(n 
? 

k)m counts the ways to select a ^-element 
subset X ? {1,2,... , n} and then create an ra-letter word Y from the elements of 

{1,2,... , n] 
? 

X. For example, if n = 9, m = 
6, and k = 2, a typical object is 

(X, Y) = ({2, 8}, 314159). The unsigned sum, ?Lo (nk)(n 
- 

k)m, counts all pairs 
(X, Y) where X is any subset of {1, 2, ... , n} and Y is an ra-letter word created from 
elements in the complement of X. 
Involution: Given (X, Y) let x be the smallest number in {1,2,... , n} that does 
not appear in Y. Match (X, F) to (X 0 x, Y). Y is also an m-letter word made 
from the elements of {1, 2, ... , n) 

? 
(X 0 x) and x is still the smallest element of 

{1,2,... , n] missing from Y. Furthermore, the size of X 0 x differs from the size of 
X by ?1. (Our example ({2, 8}, 314159) has x = 2 and k = 2, and it will be matched 
to ({8}, 314159), which has x = 2 and k = 1.) 
Exception: The involution fails when no elements of {1, 2, ... , n} are missing from 
Y. This requires X to be the empty set and Y to contain every letter from {1,2, ... ,n}. 
There are f(m, n) such exceptions, and since k = 0 for these, each of them is counted 

positively. 

Another classical application of RLE. is counting the derangements of {1, 2, ... , n], 
the number of ways to arrange the integers 1 through n so that no integer lies in its 
natural position, that is, 1 is not first, 2 is not second, and so on. We let Dn denote the 
number of derangements of {1, 2, ... , n}. As is well known to all RI.E.-lovers, 
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Here we present a simple proof using D.I.E. 

Description: Given nonnegative integers k < n, || counts (n 
? 

A:)-letter words cre 
ated from elements of {1, 2,... , n] where no letter is repeated. For n = 9, a typical 
word might be X = 497 (when k = 6) or X = 314592687 (when k = 0). The unsigned 
sum J2t=o f| 

coimt:s all words created from {1,2,... , n} without repetition (including 
the empty word). 
Involution: Given a word X of length n ? ?, we pair it with a new word X' as follows. 
Let ?(X) be the smallest number that is either absent from X or in its natural position. 
If ? (X) is absent from X, then insert ? (X) in its natural position. If ? (X) is in its natural 

position, then remove it from X. The lengths of X and X' differ by one and ?(X) = 

? (XO since neither action can result in a number smaller than ?(X) moving into its 
natural position. For example, ?(497) = 1, so 497 is paired with 1497; f (3145) = 2, 
so 3145 is paired with 32145; and ?(314592687) = 8, so 314592687 is paired with 
31459267. 

Exception: The only exceptions occur for those words X where f(X) does not exist. 
These words have no missing numbers (so X has length h) and no number is in its 
natural position. Hence there are Dn exceptions, and since each has length n (so k = 0), 

they are counted positively in the summation. 

Indeed, the Principle of Inclusion-Exclusion itself can be proved using D.I.E. Given 
a set of objects S, and a set of (undesirable) properties P\, P2, . . . , Pn that some of the 

objects in S possess, RLE. says that the number of objects in S with no undesirable 

properties is 

? (-i)|7V(r), 
r?{i,2,...,Az} 

where f(T) is the number of objects that have all of the properties Pj for j in T, 
and possibly other properties as well. For example, in the derangements problem, S 

is the set of all permutations of {1, 2, ... , n} and a permutation has property Pj if 

the number j is in its natural position. Here /({2, 3, 5, 8}) = (n 
? 

4)! counts those 

permutations where the numbers 2, 3, 5, and 8 (and possibly others too) are in their 

natural positions. 
We now prove RLE. by D.I.E. 

Description: Given a subset T of {1, 2, ... , n}, f(T) counts the objects of S that 

satisfy all the properties Pj for j in T (and possibly other properties as well). We can 

think of the unsigned sum 
X!rc{i 2 n}/(^)as counting ordered pairs (X, Y) where 

X is a subset of {1, 2, ... , n] and Y is any object satisfying all of the properties Pj for 

j in X. 
Involution: Given (X, Y), let x be the smallest-indexed property that Y possesses. 
Then we associate (X, Y) with (X 0 x, Y). 
Exception: The exceptions occur whenever x does not exist, that is, when Y has none 

of the n properties Pi through Pn. These exceptions come from ordered pairs (X, Y) 
where X is the empty set. Since the empty set has even size, the summation positively 
counts the objects in S with no undesirable properties. 
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What happens after you D.I.E.? 

Applying the D.I.E method to prove an identity often leads to generalizations that are 

not immediately obvious. It's important to keep an open mind?not only about the 

role of particular parameters, but in using the method itself. We show how to prove 
and then extend in a natural way the identity 

?i>^C::)(;::)Cr) 
mentioned at the beginning of the paper. This will require a modification of our tech 

nique, where we analyze repeated involutions (the method of D.I.E.I.E.?) to obtain the 

extremely attractive solution. 

Description: Given positive integers j, k < n, (nZ\)(nkZ\)(J+k) 
counts ordered triples 

(X, Y, Z) where X is a 7-subset of {1,2,... , n} that must contain 1, Y is a /c-subset 
of {n + 1, ... , 2n} that must contain n + 1, and Z is a subset of X U Y with \Z\ = 

\X\. The unsigned sum E;=i ELi ?lDCl?H"7']"*) 
counts a11 such ordered triPles 

(X, Y, Z) as the sizes of X and Y vary between 1 and n. 
Involution (Part I): Given a triple (X, Y, Z), define y to be the largest number be 
tween n + 2 and 2n such that y does not appear in Z. The mapping that sends (X, Y, Z) 
to (X, Y 0 y, Z) is a sign-reversing involution, since j is unchanged and k increases 
or decreases by 1. Note that Z remains a subset of X U (Y 0 y). 
Exception (Part I): The involution fails when y does not exist. This requires Z to 
contain all the elements n + 2, ... , 2n. Therefore the exceptions (X, Y, Z) must sat 

isfy Y = 
[n + 1, n + 2, ... ,2ft}. 

Involution (Part II): Given a triple (X, F, Z) that has survived as an exception in Part 

I, define x to be the largest number between 2 and n such that x either appears in both X 
and Z or is absent from both X and Z, that is, x e (X n Z) U (Xe H Zc). Pair (X, y, Z) 
with (X 0 x, Y, Z 0 jc). Since Z ? X U y, it remains true that Z0xC(X0jc)uy 
and |Z0jc| = |X0jc|. 
Exception (Part II): If |X| < ft, then the involution above is always defined since 
there is one element x, 2 < x < ft, that is missing from X and is therefore missing 
from Z too. Hence the only exceptions occur when |X| = n, forcing X = {1, 2, ... , n) 
and \Z\ = |X| = n. Thus the only remaining exceptions are of the form (X, Y, Z) = 

({1,2,... , n}, [n + 1, n + 2, ... , 2ft}, Z) where Z contains the elements n + 2, ? + 

3, ... , 2n, and one other element. That element could be either 1 or n + 1, and these 

provide the only two exceptions. Both survivors are weighted positively since j + k = 

2n and so is even. 

In the preceding analysis, elements 1 and n + 1 represented the guaranteed mem 
bers of X and Y respectively. There is no reason to believe we are restricted to speci 
fying only one member of each set. Why not two? three? Why not specify a members 
of X and b members of y ? Originally, X and Y were selected from disjoint sets of size 
ft. Did they have to be the same size? Why not choose X from an ft-set and Y from 
an ft?-set? With very little additional effort, you can modify the above description, 
involutions, and exceptions to obtain the following generalization: 

?t>^n)(:::)erK-:u 
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Although this identity (and indeed, all of the indentities in this paper) can be proved 
by algebraic or computational methods (as described in [4] or [8]), we find the D.I.E. 

approach offers the most satisfying explanation. 

Summing up: Why alternating sums are simpler than 

positive sums 

Although alternating sums may on the surface appear to be harder to explain combi 

natorially than positive sums, our experience has been the opposite. Given a positive 
sum with a simple closed form, we have found that the alternating version of that sum 

usually has a simple (and often simpler) closed form too. For example, YH=o ? 
= 2n 

is simple, but the alternating version has the simpler closed form ]C*=o(~~l)*? 
= ? 

The nonexistence of a simple closed form for the partial sum XT=o ? (as a function 
of ra) can be established by Gosper's algorithm [8], yet the alternating version of that 
sum is no trouble at all. 

Why should alternating sums be simpler than positive sums? Although we don't 
have a rigorous answer to that question, the idea shows up in other areas of mathe 
matics. From the analysis of infinite series, we know that if a positive sum converges, 
then its alternating sum must also converge but the converse is not true. From linear 

algebra, we know that the permanent of an n x n matrix is usually hard to calculate (re 

quiring about n\ steps), whereas its alternating sum, the determinant can be computed 
efficiently (in about n2 steps) and it has many nice theoretical properties. 

Another explanation why alternating sums are often simpler comes from an identity 
due to Euler. For any polynomial p(x) of degree less than n, 

Anp(x) = 0, 

where Af(x) = f(x + 1) 
? 

f(x). (Euler's theorem can be proved easily by induction 

since Anf(x) = An~l(Af(x)) and Af(x) is a polynomial of degree less than n ? 1.) 
Some of the sums in this paper can be proved using this method. 

But from the standpoint of combinatorics, we think that the reason alternating sums 

are easier than non-alternating sums boils down to this: 

Matching is easier than counting. 

Acknowledgment. Special thanks to Doron Zeilberger for his helpful suggestions. 
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Mathematics in War and Peace 

Arthur Neuman, River Falls, Wisconsin 

In his monumental work War and Peace, first published in the Russian Messenger from 1865 

to 1869, Leo Tolstoy invoked concepts from mathematics and logic in developing his theory 
of history. Here are some excerpts [1, pp. 821-822]: 

The movement of mankind, proceeding from a countless number of human wills, occurs 

continuously. To comprehend the laws of this movement is the goal of history. But in 

order to comprehend the laws of continuous movement of the sum of all individual 

wills, human reason allows for arbitrary, discrete units. The first method of history 
consists in taking an arbitrary series of continuous events and examining the actions of 

one person, a king, a commander, as the sum of individual wills, whereas the sum of 

individual wills is never expressed in the activity of one historical person .... 

Any conclusion of historical science, without the least effort on the part of criticism, 
falls apart like dust, leaving nothing behind, only as a result of the fact that criticism 

selects as an object for observation a larger or smaller discrete unit, which it always has 

a right to do, because any chosen historical unit is always arbitrary. 

Only by admitting an infinitesimal unit for observation?a differential of history, 
that is, the uniform strivings of people?and attaining to the art of integrating them 

(taking the sums of these infinitesimal quantities) can we hope to comprehend the laws 

of history. 

Tolstoy goes on to use Zeno's paradox to illustrate the dangers inherent in dividing contin 

uous movement into discrete times. Considered a paradox by the ancients, thanks to infinite 

series in the present-day mathematician's tool box, it is no longer thought to be such. 

A well-known so-called sophism of the ancients posits that Achilles can never overtake 

a tortoise that is walking ahead of him, even though Achilles walks ten times faster 

than the tortoise: while Achilles covers the distance that separates him from the tor 

toise, the tortoise will get ahead of him by one tenth of that distance; Achilles covers 

that one tenth, the tortoise gets ahead by one hundredth, and so on to infinity. The an 

cients considered this problem insoluble. The nonsensical conclusion (that Achilles will 

never overtake the tortoise) resulted only from the fact that discrete units of movement 

were introduced arbitrarily, while the movement of both Achilles and the tortoise was 

continuous. 

Having thus illustrated the futility of a theory of history that considers either an arbitrary 
series of discrete events or sum of individual wills of a king or commander, Tolstoy mentions 

the calculus, without naming it. 

A new branch of mathematics, having attained to the art of dealing with infinitesimal 

quantities in other, more complete problems of movement as well, now gives answers 

to questions that used to seem insoluble. 

This new branch of mathematics, unknown to the ancients, in examining questions 
of movement, allows for infinitesimal quantities, that is, such as restore the main con 

dition of movement (absolute continuity), and thereby corrects the inevitable error that 

human reason cannot help committing when it examines discrete units of movement 

instead of continuous movement. The same happens in the search for the laws of his 

torical movement. 
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