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Recounting Fibonacci and Lucas Identities 

Arthur T. Benjamin and Jennifer J. Quinn 

Arthur Benjamin (benjamin@nriath.hnric.edu) earned his B.S. 
in Applied Mathematics from Carnegie Mellon and his Ph.D. 
in Mathematical Sciences from Johns Hopkins where he 
studied discrete optimization under Alan J. Goldman. Since 
1989, he has taught at Harvey Mudd College, where he is 

currently an associate professor. He is editor of the Spectrum 
book series for MAA, and an Associate Editor of Mathematics 

Magazine. He was recently awarded the MAA's Haimo Award 
for distinguished college teaching. 

Jennifer Quinn (jquinn@oxy.edu) is an Associate Professor 
of Mathematics at Occidental College in Los Angeles. She 
earned her degrees from Williams College, University of 
Illinois, Chicago, and the University of Wisconsin, Madison 

continually moving the "Quinn family center of gravity" west. 
Her primary research interests are combinatorics and graph 
theory. Lately she has been having great fun hosting The 
Number Years, a mathematical game show co-created with 
Occidental graduate Eric Libicki and Art Benjamin. 

Behold, the Fibonacci numbers 0,1,1, 2,3,5,8,13, 21,34, 55,... defined recursively 
as ^0 = 0, F1 = 1, and for n greater than or equal to 2, Fn,= Fn_1 + Fn_2. This 

sequence of numbers has intrigued and inspired mathematicians for centuries 

[10,11]. Less well-known but close companions to the Fibonacci numbers are the 
Lucas numbers 2,1,3,4,7,11,18,29,47,76,123,... which satisfy the same recur? 
rence relation starting with different initial conditions. Here Z0 = 2, Lx = 1, and for n 

greater than or equal to 2, Ln = Ln_1 + Ln_2. 
Pattern seekers are drawn to the connections within and between these two 

number sequences. In this paper, we will explore some of our favorites: 

(i) 

(2) 

(3) 

(4) 

(5) 

(6) 

77 = 77 77 I 77 77 rm + n m + 1 n m n ? 1 

1 = F 1 + F 1 

A*-i"?~ fyi+i Ln 

F L x n n 

^ = ^-1^+1+(-1)' 

All of these identities can be proved using algebraic means (induction, generating 
functions, determinants, hyperbolic functions, and so on) [10]. While these tech? 

niques are valid, they can be less than illuminating. In contrast, combinatorial 

arguments view an identity as a story which can be told from two different points of 
view. Each side recounts the stoiy in a different but accurate way. 

VOL. 30, NO. 5, NOVEMBER 1999 359 

This content downloaded from 134.173.130.46 on Mon, 10 Jun 2013 17:31:05 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


We present several combinatorial interpretations of Fibonacci and Lucas numbers 
and their connections. Using one of these interpretations (tiling), many Fibonacci 
and Lucas identities practically reduce to "proofs without words" [7]. For your 
enjoyment, we present our favorites in a concrete combinatorial fashion. 

Combinatorial Interpretations 

We begin with different interpretations of Fibonacci numbers. 
Let an denote the number of length n binary sequences with no consecutive O's. 

Then an satisfies the recurrence an = an_l + an_2 since any such sequence 
beginning with 1 can be extended in an_1 ways and a sequence beginning with 0 
must be followed by 1 and can be extended in an_2 ways. Thus an grows like the 
Fibonacci numbers. Since a0 = 1 = F2 and ax = 2 = F5, we have an = Fn+2 for all n 

greater than zero. 
For a graph theoretic interpretation of Fibonacci numbers, let bn denote the 

number of ways to select a subset of nonadjacent vertices from a path on n vertices 

(Figure 1). Such a subset of vertices is called an independent set. Notice bn_2 and 

bn_1 count the number of independent subsets that do and do not contain the first 

point on the path, respectively. Thus bn also satisfies the Fibonacci recurrence. 

Again b0 = 1 and bx = 2, so bn = Fn+2 = an for n greater than or equal to zero. A 
natural correspondence exists between these two representations. Independent sets 
of vertices correspond to the O's in the binary sequences. The selected subset from 

Figure 1 will correspond to the sequence 0110101101. 

i)-?-?-(+i-?-??+- 
?l u2 ?5 L/A ?5 l/6 vl l/8 ?9 ?10 

Figure 1. A path on 10 vertices with independent vertex set v1, v4, v6, and v9. 

If we let cn denote the number of series of l's and 2's that add to n, then q = 1 
and c2 = 2. By conditioning on the first number in our sum, we see that cn = cn_1 
+ cn_2. Therefore, cn = Fn+1. There is a natural correspondence between cn+1 and 

bn. For a given series of l's and 2's that add to n + 1, associate the subset of vertices 
whose indices are not partial sums of the series. For example, the series 2 + 1 + 2 
+ 2 + 1 + 2 + 1 = 11 has partial sums 2, 3, 5, 7, 8, 10, and 11, yielding the 

independent set vv v4, v6, v9 in Figure 1. 
Our primary focus will be on the number of ways to tile an n-board, a 1 X n 

checkerboard with cells labelled 1,2,..., n. Let /? denote the number of ways to 
tile an n-board with 1X1 squares and 1X2 dominoes. Associating each square 
with a 1, and each domino with a 2, we see fn = cn. See Figure 2. Hence, 

Jn rn+i? 

cells 123456789 10 11 

Figure 2. The tiling associated with the series 2 + 1 + 2 + 2 + 1 + 2 + 1 = 11. 
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This representation leads to elegant combinatorial interpretations of Fibonacci 
number identities. For example, identity (l) (after replacing n with n + l) becomes 

Jm + n JmJn * Jm ? lJn ? l ' 

The left side of this identity counts the number of ways to tile a length m + n board. 
To interpret the right side, we notice that tilings come in two varieties: either they 
can be separated into a length m tiling followed by a length n tiling, or they 
cannot. There are /,?/? tilings of the first type. Tilings of the second type must 
contain a domino covering cells m and m + 1. The remaining board can be covered 

fm-lfn-l WaYS- 
Combinatorial identities can be generated by conditioning on different events. 

The previous proof conditions on whether or not a tiling can be separated 
immediately following the mth cell. The identity 

n ? k 
f?= ? 

k = 0 \ 

simply reflects the fact that the number of tilings of an n-board using exactly k 

dominoes (and hence n ? 2 k squares) is (n ~2, ? For other tiling proofs of 

Fibonacci identities, see [2, 3, 5,6]. 
Now we turn our attention to Lucas numbers. As was shown in [8] and [9], Lucas 

numbers act just like Fibonacci numbers running in circles. 
Let An denote the number of length n circular binaiy sequences with no 

consecutive O's (see Figure 3). The length 2 and 3 circular sequences are 01, 10, 11, 
011, 101, 110, and 111. So A2 = 3 = L2 and A5 

= 4 = Z3. To prove that An = Ln, we 
show that An satisfies the same recurrence relation. We condition on the first digit. 
A circular sequence beginning with 1 can be completed in an_l = Fn+1 ways. A 0 
must be surrounded by l's, so that a circular sequence beginning with 0 can be 

completed in an_5 
= Fn_l ways. Thus An = Fn + 1 + Fn_l, which obviously satisfies 

the desired recurrence. Hence for n>2, An = Ln and identity (3) is proved along 
the way. 

l 
o 

o 
l 

l l 

1 o 
o 1 

Figure 3. The circular binaiy sequence 0110101101 with no consecutive O's. 

Analogously, let Bn denote the number of independent sets in a cycle graph with 
n vertices. Just as before, Bn = An = Ln, since independent sets of vertices corre? 

spond to the O's in the binaiy sequences. This is illustrated in Figure 4. 
Let Cn denote the number of series of l's and 2's that sum to n with the end point 

restriction that it may not begin and end with a 2. By conditioning on the first term, 
we obtain Cn = cn_x + cn_5 =Fn+ Fn_2 = Ln_x. 

As you might expect, we let ln denote the number of ways to tile a circular lXw 
board with squares and dominoes (objects of length 1 and 2 respectively). Cells are 
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Figure 4. Cycle on 10 vertices with independent set v1, 
circular sequence given in Figure 3. 

v4, v6, and v9 corresponding to the 

labelled 1 through n and a tiling is called an n-bracelet. See Figure 5. An n-bracelet 
is out of phase if the same domino covers cells n and 1. Otherwise the n-bracelet is 
in phase. The number of in phase n-bracelets is fn = Fn + x and the number of out of 

phase n-bracelets is /?_ Hence ln=Fn + 1 + Fn_l = Ln. 

Circular 10-board In phase Out of phase 

Figure 5. Illustrations of a circular 10-board, an in phase 10-bracelet and an out of phase 
10-bracelet. 

Using this interpretation, we provide a combinatorial proof for identity (2), 
luivalent to equivalent to 

I rn + n Jm ̂ n "? J m -l^n-1 ' 

For a given bracelet, we say the break point occurs along the right edge of the tile 

covering cell 1. To prove the above identity, we partition the lm+n (m + n)-bracelets 
into two cases: those that have a length m string of tiles immediately following the 
break point, and those that do not. The number of tilings in the first case is lnfm 
(start with an n-bracelet and insert a length m string after its break point). The 

remaining (m + n)-bracelets are obtained by taking an (n ? l)-bracelet and insert- 

ing a length m ? \ string plus a domino after its break point. There are ln_1fm_1 
bracelets of this type. 

Here's a quick proof of identity (5), equivalent to 

Jn-l hi =J2n-l ? 

For every tiling of a (2 n ? l)-board we generate a unique pair (7*, B) where T is an 

(n? l)-board tiling and B is an n-bracelet. If cells n and n + 1 are covered by a 
domino D, let T be created by the tiles covering cells 1 through n?1 and let B 
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(T: 
1 n - 1 

nn + l 2n-l 

-OR- 

n n + l 2 n ? 1 

r T: 

B: 

1 ? - 1 

Figure 6. Combinatorial proof that f2n-\ =fn -ihi- 

be the out of phase bracelet created from the remaining tiles, placing D over cells 
n and 1. See Figure 6. Otherwise let T be created by the tiles covering cells n + l 

through 2 n ? 1 and let B be the in phase bracelet created by the tiles covering cells 
1 through n. This process is clearly reversible since the phase of the bracelet 

uniquely identifies whether it is generated by the first or second case. 
While the last proof established a one-to-one correspondence between two sets 

of tilings, identity (4), (after replacing n with n + l), which is equivalent to 

^n ~T~ ̂n + 2 = 5Jn, 

will be established by a five-to-one correspondence. For an n-board tiling T, we 

generate five distinct bracelets of size n or n + 2. As Figure 7 illustrates, the first 

T-. 

Bx: 

Figure 7. From a tiled n-board T, create an in phase n-bracelet and 3 distinct (n + 2)- 
bracelets. 
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four bracelets are: 

Bx\ In phase n-bracelet obtained from T by gluing cells n and 1 together. 
B2: In phase (n + 2)-bracelet obtained by placing squares on cells 1 and 2, 

followed by T. 
In phase (n + 2)-bracelet obtained by placing a domino on cells 1 and 2, 
followed by T. 
Out of phase (n + 2)-bracelet obtained by placing a domino on cells n + 2 
and 1, followed by 7*. 

At this point in our construction, there are only two types of bracelets that have not 
been accounted for, namely: out of phase n-bracelets and in phase (n + 2)-bracelets 
that begin with a square followed by a domino. Our last bracelet B5 will depend on 
whether T ends with a square or domino. See Figure 8. 

B, 

BA 

-OR- 

B*: 

Figure 8. The fifth bracelet created from T depends on whether T ends with a domino or a 

square. This completes the five-to-one correspondence to prove ln + ln + 2 = 5fn. 

B5: If Tends with a domino, then B5 is the out of phase n-bracelet obtained by 
rotating the tiles of Bx clockwise one cell. 

If T ends with a square, then B5 is the in phase ( n + 2)-bracelet obtained by 
rotating the tiles of B5 clockwise one cell. 

This completes the desired five-to-one correspondence. 

Simultaneous Tilings 

At first glance, identity (6) does not look amenable to combinatorial interpretation 
due to the presence of the ( ?1);/. An approach using simultaneous tilings and 
induction was successfully used in [6]. Here we draw a more direct connection by 
exhibiting an almost one-to-one correspondence which does the trick. 

In this section, it will be convenient to establish a descriptive notation for tiling an 
n-board. We shalMet deise2dGiseA ??? denote the tiling beginning with e1>0 
dominoes, followed by e2>l squares, then e5>l dominoes, and so on, where 

2el + e2 + 2^ + eA + ??? = n. For example, the tiling in Figure 2 is dsd2sds. 

By the standard transformation, identity (6) becomes 

Jn =Jn-lJn + l "? V 
~~ 

V ' 

The left hand side of our identity counts the number of ordered pairs (A, B), where 
A and B are both tilings of n-boards. The fl_1fn+1 term on the right hand side 
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counts the number of ordered pairs (A, B'), where A and B' are tilings of an 

(n?l)-board and an (n + l)-board, respectively. Given a simultaneous tiling 
{A, B) not equal to an all-domino tiling, there exists a unique k, 0 < k < n/2, such 
that the first k tiles of both A and B are dominoes, but the k + 1st tile of A or B is 
a square. See Figure 9. Suppose the k + 1st tile of A is a square, then A = dksa 
where a is a tiling of length n ? 2 k ? 1, and B = dkb, where b is a tiling of length 
n ? 2k. Here we associate the pair {A, B'), where A = dka and B' = dksb. On the 
other hand, if the k + 1st tile of A is a domino, then A = dk+1a where a has length 
n ? 2k? 2, and B = dksb, where ?> has length n ? 2k? 1. In this case, we 
associate the pair (A, Bf), where A = dksa and B' = dk+1 b. Notice that for both 

(A, B) and (A, Bf), the first square occurs in cell 2& + 1, i.e., k is preserved in our 

mapping. The reverse mapping is constructed by essentially letting Bf play the role 
of A and A play the role of B. When n is even, the pair (dn/2, dn/2) has no first 

square, and is therefore not paired up with any (A,B'). Thus, for even n, 

fn =fn-\fn+\ + 1- When n is odd, then (A, B) necessarily has a first square, but 
will never be paired with (d{n~l)/2, d(n+1)/2). Thus, for odd n, f2 =fn-1fn+1 

- 1. 

Case 1: 

A': 

B'\ 

A': 

B': 

Figure 9- To prove f2 =fn~ifn + i +(~l)n, we draw an almost one-to-one mapping be? 
tween n-board tiling pairs and pairs of (n ? l)-board and (n + l)-board tilings. 

It is not surprising that there exists an analogous Lucas version of identity 6. 

Using a similar argument, one can show that 

/2 = '*-i'*+i+(-l)"-5. 

For a combinatorial proof of this and more general identities see [3]. 

Concluding Remarks 

So where do you go from here? We have merely scratched the surface of the 
numerous Fibonacci and Lucas identities that exist. More complicated identities can 
be proved combinatorially by introducing colored tilings or binary sequences [2, 3]. 
What about other Fibonacci-like sequences such as 5, 9, 14, 23, 37, 60,... ? We can 
show that the nth term of this sequence counts the number of Fibonacci tilings of 

length n that can begin with either a domino in five possible phases or a square in 
nine possible phases. This leads to combinatorial proofs for generalized Fibonacci 
identities [3]. 

We leave the reader with some open questions. Can tilings be used to explain 
identities involving other recursively generated sequences? Can tilings with different 
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objects or on different surfaces be used to discover further identities? Are there 
combinatorial interpretations of Fibonacci identities which use real numbers such as 

Fn= \\2 ) 
~ 

\~2 j K^? ^NCWS ^^ YCS! SeC ^ ReCently' tilin? haS 

even been used to "explain" continued fraction identities [4].) The possibilities are 

practically uncountable. 
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Approximating Volumes 

From page 40 of Catalog A-20 (no date) from Paradise Water 

Gardens, 14 May Street, Whitman, Massachusetts 02382: 

Important Information 

Formula for calculating number of gallons of water contained in 
a pool. Because most pools are irregular, the capacity will be 
+ or - based on various contours within a rectangle or square 
(in gallons). 

Depth X length X width X 7.5 gallons. 
Circular?diameterXdiameterXdepthX59 gallons. 
Oval?width X length X depth X 6.7 gallons. 

If there are 7.5 gallons in a cubic foot of water, the first formula is 
correct. So is the second, since the number of gallons of water in a 

right circular cylinder with base radius r, diameter d, and depth h is 

7.5irr2b = 7.57r(d/2)2h = 7.5(ir/4)d2h =dxdxhx 5.9. 

But where does that 6.7 in the last formula come from? For what sort 
of oval is the formula exact? 
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