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Mathematical model creation for cancer chemo-immunotherapy1
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Mathematics, Murray State University, Murray, KY, USA; cMurray State University, Murray, KY,
USA; dWilliams College, Williamstown, MA, USA; eHarvey Mudd College, Claremont, CA, USA

(Received 23 February 2008; final version received 13 May 2008)

One of the most challenging tasks in constructing a mathematical model of cancer
treatment is the calculation of biological parameters from empirical data. This task
becomes increasingly difficult if a model involves several cell populations and treatment
modalities. A sophisticated model constructed by de Pillis et al., Mixed immunotherapy
and chemotherapy of tumours: Modelling, applications and biological interpretations,
J. Theor. Biol. 238 (2006), pp. 841–862; involves tumour cells, specific and non-specific
immune cells (natural killer (NK) cells, CD8þT cells and other lymphocytes) and employs
chemotherapy and two types of immunotherapy (IL-2 supplementation and CD8þT-cell
infusion) as treatment modalities. Despite the overall success of the aforementioned
model, the problem of illustrating the effects of IL-2 on a growing tumour remains open.
In this paper, we update the model of de Pillis et al. and then carefully identify appropriate
values for the parameters of the new model according to recent empirical data.
We determine new NK and tumour antigen-activated CD8þT-cell count equilibrium
values; we complete IL-2 dynamics; and we modify the model in de Pillis et al. to allow for
endogenous IL-2 production, IL-2-stimulated NK cell proliferation and IL-2-dependent
CD8þT-cell self-regulations. Finally, we show that the potential patient-specific efficacy
of immunotherapy may be dependent on experimentally determinable parameters.

Keywords: immune system model; cancer model; parameter estimation; mixed-
immuno-chemo-therapy; immunotherapy; chemotherapy

AMS Subject Classification: 34A34; 46N10; 46N60

1. Introduction

The role of the immune system in the elimination of cancerous tissue is not fully

understood. By constructing models of tumour–immune interaction founded on empirical

data, it may be possible to enhance our understanding of the effects of immune

modulation. Several papers have examined mathematical models of tumour–immune

interactions in depth, including [2,3,7,8,10–13,24,27,29,34,36,38] to name a few.

As explained in de Pillis et al. [12], the immune component is fundamental to

understanding the growth and decay of a tumour, and if immunotherapy is to be used

effectively in a clinical setting, its dynamic interactions with chemotherapy and the

tumour itself must be understood.
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In particular, the dynamics and properties of both IL-2 and tumour antigen-activated

CD8þT cells are continuing to be explored [32,41]. Indeed, only recently have techniques

been developed to capture T-cell kinetics with detailed resolution [4]. Consequently,

mathematical models of immune–tumour interactions must undergo updates with the

latest research. As a more thorough understanding of the molecular processes is obtained,

the mechanisms, rates and magnitudes of the interactions are revised appropriately.

In de Pillis et al. [12], the authors model tumour growth in terms of a total cell count by

including the influence of several immune cell effector subpopulations, namely tumour

antigen-activated CD8þT cells, natural killer (NK) cells and total circulating lymphocytes,

in addition to the concentrations of IL-2 and chemotherapy drug in the bloodstream. This

approach expands upon other models such as those investigated by Kirschner and Panetta

[24], who considered a model based upon a total tumour cell population, an effector cell

population and the concentration of IL-2 within the tumour compartment.

The model of de Pillis et al. [12] incorporates four types of action: natural growth,

natural decay, mediated death and recruitment. Each term represents a population growing

by reproduction, dying due to natural elimination, being killed by another population or

drug or being recruited through a chain of immune reactions consequent to the presence of

a cancer cell. Every term in the system of ordinary differential equations (ODEs) from the

de Pillis et al. [12] model represents a single action. The authors also include the following

assumptions:

(1) the tumour grows logistically in the absence of growth-inhibiting factors;

(2) endogenous IL-2 production is not included; and

(3) the specific action of all lymphocytes beyond activated CD8þT cells and NK cells

can be neglected.

The model we present similarly tracks the three immune populations, one tumour

population and plasma concentrations of chemotherapy drug and IL-2. However, the action of

immune cell subpopulations and chemicals in circulation (e.g. IL-2, chemotherapy drugs)

necessarily depend on local concentration, not absolute number. We therefore elect to

measure all state variables except the tumour cell count in terms of blood concentrations,

which we assume are constant throughout the bloodstream. Furthermore, we investigate the

kinetics of IL-2 and immune cell subpopulations, include endogenous IL-2 production and

consider several biological IL-2 interactions, as discussed in Abbas et al. [1]. We also update

the NK cell dynamics to allow for IL-2-stimulated NK cell proliferation, as indicated in Abbas

et al. ([1]; p. 265). Although IL-2 does not bind as strongly to NK cells as it does to CD8þT

cells, due to different IL-2 receptor subtypes, because of the super-physiological levels of IL-2

present during exogenous supplementation, the NK–IL-2 interaction changes the resulting

dynamics [1]. Moreover, Abbas et al. [1] make clear that all types of T cells produce IL-2.

If the model is to be applicable in the absence of IL-2 supplementation, baseline endogenous

IL-2 production must be taken into account. Indeed, in untreated cancer patients, plasma IL-2

levels can reach the mid-saturation point for IL-2-stimulated CD8þT-cell deactivation and

this effect is important in modelling the kinetics of T-cell populations [1,35]. Furthermore,

Abbas et al. [1] discuss the self-regulation of CD8þT cells by helper CD4þT cells, another

type of lymphocyte. This interaction is complex, as it is IL-2-dependent and only occurs when

CD8þT cells become large in number. We include this interaction in our expansion of the IL-2

kinetics; without it, the self-reinforcing behaviour of CD8þT cells and IL-2 cause

unphysiological behaviour in the form of unbounded CD8þT-cell production. By including

the dynamic regulation of this immune cell subpopulation by IL-2, we are able to construct a

model that comprises the proven efficacy of IL-2 when combined with CD8þT-cell infusion.
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2. The model

In our update to the de Pillis et al. [12] model, we set out to include endogenous IL-2

production by CD4þ and CD8þT cells, account for IL-2-stimulated NK cell proliferation,

capture IL-2 saturation with Michaelis–Menten dynamics and simplify certain parts of the

model to allow for eventual optimal control analysis. We additionally altered and justified

parameter values, inserted new parameters and modified state variable definitions.

Our first change was to alter the units of our state variables. Most of our sources, including

Hellerstein et al. [20], Meropol et al. [30] and Dunne et al. [16], listed concentrations of

immune cells as opposed to absolute quantities and we therefore found concentrations easier

to work with in our model. We also stipulated thatM represent a specific chemotherapy drug,

doxorubicin, to allow for more precise parameter determination. Thus, we define

T(t), the total tumour cell population;

N(t), the concentration (cells/l) of NK cells per litre of blood;

L(t), the concentration (cells/l) of CD8þT-cells per litre of blood;

C(t), the concentration (cells/l) of lymphocytes per litre of blood, not including NK cells

and CD8þT-cells;

M(t), the concentration (mg/l) of chemotherapy drug per litre of blood;

I(t), the concentration (IU/l) of IL-2 per litre of blood;

vL(t), the number of tumour-activated CD8þT cells injected per day per litre of blood

volume (in cells/l per day);

vM(t), the amount of doxorubicin injected per day per litre of body volume (in mg/l per

day); and

vI(t), the amount of IL-2 injected per day per litre of body volume (in IU/l per day).

The ODEs of our model are stated below. See Table 1 for an explanation of the terms. For a

more in-depth justification of the terms taken from the their model, see de Pillis et al. [12]:

dT

dt
¼ aTð1 2 bTÞ2 cNT 2 DT 2 KT ð1 2 e2dTMÞT ; ð1Þ

dN

dt
¼ f

e

f
C 2 N

� �
2 pNT þ

pNNI

gN þ I
2 KNð1 2 e2dNMÞN; ð2Þ

dL

dt
¼

umL

uþ I
þ j

T

k þ T
L2 qLT þ ðr1N þ r2CÞT 2

uL2CI

kþ I

2 KLð1 2 e2dLMÞLþ
pILI

gI þ I
þ y LðtÞ; ð3Þ

dC

dt
¼ b

a

b
2 C

� �
2 KCð1 2 e2dCMÞC; ð4Þ

dM

dt
¼ 2gM þ yMðtÞ; ð5Þ

dI

dt
¼ 2mI I þ fC þ

vLI

zþ I
þ y IðtÞ; ð6Þ

where

D ¼ d
ðL=TÞl

sþ ðL=TÞl
: ð7Þ
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In Equation (1), the tumour kinetics have been left largely unchanged in form. Our only

modification involved adding a coefficient dT onM in the exponential kill term. This allows us

more accurately to fit the model to data for doxorubicin and, in particular, avoids improper use

of units.

In Equation (2), the NK equation has undergone two important changes.

The recruitment term gT 2N/(h þ T 2) from the de Pillis et al. [12] model has been

removed due to its observed insignificance within the context of the model, as evidenced

by computer simulations and due to the additional complexity of the dynamics it

introduces. We have added an IL-2-induced NK cell proliferation term, pNNI/(gN þ I). NK

cells express the IL-2Rbgc IL-2 receptor and IL-2 binding stimulates NK cell proliferation

[1]. Although, the enzyme dissociation constant kd for this binding is sufficiently large that

IL-2-stimulated NK cell proliferation is minimal in healthy individuals, it has been shown

that additional IL-2 can more than double the NK cell population [30]. Consequently, in the

presence of elevated serum IL-2, as occurs in cancer or during immunotherapy, this

interaction may be important [16,35]. The first term in the NK equation represents baseline

NK cell production from circulating lymphocytes, while the second models the natural

death of the cells. We have chosen to write the term with the constant f as a multiplier to

Table 1. Equation descriptions.

Equation Term Description Source

dT/dt aT(1 2 bT) Logistic tumour growth [12]
2cNT NK-induced tumour death [12]
2DT CD8þT cell-induced tumour death [12]
2KT ð1 2 e2dTMÞT Chemotherapy-induced tumour death [12,18]

dN/dt eC Production of NK cells from circulating
lymphocytes

[12]

2 fN NK turnover [12]
2pNT NK death by exhaustion of tumour-killing

resources
[12]

( pNNI/gN þ I) Stimulatory effect of IL-2 on NK cells [12]
2KN ð1 2 e dNMÞN Death of NK cells due to medicine toxicity [12,18]

dL/dt (2muL/u þ I) CD8þT-cell turnover [1,12]
2qLT CD8þT-cell death by exhaustion of tumour-killing

resources
[12,27]

r1NT CD8þT-cell stimulation by NK-lysed tumour cell
debris

[12]

r2CT Activation of native CD8þT cells in the
general lymphocyte population

[12]

( pILI/gI þ I) Stimulator effect of IL-2 on CD8þT cells [12,24]
(2uL 2CI/k þ I) Breakdown of surplus CD8þT cells In the

presence of IL-2
[1,12]

ðjTL=k þ TÞ CD8þT-cell stimulation by CD8þT cell-lysed
tumour cell debris

[27]

2KLð1 2 e2dLMÞL Death of CD8þT cells due to medicine toxicity [12,18]

dC/dt a Lymphocyte synthesis in bone marrow [12]
2bC Lymphocyte turnover [12]
2KCð1 2 e2dCMÞC Death of lymphocytes due to medicine toxicity [12,18]

dM/dt 2gM Excretion and elimination of medicine toxicity [12]
dI/dt 2mII IL-2 turnover [12]

fC Production of IL-2 due to naive CD8þT cells and
CD4þT cells

[1]

(vLI/z þ I) Production of Il-2 from activated CD8þT cells [24]

L. de Pillis et al.168



highlight the fact that the constant e/f, which denotes the baseline fraction of circulating

lymphocytes that are NK cells, is particularly well known [1]. We added a coefficient dN
on the exponential chemotherapy kill term for the same reasons we added dT.

Since the turnover rate of activated CD8þT cells is inhibited by IL-2, in Equation (3),

we changed the term 2mL to umL/(u þ I), [1]. That is, with increasing concentrations of

IL-2 past a certain threshold, activated CD8þT-cell turnover is decreased. The u in the

numerator exists to preserve the original meaning of m. We then dramatically simplified

the activated CD8þT-cell recruitment term, originally jD 2T 2L/(k þ D 2T 2), into the term

jTL/(k þ T). Simulations of the de Pillis et al. [12] model indicated that the reaction-time

delay introduced by the exponent on T did not offer sufficiently different results to justify

the increased complexity of the model. Moreover, we observed that Kuznetsov et al. [27]

use an effector recruitment term of same form as our modification. A significant alteration

was made to the term originally 2uNL 2. From Abbas et al. [1], we noted that the

deactivation of CD8þT cells occurs through a pathway that requires IL-2 and the action of

CD4þT cells (in circulating lymphocytes,) but not NK cells. Moreover, it occurs only at

high concentrations of activated CD8þT cells. Consequently, we chose to alter the term

2uNL 2 by removing the dependence on N, adding Michaelis–Menten dynamics in IL-2

and including factors of L 2 and C. Because 50–60% of the total lymphocytes in the blood

are CD4þT cells, and because we have already removed NK cells (10% of total

lymphocytes) and CD8þT cells (a negligible fraction of total lymphocytes) from C, we can

approximate the concentration of CD4þT cells in the blood by hC, where h is a constant

absorbed into u ([1]; p. 19; [39]). Finally, we also included the same coefficient addition to

the exponential chemotherapy kill term, using this time dL.

We did not significantly alter the circulating lymphocyte Equation (4). Our two minor

modifications were to use a multiplier b that comes from the first and second terms (which

represent creation and elimination of circulating lymphocytes, respectively) to emphasize

the fact that a/b, the steady-state population of circulating lymphocytes is known ([1];

p. 17). We also added the exponential chemotherapy kill term in the form of dC.

In Equation (5), the terms remain the same.

In Equation (6), we added a term representing the constant rate of creation of IL-2 from

circulating lymphocytes (specifically CD4þT cells and, to a lesser extent, naive CD8þT

cells) in the form of fC and a Michaelis–Menten term in IL-2, vLI/(z þ I), representing

the production of IL-2 from activated CD8þT cells, which is inhibited in a concentration-

dependent fashion by IL-2 ([1]; pp. 264–265).

3. The parameters

Careful determination of parameters is necessary for a complete model. We searched the

available peer-reviewed literature for in vivo and in vitro studies measuring rates or

steady-state quantities that factor into the model. Below, we explain our sources for each

parameter and Tables 2 and 3 provide quick references for the parameter values and their

significance within the model.

3.1 Equilibrium states

Before discussing the derivation of parameters, we determine from biological data

reasonable equilibrium values for a no-tumour condition and a detectable tumour

condition. These no-tumour and high-tumour state values are useful for extrapolating

numerical quantities for several model parameters. Data for the detectable tumour state
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can be taken, for example, from a situation in which an avascular tumour is at the size

where the rates of nutrient usage and diffusion become equal.

The first equilibrium point we will call the no-tumour equilibrium, in which

T¼0; N¼
e

f

a

b
¼2:5£108; L¼2:526£104; C¼

a

b
¼2:25£109; M¼0; I¼48:9273: ð8Þ

Here T and M are defined to be equal to zero. The algebraic expressions for N and C follow

from setting T ¼ M ¼ 0 in Equations (2) and (4), and the numerical values are derived

below (see the explanations of e/f in Section 3.3 and a/b in Section 3.5). Our value for I is

obtained from Orditura et al. [35], who note that healthy control subjects had average serum

IL-2 levels of I ¼ 2.99 pg/ml ¼ 48.9273 IU/l, where we have converted to IU using the

Table 2. Parameter descriptions.

Equation Parameter Description

dT/dt a Growth rate of tumour
b Inverse of carrying capacity
c Rate of NK-induced tumour death
KT Rate of chemotherapy-induced tumour death
dT Medicine efficacy coefficient

dN/dt e/f Ratio of NK cell synthesis rate with turnover rate
f Rate of NK cell turnover
P Rate of NK cell death due to tumour interaction
pN Rate of IL-2 induced NK cell proliferation
gN Concentration of IL-2 fpr half-maximal NK cell proliferation
KN Rate of NK depletion from medicine toxicity
dN Medicine toxicity coefficient

dL/dt m Rate of activated CD8þT-cell turnover
u Concentration of IL-2 to halve CD8þT-cell turnover
q Rate of CD8þT-cell death due to tumour interaction
r1 Rate of NK-lysed tumour cell debris activation of CD8þT cells
r2 Rate of CD8 production from circulating lymphocytes
pI Rate of IL-2 induced CD8þT-cell activation
gI Concentration of IL-2 for half-maximal CD8þT-cell activation
u CD8þT-cell self-limitation feedback coefficient
k Concentration of IL-2 to halve magnitude of CD8þT-cell self-regulation
j Rate of CD8þT-lysed tumour cell debris activation of CD8þT cells
k Tumour size for half-maximal CD8þT-lysed debris CD8þT activation
KL Rate of CD8þT depletion from medicine toxicity
dL Medicine toxicity coefficient

dC/dt a/b Ratio of rate of circulating lymphocyte production to turnover rate
b Rate of lymphocyte turnover
KC Rate of lymphocyte depletion form medicine toxicity
dC Medicine toxicity coefficient

dM/dt g Rate of excretion and elimination of doxorubicin
dI/dt mI Rate of excretion and elimination of IL-2

v Rate of IL-2 production from CD8þT cells
f Rate of IL-2 production from CD4þ/naive CD8þT cells
z Concentration of IL-2 for half-maximal CD8þT-cell IL-2 production

D d Immune system strength coefficient
l Immune strength scaling coefficient
s Value of (L/T)l necessary for half-maximal CD8þT-cell toxicity
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assumption that we have 18 £ 106 IU IL-2 per 1.1 mg IL-2 [33]. Finally, L is derived from

Pittet et al. [39], who indicate that in healthy blood donors, total CD8þT cells specific for

the Melan-A gene (a tumour-associated antigen in melanoma) constitute approximately

0.0421% of total CD8þT cells. The average of all healthy donor values in Table 1 of

Pittet et al. and Speiser et al. [46] show that we can associate the activated CD8þT-cell

population with those expressing 2B4. Since in Figure 5b of Speiser et al. approximately

10% of Melan-A specific T cells express 2B4, we see that 0.00421% of all CD8þT cells are

expected to be activated and specific for a tumour-associated antigen. Although Melan-A is

not always the most heavily expressed tumour-associated-antigen even in melanoma, data

from Table 2 in Lee et al. [28] suggest that other antigens will result in a similar degree of

CD8þT-cell activation. This gives the equilibrium value of L when combined with the

value for total CD8þT cells of 6 £ 108 ([21]; p. 751).

Table 3. Parameter values.

ODE Parameter Value Units Source

dT/dt a 4.31 £ 1021 Day21 [12,14]
b 1.02 £ 1029 Cells21 [12–14]
c 2.9077 £ 10213 l/cells21 per day21 [12–15]
KT 9 £ 1021 Day21 [12]
dT 1.8328 l/mg21 [18]

dN/dt e/f 1.11 £ 1021 – [1]
f 1.25 £ 1022 Day21 [6,9,19,40,48]
p 2.794 £ 10213 Cells21 per day21 [1,21,28,30,33,35,39,46]
pN 6.68 £ 1022 Day21 [30]
gN 2.5036 £ 105 IU/l21 [1]
KN 6.75 £ 1022 Day21 [44]
dN 1.8328 l/mg21 [18]

dL/dt m 9 £ 1023 Day21 [20]
u 2.5036 £ 1023 IU/l21 [1,41]
q 3.422 £ 10210 Cells21 per day21 [25,27]
r1 2.9077 £ 10211 Cells21 per day21 [5,21]

r2
5.8467 £ 10213 Cells21 per day21 No source

pI 2.971 Day21 [1,21,28,30,33,35,39,46]
gI 2.5036 £ 103 IU/l21 [1]
u 4.417 £ 10214 l2/cells22 per day21 [1,21,28,30,33,35,39,46]
k 2.5036 £ 103 IU/l21 [1,41]
j 1.245 £ 1022 Day21 [27]
k 2.019 £ 107 Cells [27]
KL 4.86 £ 1022 Day21 [44]
dL 1.8328 l/mg21 [18]

dC/dt a/b 2.25 £ 1021 Cells/l21 [1]
b 6.3 £ 1023 Day21 [9,12,17,19]
KC 3.4 £ 1022 Day21 [44]
dC 1.8328 l/mg21 [18]

dM/dt g 5.199 £ 1021 Day21 [22,47]
dI/dt mI 11.7427 Day21 [26]

v 7.874 £ 1022 IU/cells21 per day21 [1,21,28,30,33,35,39,46]
f 2.38405 £ 1027 IU/cells21 per day21 [1,21,28,30,33,35,39,46]
z 2.5036 £ 103 IU/l21 [1]

D d Not specified Day21 [15]
l Not specified – [12,13]
s Not specified l2l [12,13]

Computational and Mathematical Methods in Medicine 171



The second equilibrium point, we call the large-tumour equilibrium and this is

given by

T¼9:8039£108; N¼2:5£108; L¼5:268£105; C¼
a

b
¼2:25£109; M¼0; I¼1073; ð9Þ

We again define M ¼ 0 as we are not interested in the effects of chemotherapy.

The algebraic expressions for T and C follow from the model, as in the no-tumour

equilibrium. Numerical values are again derived below (see the justifications of b in

Section 3.2, e/f in Section 3.3 and a/b in Section 3.5.) N is derived from Figure 1 in

Meropol et al. [30], who measure the baseline concentration of NK cells in peripheral

blood of breast cancer patients. I is again taken from Orditura et al. [35], who measure

that serum IL-2 levels were on average I ¼ 71.69 pg/ml ¼ 1173 IU/l in stage III cancer

patients prior to chemotherapy. Note that we use the value for stage III patients to

avoid including patients with metastatic cancer, as the model is designed to represent

localized malignancy. Finally, L is derived from Lee et al. [28] by averaging the

percent of CD8 data in Lee’s Table 2 among the first five populations, which are

activated for an antigen, to arrive at an average of 0.0878% activated CD8þT cells

specific for one of the melanoma antigens Melan-A/Mart-1 and tyrosinase. Along with

the total CD8þT-cell value above from Janeway et al. [21]; (p. 751), this gives the

equilibrium value for L.

3.2 dT/dt: The tumour

a ¼ 4.31 £ 1021 is left unchanged from the de Pillis et al. [12] model, as the model is

extraordinarily sensitive to a and no data could be found supporting a different value.

De Pillis et al. [12] derived the parameter from Diefenbach et al. [14].

b ¼ 1.02 £ 1029 is also left unchanged from the de Pillis et al. [12] model. Both de

Pillis et al. [13] and de Pillis et al. [12] arrived at the same value from Diefenbach et al.

[14], suggesting that this parameter is well-substantiated. Note that 1/b ¼ 9.8039 £ 108 is

the tumour carrying capacity.

c ¼ 2.9077 £ 10213 is based on the approximation that for every NK cell that kills a

tumour cell, one NK cell dies. We then let c ¼ p, since c is the rate at which NK cells kill

tumour cells and p is the rate at which NK cells die from the same process. Note that the

value of p is derived in Section 3.3. Although we lack documentation for our

approximation, the near equality of p and c in the de Pillis et al. [12] model implies that we

are not conceptually contradicting previous work. As further substantiation for our value

of c, chromium-release assays in Dudley et al. [15] and Diefenbach et al. [14] suggest that

NK cells kill tumour cells at a mass-action rate of < 1027 in vitro. This is comparable to

the value c ¼ 3.23 £ 1027 used in de Pillis et al. [13]. However, because NK cells

circulate and do not solely exist in the vicinity of the tumour, an in vitro value cannot be

directly applied to a human model. Instead, we approximate (in agreement with de Pillis

et al. [12]) that only 1 in 106 NK cells interacts with the tumour in vivo, which leads to the

conclusion that c is on the order of 10213. The approximation is derived from estimates of

108 cells in an average tumour and 1014 cells in the human body, so if NK cells distribute

themselves evenly over all tissue, only 1 in 106 will lie in the tumour. As our interaction

assumption and order-of-magnitude derivation agree, the value of c is appears reasonable.

KT ¼ 0.9 is left unchanged from the de Pillis et al. [12] model, as we found no data

supporting a different value. de Pillis et al. [12] took it originally from Ref. [37].

dT ¼ 1.8328 is taken from Gardner [18]. Table 4 of Gardner lists a value of

a ¼ 1.063mM21 for doxorubicin acting on the primary cell line. Since our medicine kill
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term reflects the dynamics suggested in Gardner, we use Gardner’s value of a converted to

units of l/mg. Taking the molar mass of doxorubicin HCl as 579.99 g/mol [43], we arrive at

our value for dT as follows:

dT ¼ 1:063 l=mmol
1 £ 106 mmol

1 mol

� �
1 mol

579:99 g doxorubicin

� �
1 g

1000 mg

� �

¼ 1:8328 l=mg:

3.3 dN/dt: The natural killer cells

e/f ¼ 1.11 £ 1021 is equal to the ratio N/C at equilibrium if we ignore the small effect of

IL-2 on NK proliferation in the absence of exogenous supplementation. Since Abbas et al.

([1]; p. 19) indicate that NK cells make up approximately 10% of total circulating

lymphocytes in the absence of a tumour, and the number of activated CD8þT cells L is

several orders of magnitude smaller than N in healthy blood donors and thus negligible

(see the no-tumour equilibrium condition (8)), we can approximate

e/f ¼ 1/9 < 1.11 £ 1021. Note that C here measures the number of total lymphocytes

that are neither activated CD8þT cells nor NK cells.

f ¼ 1.25 £ 1022 was found by metabolic scaling. The average mass of an adult human

male is 77 kg and the average mass for an adult male rhesus monkey is 11.9 kg [40,48].

From Gillooly et al. [19], we see that mass-specific metabolic rate B scales as:

B=M /M21=4;

where M is mass. We do recognize that there is consideration for different scaling behaviour

depending on the location of cells in the body. However, Gillooly et al. [19] explain that when

the masses of two organisms differ significantly, the scaling law is obeyed with good

precision. We have

We assume that f, corresponding to the turnover rate of NK cells, is proportional to

mass-specific metabolic rate. Since we have fmonkey ¼ 2 £ 1022 for a rhesus monkey

taken from de Boer et al. [9], we have:

f ¼ GðB=MÞ ¼ G0M21=4;

Table 4. Simulation results for patient 9, patient 10. Here, x represents the eradication of the
tumour and o denotes the survival of the tumour).

Simulation

T ¼ 1 £ 106

cells
T ¼ 1 £ 107

cells
T ¼ 1 £ 108

cells
T ¼ 1 £ 109

cells

Patient number 9 10 9 10 9 10 9 10

No treatment x x o o o o o o
Chemotherapy x x x x x x o o
Immunotherapy x x x o o o o o
Chemo-immuno x x x x x o o o

Animal Mass (kg) M 21/4 (kg21/4)

Human 77 0.3376
Rhesus monkey 11.9 0.5384
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where G and G0 are constants, and the second equality follows from the aforementioned

proportionality. Now:

G0 ¼
fmonkey

M
21=4
monkey

¼ 0:0371;

from the data for the rhesus monkey. Using this to find f for a human, we have:

f ¼ G0M
21=4
human ¼ 1:25 £ 1022;

for an average human.

p ¼ 2.794 £ 10213 is obtained by considering that at the large-tumour equilibrium

and in the absence of medicine, we have

0 ¼
dN

dt
¼ f

e

f
C 2 N

� �
2 pNT þ

pNNI

gN þ I
;

The term ((e/f)C 2 N) is zero because we make the assumption in this case that at

equilibrium e/f ¼ N/C. We then have:

p ¼
pNI

TðgN þ IÞ
:

Using the values of pN and gN calculated below and the equilibrium values from

Equation (9), we arrive at our value for p.

gN ¼ 2.5036 £ 105 is derived from Abbas et al. ([1]; p. 265), where we see the

concentration of IL-2 required for half-maximal binding of cells expressing the IL-2Rbgc

receptor complex is 1029 mol/l, as opposed to 10211 mol/l for cells expressing the IL-2Rabgc

receptor complex. Since NK cells express the former receptor exclusively, we arrive at our

value for gN by using 15,300 Da (15,300 g/mol) as the molecular mass of IL-2 and employing

the conversion factor of 18 £ 106 IU IL-2 per 1.1 mg IL-2 to convert molar concentration to

IU/l [1,33]. We therefore have:

gN ¼
1 £ 1029 mol

1 l

� �
15; 300 g

1 mol

� �
1000 mg

1 g

� �
1:8 £ 107 IU

1:1 mg

� �
¼ 2:5036 IU=l:

pN ¼ 6.68 £ 1022 is taken from data in Meropol et al. [30] measuring NK cell

proliferation in response to IL-2 in the absence of a tumour. Note that pN measures how

effectively NK cells are stimulated by IL-2 and is independent of the presence of a tumour.

We assume that the peak NK cell count N ¼ 2.3 £ 109 in Figure 3 of Meropol et al. [30]

corresponds to the equilibrium value of N subject to the peak value of IL-2

I ¼ 200 pmol/l ¼ 5.0073 £ 104 IU from Figure 4 of Meropol et al. [30]. Assuming now

that we have exogenous IL-2 supplementation, we allow for a non-negligible effect of IL-2 on

NK cell proliferation. Thus, the term ((e/f)C 2 N) in (2) is now assumed to be non-zero.

Additionally, we assume pNT is small, as in the absence of a tumour, and we have:

0 ¼
dN

dt
¼ f

e

f
C 2 N

� �
þ

pNNI

gN þ 1
;

which gives

pN ¼
f N 2 e

f
C

� �
ðgN þ IÞ

NI
:
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We then use C ¼ 2.25 £ 109 as our equilibrium circulating lymphocyte concentration from

the no-tumour equilibrium (8) and the values of N and I above to calculate pN.

KN ¼ 6.75 £ 1022 is derived from linearly scaling KC by the ratio of cell metabolic

rates. More precisely, we let:

KN ¼
f

b
KC:

From the observation in de Pillis et al. [12], we know that cells with a faster metabolic rate

are killed more effectively by doxorubicin. Lacking evidence to the contrary, we assume

this relationship is linear.

dN ¼ dT ¼ 1.8328 by assuming that similar concentrations of doxorubicin are

necessary to affect all cell types, even though the drug has differential efficacy depending

on the metabolic rate of the cell.

3.4 dL/dt: The CD81T cells

m ¼ 9 £ 1023 is from Hellerstein et al. [20], who put the half-life of CD8þ cells at 77 days in

healthy donors. Assuming exponential decay and using m ¼ m £ t1/2 ¼ ln 2, we arrive at our

value for m.

u ¼ 2.5036 £ 103 was derived from Abbas et al. [1] based on the existence of the

IL-2Rabgc receptor on CD8þT cells. Consequently, the concentration needed for

half-maximal IL-2 binding is 10211 mol/l, which works out to 2.5036 £ 103 IU/l, as in the

derivation of gN.

q ¼ 3.422 £ 10210 was taken from Kuznetsov et al. [27] as we are unable to find kinetics

data on activated CD8þT-cell–tumour interaction. It must be recognized that Kuznetsov et al.

[27] used mouse data and modelled the effector cell population, as opposed to the CD8þT-cell

population, but we found no other data suggesting values for q, j and k. In support of our value

ofqhowever, we expectq to be approximately three orders of magnitude less thanp, due to the

relative magnitudes ofL andN (based on the two sets of equilibrium values (8), (9)) and this is

indeed the case.

r1 ¼ 100 £ c ¼ 2.9077 £ 10211 is derived from the approximation that each lysed

tumour cell, through antigen-presenting pathways, can activate 50 naive CD8þT cells per

day. This figure is adapted from Avigan et al. [5], who note that a single dendritic cell can

stimulate 100–3000 T cells over the course of its life in the presence of an antigen. Rudel

et al. [42] indicate that the turnover rate of at least one type of dendritic cell is 10 days,

suggesting that a dendritic cell may stimulate 10–300 T cells per day. We choose the figure

of 100 T cells/l per day, since neither an average nor a standard deviation is given in Avigan

et al. [5]. Even at this level, the parameter r1 turns out not to have an enormous impact

relative to the other model parameters.

r2 ¼ 5.8467 £ 10213 is chosen to obtain a model consistent with expectations, much

in the same way as de Pillis et al. chose the value of r2 in their model. There are very

limited data on CD4þT-cell (the primary constituent of C) activation of CD8þT cells, and

we found no research measuring the kinetics.

u ¼ 4.417 £ 10214 is derived by solving a system of equations designed to produce

reasonable equilibrium behaviour. The two equilibrium conditions (8) and (9) combined

with the known dL/dt parameter values in this section fix all variables in dL/dt other than pI
and u. We thus set dL/dt ¼ 0, insert the two sets of equilibrium values into Equation (3)

along with the values of all parameters except for u and pI and thereby obtain two

equations in u and pI. Solving these equations numerically gives us our solution.
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k ¼ 2.5036 £ 103 was obtained from Abbas et al. [1] in the same way as u. Refaeli

et al. [41] observe that upon removal of the a IL-2 receptor chain, CD8þT cells fail to

self-regulate. This affirms that k should correspond to the disassociation constant for the

IL-2Rabgc receptor.

pI ¼ 2.971 is taken from the solution to the system in u and pI above.

gI ¼ 2.5036 £ 103 is derived from Abbas et al. [1] in the same way as u and k.

j ¼ 1.245 £ 1021 is taken from Kuznetsov et al. [27] for lack of data in humans.

k ¼ 2.019 £ 107 is taken from Kuznetsov et al. [27] for lack of data in humans.

kL ¼ 0.0486 is derived from the same linear metabolic scaling used to derive KN from

KC. Thus, we let:

KL ¼
m

b
KC;

and thereby find KL.

dL ¼ 1.8328 is approximated under the assumption of equality with dT as in the derivation

of dN.

3.5 dC/dt: The circulating lymphocytes

a/b ¼ C ¼ 2.5 £ 109 follows as under normal healthy conditions, dC/dt ¼ 0 and no

chemotherapy medicine is present. We take the average value of circulating lymphocytes

to be 2.5 £ 109 cells/l ([1]; p. 17). However, we factor out both NK, which cells make up

10% of circulating lymphocytes in a healthy human, and activated CD8þT cells, which

constitute a negligible fraction of circulating lymphocytes as noted in the derivation of f,

due to their plastic nature [1]. Consequently, we have:

a

b
¼ ð2:5 £ 109Þð0:9Þ ¼ 2:25 £ 109:

b ¼ 6.3 £ 1023 is obtained by taking the 1% turnover rate of CD4þT cells (which

are the primary constituent of the population measured by C) in rhesus monkeys cited in

Boer et al. [9] and applying metabolic scaling. (See the explanation of f.)

KC ¼ 0.034 is derived from the observation that the median white blood cell count

after doxorubicin treatment for several weeks using exactly our treatment protocol was

1.6 £ 103 cells/ml ¼ 1.6 £ 109 cells/l [44]. If we assume that in these patients we still

have the relationship N ¼ (1/10)C, then this white blood cell count (which includes all

circulating lymphocytes) should correspond to C ¼ (9/10)(1.6 £ 109) ¼ 1.44 £ 109.

By repeatedly running ODE simulations of the dC/dt ODE, which is independent of all but

M, with the no-tumour equilibrium data (8) and chemotherapy turned on, we found that

KC ¼ 0.155 produced a nadir value of C ¼ 1.447 £ 109 as desired.

dC ¼ 1.8328 is approximated under the assumption of equality with dT.

3.6 dM/dt: The chemotherapy

g ¼ ln 2/1.3332 days ¼ 0.5199 is derived from the assumption of exponential decay.

The tissue (as opposed to blood, from which the drug is eliminated rapidly) elimination

half-life of doxorubicin, the chemotherapy medicine on which the de Pillis et al. [12]

model is based, is approximately 32 h or 1.3332 days [22,47].

L. de Pillis et al.176



3.7 dI/dt: The IL-2

mI ¼ ln 2/5.90 £ 1022 days ¼ 11.7427 days21 is again derived from assumption

of exponential decay. The half-life of serum IL-2 is biphasic with a tissue elimination

half-life of t1/2 ¼ 85 min [26]. Our value follows after converting to days.

v ¼ 7.874 £ 1022 was found by a similar procedure to that used to find u. Using the

equilibrium values (8), (9) and the known dI/dt parameters, we found v and f by solving a

system of equations generated by setting dI/dt ¼ 0 and inserting both sets of equilibrium

conditions.

f ¼ 2.38405 £ 1027 was found as part of the solution to the system created to find v.

z ¼ gI ¼ 2.5036 £ 103, as the term comprising z pertains to CD8þT-cell IL-2

synthesis induced by IL-2, which depends on the IL-2Rabgc receptor, as in u.

3.8 D: The CD81T-cell cytotoxicity parameter

We have three patient-specific parameters in the model. These are d, l and s, the

parameters in D; they are some of the few parameters from de Pillis et al. that vary

between patients 9 and 10. Simulations also show that the model is highly sensitive to the

value of all three parameters. We therefore choose not to specify d, l and s and instead vary

them as we run our simulations.

4. Results

In our simulations, we vary the initial tumour size, but keep all other initial state values

fixed at the large-tumour equilibrium (9) values derived in Section 3.1. We restate them

here as our initial conditions:

N0 ¼ 2:5 £ 108; L0 ¼ 5:268 £ 105; C ¼ 2:25 £ 109; M0 ¼ 0; I0 ¼ 1073: ð10Þ

We also constructed a basic treatment protocol for each of vL, vM and vI and ran ODE

simulations with varying initial tumour sizes and combinations of treatments.

For chemotherapy, we follow the recommended dosage suggested by the

manufacturers of the drug Adria (doxorubicin HCl [43]). The suggested procedure entails

a single dose of 60–75 mg/m2 once every 21 days. We approximate an average human

male to have surface area of 1.9 m2, as given in Ref. [31], and we use the upper end of the

dosing range to arrive at 142.5 mg doxorubicin every 21 days. Note that we model each

half-hour infusion by setting vM to be constant and elevated for a full day. According to

Ref. [22], doxorubicin has an extremely rapid distribution half-life and exits the

bloodstream within minutes. Thus to get the concentration in the bloodstream (and in fact

in all tissues, assuming uniform distribution), we use the figure of 59.7 l average body

volume for a man from Table 1 in Sendroy et al. [45] to get vM ¼ 2.3869 mg/l per day.

Dudley et al. [15] in their Table 1 compile a set of T-cell dosing protocols for

individual patients. The number of CD8þT cells injected into each patient ranges from

2.2 £ 1010 to 12.2 £ 1010. The average of the values in Dudley’s Table 1 is 7.8 £ 1010

CD8þT cells per day. To convert the value from an absolute population to a resulting

blood concentration, we divide by 4.4 l and set vL ¼ 1.77 £ 1010 CD8þT cells/l per day

given once [6]. We model the single infusion by increasing vL to this value for a day.

Also in Dudley’s Table 1 [15], the authors note that they inject 7.2 £ 105 IU/kg IL-2

every 8 h (0.33 days) after the T-cell infusion for an average of 9 total IL-2 treatments.

However, according to Ref. [26], IL-2 also has a very rapid distribution half-life.

Consequently, as with vM, we assume uniform distribution over all tissues. Using the

average adult male human weight of 77 kg and again assuming 59.7 l of body volume,
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we model this dosing regimen as 2.7859 £ 106 IU IL-2/l per day for three days, spread

evenly over the course of each day [40,48]. Note that immunotherapy refers to the

combination of CD8þT-cell infusion with the above IL-2 treatment.

Only the CD8þT-cell infusion treatment need be modified, and we simply convert it

from an absolute population to a resulting blood concentration by again dividing by 4.4 l

[6]. We obtain:

vL ¼ 1:77 £ 1010; vM ¼ 2:3869; vI ¼ 2:7859 £ 106: ð11Þ

Because we have three highly patient-specific parameters, as noted in Section 3.8, we

separate our results for patient 9 and patient 10 from de Pillis et al. [12]. Note, however,

that because the de Pillis et al. [12] model uses the total population of L as opposed to the

blood concentration, we must divide s by V l, where V ¼ 4.4 l is again the average human

blood volume [6]. The results are stated below:

d l s

Patient 9 2:34 2:09 3:8 £ 1023

Patient 10 1:88 1:81 3:5 £ 1022;

ð12Þ

We ran all simulations for 200 days, as it was experimentally determined that all

populations either reached equilibrium or became stably periodic within this time period.

The results with a variety of initial tumour sizes are compiled in Table 4.

We may interpret the parameters d, l and s loosely as the strength or efficiency of the

patient’s immune system; these parameters correspond to the efficacy at which CD8þT

cells kill cancer cells. We then see from our Table 4 that patient 10 has a weaker immune

system than patient 9. Indeed, the results of pure chemotherapy are essentially identical

between the 2 patients, but the success of immunotherapy and mixed treatment are

superior in patient 9. This is to be expected, as a patient with more efficient immune-

tumour dynamics would be expected to benefit more from a boost to the immune system.

This may suggest that an assessment of innate immune strength is in order before

determining a treatment course; patients with low CD8þT-cell efficacy may not benefit

from immunotherapy and might be optimally placed on chemotherapy alone, whereas

other patients might benefit enormously from combined therapy.

We highlight a few simulations of particular interest. Figure 1 shows the results of our

model with no therapy and an initial tumour size of T0 ¼ 1 £ 107 cells. The immune

system is not able to kill the tumour unaided and the tumour grows to its large-tumour

equilibrium value. CD8þT cells and NK cells remain stable at their expected equilibrium

values from (9). Similarly, as intended with the introduction of endogenous IL-2 synthesis,

serum IL-2 ultimately remains at its expected equilibrium value.

In Figure 2, we keep the initial tumour size at T0 ¼ 1 £ 107 cells and initiate

chemotherapy; the tumour is rapidly destroyed. This is a reasonable outcome with

chemotherapy treatment on a relatively small tumour.

Finally, Figure 3 shows the results of combined therapy on a tumour of initial size

T0 ¼ 1 £ 108 cells. The tumour is eliminated under these conditions. We see only a slight

reduction in activated CD8þT and NK cells concentrations as expected [23].

The numerics provide strong evidence that this system with these parameter values has

at least two stable equilibrium points: one stable zero tumour equilibrium, and one stable

large tumour equilibrium. Further analysis would be needed to confirm this, as well as to

determine how the number and stability properties of the equilibrium points are affected by

parameter changes.
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5. Numerical sensitivity analysis

A numerical parameter sensitivity analysis can highlight those model parameters that have

the greatest effect on model outcome. A standard approach to performing this analysis is to fix

all parameter values but one, and then to increase and decrease that one parameter by a certain

Figure 1. Model simulation: T0 ¼ 1 £ 107 cells, simulation with initial conditions (10) and
T0 ¼ 1 £ 107 cells. The patient’s unaided immune system is not able to destroy the tumour. No
changes in circulating lymphocyte or NK cell concentrations are seen, as expected.

Figure 2. Model simulation T0 ¼ 1 £ 107 cells with chemotherapy, simulation with initial
conditions (10), chemotherapy treatment (11) and T0 ¼ 1 £ 107 cells. Adding chemotherapy
successfully kills the tumour, as expected for a relatively small initial tumour size.
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Figure 3. Model simulation T0 ¼ 1 £ 108 cells with chemotherapy and immunotherapy,
simulation with initial conditions (10), chemotherapy and immunotherapy treatment (11) and
T0 ¼ 1 £ 108 cells. The tumour is rapidly eliminated. Activated CD8þT and NK cells drop slightly
but still in agreement with [23].

Figure 4. Numerical sensitivity analysis. Depicted is the effect of a 25% parameter change on final
tumour size after 10 days. Initial conditions are as in Equation (10), with initial number of tumour
cells T0 ¼ 1 £ 108. Patient 10 parameters were used.
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percentage, and examine the effect on the model endpoints. In Figure 4, we plot the percent

change in tumour size from day zero to day five as a result of changing each of the model

parameters by 25% in both directions. The fixed parameter values are taken from Table 3.

We note that although the model does have a relatively large number of parameters, it

is clear that the model is significantly more sensitive to the changes in a few parameters

than to the remaining parameters. It is not surprising, for example, that final tumour size is

highly sensitive to the intrinsic tumour growth rate a and to the strength of the

chemotherapy action against the tumour, as represented by KT and dT. The model is

sensitive to u since CD8þT cells are the primary killers of tumour cells other than

chemotherapy. Modifying u dramatically changes how many CD8þT cells are created due

to IL-2 in a short period of time. Parameter g represents the rate of decay of the

chemotherapy drug in the system. We therefore see sensitivity to g, since this is related to

the length of time the chemotherapy has to act against the tumour. We also see significant

sensitivity to the values of d, l and s. These parameters are all related to the effectiveness of

the CD8þT cells in stemming the growth of the tumour. Interestingly, it may be

theoretically possible to determine these parameters through fits to patient-specific assay

data, as was done in de Pillis et al. [13].

6. Discussion

We have updated the de Pillis et al. model [12] by incorporating the latest research on

baseline NK and activated CD8þT-cell concentrations in both healthy donors and cancer

patients. We have also included endogenous IL-2 production, added IL-2-stimulated NK

cell proliferation and refined the IL-2-dependent regulation of activated CD8þT cells.

The results of our model align with recent data measuring baseline blood concentrations of

several immune populations and, in particular, of IL-2. Moreover, we have carefully

updated several parameter values with data from in vivo and in vitro research on turnover

rates and mass-action kill rates. For the remaining parameters, we solved for the needed

values using numerical equilibrium point information.

The results obtained from patients with different degrees of CD8þT-cell efficacy

display insight into the potential success of immunotherapy. If individual CD8þT-cell

tumour lysis data can be obtained, it may be possible to determine the potential use of

immunotherapy as an adjunct to chemotherapy. Our updated model indicates that the more

effectively CD8þT cells taken from peripheral blood kill tumour cells, the more useful

immunotherapy may be in conjunction with chemotherapy. Conversely, in patients with

low immune efficacy, immunotherapy may be of relatively little help in eliminating

cancerous tissue, as was seen in patient 10 from de Pillis et al. [12].

Further extensions to our model may be possible when more data become available

on mass-action kill rates of NK and tumour antigen-specific CD8þT cells, as well as when

more precise estimates of immune cell recruitment rates can be obtained. Moreover, a next

step may be to further fractionate the circulating lymphocytes and track the helper or memory

CD4þT-cell and dendritic cell populations, as both are intricately involved in activation and

synthesis of CD8þT cells.
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