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Abstract

Clustering is a mathematical method of data analysis which identifies trends
in data by efficiently separating data into a specified number of clusters so
is incredibly useful and widely applicable for questions of interrelatedness
of data. Two methods of clustering are considered here. K-means clustering
defines clusters in relation to the centroid, or center, of a cluster. Spectral
clustering establishes connections between all of the data points to be clus-
tered, then eliminates those connections that link dissimilar points. This is
represented as an eigenvector problem where the solution is given by the
eigenvectors of the Normalized Graph Laplacian. Spectral clustering es-
tablishes groups so that the similarity between points of the same cluster
is stronger than similarity between different clusters. K-means and spec-
tral clustering are used to analyze adolescent data from the 2009 California
Health Interview Survey. Differences were observed between the results
of the clustering methods on 3294 individuals and 22 health-related at-
tributes. K-means clustered the adolescents by exercise, poverty, and vari-
ables related to psychological health while spectral clustering groups were
informed by smoking, alcohol use, low exercise, psychological distress, low
parental involvement, and poverty. We posit some guesses as to this dif-
ference, observe characteristics of the clustering methods, and comment on
the viability of spectral clustering on healthcare data.
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Personal Motivation

This thesis, like many student works at Scripps, is interdisciplinary in mo-
tivation. In fact, the topic of this section was informed by a reading from a
Philosophy course I took at Scripps in the Fall of 2012. In Feminist Ethics,
we read a compelling piece by Joyce Trebilcot about the importance of an
author sharing motivations with her audience so that the readership can
more expertly understand the author’s opinion and the conclusion reached
[12]. Trebilcot argued that understanding an author’s history and view-
point is vital to the most comprehensive reading of their work. As such, I
begin by briefly situating my reader in the background to and inspiration
for this work.

Math has always been a comfortable realm for me, however, I have
been a ”well-rounded” (now interdisciplinary) woman for all of my years
as a student and came to college with the intention to attend medical school
after graduation. Beginning in math and the sciences felt natural, but I
was soon pulled more strongly toward classes that investigated problems
with humans, rather than with cells. I changed my plan from practicing
medicine to working in the field of public health so that I could dedicate
myself to worldwide human issues of health inequality. As my Scripps ed-
ucation exposed me to the many issues people face in addition to securing
their health, such as sexism and racism in everything from immigration
policies to the prison industrial complex, the media, and every day life, my
scope of future work was opened further still. My plan is now the least
specific that it has ever been, but I feel confident that this thesis in mathe-
matics as applied to health data is a great first step into the future.

Math is captivating and powerful, but is most interesting and useful
to me when applied to something tangible. Due to this fact and my inter-
est in contributing meaningful work that is helpful to people, this thesis
investigates K-means and spectral clustering, methods that I believe can
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be applied to healthcare data. To my advisor, Deanna Needell’s, and my
knowledge, spectral clustering has yet to be extensively applied to issues
of health. With the availability of the California Health Institute Survey
data of teen respondents, I am excited to put this kind of application forth
as an option.



Chapter 1

Introduction

1.1 Purpose and Motivation

Clustering is an interesting method of determining trends in data. This the-
sis serves first to illuminate the mathematics and methodology of K-means
and spectral clustering, then applies these clustering techniques to the Cal-
ifornia Health Interview Survey (CHIS) data from adolescent respondents.
The CHIS data set is specifically useful to research on healthful interven-
tions to combat unhealthy behaviors and future health risks in teens. In
a society where chronic diseases are becoming increasingly prevalent, this
work is motivated by the project of meaningfully clustering the CHIS ado-
lescent data to provide insight as to how to specifically tailor health inter-
ventions for adolescents based on the health characteristics that clustering
uses to identify them as unhealthy or at risk of leading unhealthy adult
lives.

1.2 Introduction to Clustering

We begin with a verbal overview intended to situate the reader in the meth-
ods and goals of clustering before providing rigorous definitions in Chap-
ter 2. Clustering is a mathematical problem concerned with separating
objects, points, or other data into meaningful groups. When separated
through clustering, nodes assigned to the same cluster are more similar to
each other than they are to nodes assigned to other clusters, for some defi-
nition of similarity. Clustering is often used on data for which there is little
prior information because implementation does not require many assump-
tions to be made on the data. Clustering is extremely useful to applications
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across the spectrum of data analysis, where researchers are often concerned
with finding trends, locating patterns, uncovering similarities, and making
predictions. A few examples of clustering applications include identifying
the various components of an image as investigated in [10], which could
be relevant to medical imaging, and determining which employees at a
company are satisfied and which are at risk of leaving, which could help
companies determine strategies towards achieving low employee turnover
[2].

In determining which data points best fit in which cluster, we do not
wish to cluster through enumeration, or ”by trial and error,” because this
is time-consuming and combinatorially difficult. This enumeration prob-
lem is well represented by the Stirling number of the second kind, denoted
S(n, k), which gives the number of ways to partition n objects into k distin-
guishable and nonempty groups, here, clusters. The Stirling number of the
second kind is given by [9]

S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n. (1.1)

In the later parts of this thesis, 3294 people are clustered into 2 groups. By
the enumeration represented in (1.1) this would be S(3294, 2) ≈ ∞ ways
the people could be partitioned into 2 clusters, which is unrealistic analysis
to perform and evaluate. So, we turn to a discussion of the various estab-
lished clustering methods used here. The primary interest of this thesis is
spectral clustering, but K-means clustering is included for comparison, be-
cause Mistry et al. used K-means on the 2003 CHIS data [7], and due to the
fact that spectral clustering utilizes K-means in the latter-most steps of the
algorithm if the data are being clustered into more than 2 groups.

1.3 Overview of Clustering Methods

Clustering is characterized by the ability to handle a wide range of complex
data. Due to this diversity, there are a multitude of ways to portray the data
or objects, to define similarity, and to create the groups mentioned in the
previous section. Clustering is complicated by this subjectivity, since there
is no single algorithm or approach that is adequate to solve each of the
multitude of potential clustering problems [6]. As a result, there are many
different clustering approaches and algorithms. Two methods are utilized
here, K-means and spectral clustering.
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1.3.1 Overview of K-means

Where data are represented in an m × n matrix and are graphed in n-
dimensional space, K-means creates K clusters from the data where clusters
are defined by their center, called the centroid. The centroid of a cluster is
a representation of the means of the variables that make up the points it
is nearest to. The distance from the centroid to vertices in n-dimensional
space is measured by the Euclidean distance formula. K-means works to
minimize this distance, which is effectively the distance between the vec-
tors representing the vertices of a group and the vector of the centroid of
that group.

In an iteration of minimizing distances, if a node in cluster 1 is closer
to the centroid of cluster 2, the vertex will instead be assigned to cluster
2. The centroid of the first cluster will move away from this vertex as the
means change due to that point’s variables being removed from the calcu-
lation of the centroid. When this process is complete, we have K clusters
defined by their centroids where maximized similarity between the ver-
tices of a cluster and its centroid is indicated by a minimized square error
between the two [6]. K-means is easily carried out by standard software
due to its foundation in linear algebra.

1.3.2 Overview of Spectral Clustering

The spectral clustering process similarly begins by considering data as ver-
tices in an n-dimensional space. For example, if we consider the data set
consisting of people and their age, weight, and height, we would have
points that exist in 3-dimensional space. Then we wish to create a graph,
the diagram that results from representing data as nodes joined or unjoined
by lines, which are called edges. In this implementation of spectral clus-
tering, we choose to begin by connecting all points and then proceed by
adding weight to the edges (an action which can be conceived of as mak-
ing the connecting lines thicker) based on how similar the points are. If a
photograph is being examined, a good measure for similarity may be the
color of the pixels. The closer in color two points are, the more weighted
the edge between them will be, and the more likely they are to be grouped
together. Then the data are grouped by maintaining the connections that
have the most weight, but eliminating edges of minimal weight to separate
the points into disjoint clusters. This ”cut” is achieved through eigenvec-
tor analysis, one of the defining characteristics of spectral clustering. This
allows spectral clustering problems to be efficiently computed by current
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linear algebra software [13].

Organization
Chapter 2 presents the theorems and mathematical concepts of K-means
and spectral clustering necessary to an understanding of their application
and concludes with the algorithm for implementation on the CHIS data.
The chapter ends with a comparison of the characteristics of the two clus-
tering methods. Then, Chapter 3 introduces the CHIS data, its uses, and
the results of the clustering algorithms. Finally, Chapter 4 contemplates the
practical issues encountered during this work and suggests potential future
analyses in the intersection of spectral clustering and health. The MATLAB
code written by the author to carry out analyses on the data is included in
the appendices.



Chapter 2

K-means and Spectral
Clustering

2.1 Graph Theory Definitions

Both K-means and spectral clustering are informed by a conception of data
in a graph. First, data are organized in an m × n matrix, A, featuring m
objects and their n attributes. Each vector of this matrix (xm1, xm2, ..., xmn)
defines an individual by their characteristics. Then, a graph G is a pair
(V,E) where V is the set of vertices and E is the set of unordered pairs de-
noting edges between the vertices of V . Each vertex is a row of A, so vm =
(xm1, xm2, ..., xmn) and E is the pairwise set of vertices (vi, vj). The graph-
ing of points as vertices and establishing edges that connect them occurs in
n-dimensional space.

We note two commonly used approaches to connect the points of G
with edges. The graph informed by the k-nearest neighbors method re-
quires the choosing of a parameter k, where a vertex vi is connected to
the k vertices that are nearest to it. Here, we prefer the fully connected
graph where edges are established between all vertices. The fully con-
nected graph produces an undirected graph and allows for all points to
be evaluated in the formation of the clusters.

2.2 K-means Clustering

K-means is defined by clustering data into K groups and by the concept
of the centroid µk, a point in the n-dimensional space of the graph that
demarcates the center of a cluster. Specifically, the centroid is given by the
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mean of each of the n measurements, so is a vector of length n. For µ1, the
centroid for cluster 1,

µ1 = (x1, x2, ..., xn).

We will have K centroids for each of the K groups to be identified. The
centroid is a useful tool in organizing clusters since it gives a defining set
of characteristics for each group, which also makes the centroid useful in
data analysis.

Initially, the centroids are randomly placed by the K-means algo-
rithm, then enhanced by iterations to create clusters in such a way that
the Euclidean distances between the vertices of a group and the centroid
of that group are minimized and are smaller than the distances of these
vertices to the centroids of other clusters [11]. In terms of our m vectors
in n-dimensional space, vi = (xi1, xi2, ..., xin), K-means works to minimize
a sum of squares cost function, alternatively referred to as the sum of the
squared intra-cluster distances [14][2]:∑∑

||vi − µk||22.

When the sum of squares function is minimized after an established num-
ber of iterations, the clusters are established. The algorithm used in K-
means implementation on data is given by the MATLAB command kmeans.

2.3 Spectral Clustering

We derive spectral clustering through graph theory organized in matrix
notation. We begin with data represented as points in the graph G and
fully connected by edges from E. Then, we wish to weight the edges of the
graph so vertices representing similar data are connected with an edge that
is weighted more heavily than the edge between dissimilar vertices.

We call this representation a Similarity Graph and denote the simi-
larity between vertices vi and vj , sij . W , the Weighted Adjacency Matrix,
contains the pairwise weights from the similarity function, soW (i, j) = sij .
Similarity can be defined in a multitude of ways, but a good, commonly
used function to determine weightedness is the Gaussian similarity func-
tion,

sij = exp

(
−||xi − xj ||2

2σ2

)
. (2.1)
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Figure 2.1: Similarity Graph Example

Figure 2.2: Similarity Graph with Neighborhoods

2.3.1 Considerations on σ

The Gaussian similarity function is normalized by the tuning parameter σ,
which works in a similar way to the parameter k in the k-nearest neigh-
bor graph. σ identifies a neighborhood which provides information to the
Gaussian function in its establishment of appropriate weights, sij . Within
a neighborhood, the edges between points are given substantial weight,
while edges to vertices outside the neighborhood are assigned negligible
(yet still positive) weight [13]. σ is thus an important parameter with sub-
stantial influence on the determination of clusters. Unfortunately, there are
few guidelines to choosing σ other than trial and error. σ is also problem-
atic in that the use of a constant σ stipulates that the data must be on the
same scale, or clustering will not provide good groups since the same sized
neighborhood will not be appropriate everywhere on the graph [8]. In 2.2,
we see that the neighborhood used to identify the cluster on the left is in-
sufficient to capture the characteristics and points included in the cluster
on the right.
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Perona and Zelnik-Manor write on the effects of σ on clustering in
[8]. They conclude that rather than establishing a constant σ, it is better to
set a σ for each point. It makes sense intuitively to define each neighbor-
hood by the points it includes since data may be more dense in some areas
in the graph than in others. A local scaling σ also augments the ability of
spectral clustering algorithms to handle complex data through appropriate
analysis of every node.

Through empirical and theoretical analysis, Perona and Zelnik-Manor
give a successful alternative to the constant σ, instead defining the neigh-
borhood by a local scaling parameter, σiσj . Generally, σi is defined as the
Euclidean distance between vertex vi and vk where vk is the kth nearest
node to vi. In a multitude of different experimental settings, the authors
found that k = 7 resulted in good clustering. So, we borrow this parameter
and change the Gaussian similarity function to

s(xi, sj) = exp

(
−||xi − xj ||2

(σi ∗ σj)

)
,

where σi = d(xi, x7th), σj = d(xj , x7th), and x7th is the 7th nearest neighbor
to point xi or xj .

Once we have established W and the Similarity Graph, we create the
Degree Matrix, D, which contains on its diagonal the total weight of the
connections of each vertex,

D = diag(di), (2.2)

where di =
∑m

k=1wi,k. D represents the overall connectedness of each ver-
tex to all others.

We are now ready to eliminate some edges from the fully connected graph
to create distinct clusters of connected points. Following [10], we can con-
ceive of making two clusters as splitting our graph G = (V,E) into two
disjoint sets A and B where A ∪ B = V and A ∩ B = ∅. To achieve this
separation, we ”cut” the edges that maintain connections between the two
sets. We measure the weight of our cuts by summing the similarity of the
eliminated edges in what is called the cut.

cut(A,B) =
∑
va∈A
vb∈B

W (va, vb) (2.3)
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The optimal clusters will be derived by minimizing cut so that the for-
mation of clusters occurs by eliminating minimally weighted edges rather
than edges between nodes that have high similarity. Shi and Malik en-
hance cut within their proposed calculation, Ncut, an unbiased measure
which considers the value of a cut between A and B as a fraction of the to-
tal connections between all nodes in the graph. The use of Ncut eliminates
the risk that cut will make a trivial cut and produce a cluster consisting of
a single vertex in A. Ncut is given by

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
, (2.4)

where assoc(A, V ) is the total connection between nodes in A to all other
nodes in the graph,

assoc(A, V ) =
∑
va∈A
vi∈V

W (va, vi),

and cut as defined as in (2.3).

Unfortunately, minimizing Ncut is NP-hard [10], so instead, Shi and Malik
represent Ncut with an eigenvector problem where solving Ncut is equiv-
alent to solving

(D −W )y = λDy,

for y, the matrix of eigenvectors. D is diagonal Degree Matrix with di =
n∑

j=1
W (i, j) on the diagonal (2.2) and W is the symmetrical Weighted Adja-

cency Matrix where W (i, j) = sij with sij defined in (2.1). This eigenvector
problem can be reformulated as

D−1/2(D −W )D−1/2z = λz,

where the Graph Laplacian Matrix, (D−W ), is a representation of the sim-
ilarity graph. We see that the solution results from normalizing the Graph
Laplacian, giving the Normalized Graph Laplacian, L,

L = D−1/2(D −W )D−1/2.

We refer the reader to [10] for details on the derivation of these formulas
and the mathematical explanations for the approximation of Ncut by this
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eigenvector problem. For our purposes, it is important to note that z0 is
the smallest eigenvector of L with an eigenvalue of 0 and z1 is the second
smallest eigenvector of L which gives the solution to the Ncut problem
[10]. Nodes are partitioned into groups by identifying a dividing threshold
in the second smallest eigenvector, z1, and assigning the points above the
threshold to one cluster and the points below the threshold to the other,
effectively cutting the connections between individuals on opposite sides
of the threshold. Examples are given in Figure 2.4.

2.3.2 The Clustering Properties of the Eigenvector

The reason why the second eigenvector of the Normalized Graph Laplacian
gives the threshold for separating data into two clusters is not completely
obvious. It is similarly unclear why other eigenvectors are useful in further
separating the data. Deep mathematical theory (involving the Rayleigh
quotient) that is beyond the scope of this work can be utilized to indicate
the role of the second eigenvector as seen in [10]. Superficially, eigenvectors
point in the ”right” directions and provide intuition about the actions or
properties of a function.

For example, consider a function F that changes a circle into an oval,
vectors v1 and v2 define how F works on the circle.

Figure 2.3: Eigenvector Conceptualization

In spectral clustering, the eigenvectors to the Normalized Graph Laplacian
give direction to the data in the Weighted Adjacency Matrix (which informs
the Laplacian and is used in creating the similarity graph), so if the simi-
larity graph indicates two directions or two groups in the data, the second
eigenvector will represent them.

In the ideal case, there is an obvious break in the second eigenvector
that clearly defines the two clusters in the data. Sometimes, however, the
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Figure 2.4: Local Scaling σ producing good clustering results on Toy Exam-
ples using (a) Local Scaling σ Eigenvector for the Gaussian Distribution, (b)
Local Scaling σ on the Gaussian Distribution, (c) Local Scaling σ Eigenvec-
tor for Interlocking U’s, (d) Local Scaling σ on Interlocking U’s

second eigenvector takes on continuous values and to create two clusters,
we must identify a splitting point. One option for the threshold is the me-
dian of the eigenvector, but a better option is to search for the splitting that
gives the best (most minimal) Ncut(A,B) value for the resulting partition
by testing potential thresholds and choosing the value with the best Ncut
as the splitting point [10]. Sometimes a continuous eigenvector indicates
that there is no clear divide to the data we aim to separate, in some in-
stances it implies the scaling parameter σ is poorly chosen, and still other
times it may simply represent a complicated data set, where we must work
harder to conceive of the separation. In establishing clusters we can check
their validity in part by the divide in the eigenvector, looking for a clear,
visible break or a very small Ncut value for the chosen threshold. We can
also check algorithms generally by applying them to empirical examples
where the distributions are known.

While this thesis is primarily concerned with clustering into two groups,
we note that the third eigenvector can be used to further partition the first
two clusters. After the threshold in the second eigenvector is identified
or created and two clusters are established, then the threshold in the third
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eigenvector is found and used to subdivide the first two clusters.
Alternatively, the first K eigenvectors can be found and used as rep-

resentatives of the characteristics of the individuals. Then K-means is run
on this m×K matrix to find K clusters in the data. If 4 groups are desired,
K-means should be run on the first 4 eigenvectors produced by the spectral
clustering algorithm as the 4 new ”attributes” of the people to be clustered.

Algorithm 1 Spectral Clustering for Two or K Clusters, Input data matrix
A, Output clusters

1: Define A as an m× n matrix of data with m objects and n attributes.
2: Find B, an m × m matrix of pairwise distances characterized by 0’s

along the diagonal. Arrange the distances by row in ascending order in
matrix bx.

3: Create W , the m×m Weighted Adjacency Matrix of pairwise similari-
ties where

W (i, j) = exp

(
−||xi − xj ||2

2σ2

)
or

W (i, j) = exp

(
−||xi − xj ||2

bx(i, 7) ∗ bx(j, 7)

)
4: Create D, the m ×m Degree Matrix of the similarity graph which has

elements di along its diagonal where di is equal to the total similarity of
point i to all others, di =

∑m
k=1wi,k.

5: Solve
D−1/2(D −W )D−1/2z = λz

for z, the matrix of eigenvectors by column of the Normalized Graph
Laplacian matrix.
Identify z1, the second eigenvector and order its values

or
identify the first K eigenvectors, order their values, and place them in
the mxK matrix Z.

6: Use the break in the second eigenvector to separate the objects into two
groups

or
run kmeans(Z,K).
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2.4 Comparison of Clustering Methods

Parameters
Both K-means and spectral clustering are vulnerable to choices in param-
eter. Any time a clustering problem is considered, the number of clusters
into which the data is partitioned. This can cause problems for researchers,
since clustering is often used when there is little prior information on the
distribution of data. In lower dimensions it is possible to plot clusters and
visually determine the effectiveness of the clustering, but when clustering
with large data sets, accuracy is generally difficult to define since there is
most often no notion of what constitutes a ”correct” cluster.

Ae also have the parameter σ in spectral clustering that can drasti-
cally change clustering results. If σ is too large, the algorithm will maintain
too many connections between the data creating large groups of slightly
similar nodes. If σ is too small, the clustering algorithm may miss large,
general trends in the data. The measure of the appropriateness of σ can
sometimes be understood by looking at the innate thresholding character-
istics of the second smallest eigenvector, but, again, is generally only clear
through data analysis.

Scales of Data
Spectral clustering most often features either the k-nearest neighbor simi-
larity graph or the fully connected graph, which are both characterized by
handling data on different scales very well [13]. K-means clustering, on the
other hand, most often does poorly with data on different scales, since if
one of the initial centroids does not land near a set of points on a scale dif-
ferent from the majority of the data, it may never ”make it over” to those
points. This problem with K-means is compounded by its tendency to cre-
ate clusters of similar size.

We see that whenever Euclidean distance is used, which is often
throughout both the K-means and spectral clustering methods of analy-
sis previously discussed, the formation of clusters is dominated by those
attributes that are largest in scale [6]. To achieve a data set where all vari-
ables are on the same scale, researchers may choose to manipulate the data.

Assumptions on and Complexity of Data
Spectral clustering evaluates each point so that the entire data set informs
the formation of groups [13], which allows spectral clustering to group
complex data where a model of the distribution of data is unknown [8].
This property of spectral clustering is encompassed in references to spec-
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tral clustering as divisive, meaning all nodes are first connected in one large
cluster and then edges are cut to arrive at the desired number of disjoint
groups [6]. Alternatively, due to K-means performing clustering by estab-
lishing the centers of clusters first, it does not function as well on non-linear,
complex models since it first establishes connections, then changes them to
minimize Euclidean based distance measures. It is important to note that
the added considerations of spectral clustering lead to a longer run time
than K-means, which is executed very quickly and easily, especially given
the kmeans command in MATLAB. This has led to a popularity of K-means
due to its easy implementation (which is especially useful on large data
sets) and general success when clusters are of comparable size [6][2].
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Figure 2.5: Comparison of K-means and Spectral Clustering on Empirical
Examples with (a) and (b) by K-means and (c) and (d) by spectral clustering
producing the same results

Empirical Examples
When examining the effectiveness and behavior of K-means on toy exam-
ples in 2.5 and 2.6, we note that K-means is successful when it can linearly
divide the data. So while K-means works identically to spectral clustering
for Spheres and Gaussian, images in which a line can clearly separate the
clusters, spectral clustering outperforms it on Eye and Interlocking U’s.
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Figure 2.6: Comparison of K-means and Spectral Clustering on 2D and 3D
Empirical Examples with (a) and (b) failing by K-means and (c) and (d)
succeeding by spectral clustering



Chapter 3

Application to the California
Health Interview Survey

3.1 Description of Data

The California Health Interview Survey (CHIS) is a telephone survey of
California residents performed by the UCLA Center for Health Policy Re-
search. It is the largest health survey in the nation and is performed through
a random dial of landlines and cellular phones [4]. The survey provides
critical data for wide usage by researchers, health professionals, and policy-
makers [5].

The survey includes 186 questions on qualitative and quantifiable
health-related behavior and indicators. The answers to qualitative ques-
tions such as ”Do you currently smoke cigarettes?” are represented numer-
ically for data analysis purposes. Often ”yes” is coded as a 1 and ”no”
is denoted with a 2, however there is no steadfast rule to the numerical
assignments. Other questions are represented differently, for example in-
surance type is entered as 1: uninsured, 5: Medicaid, 6: healthy families, 7:
employment-based, 8: privately purchased, 9: other public. Quantitative
data are recorded as given.

The CHIS 2009 data dictionary notes that interviewers achieved a
high level of responses on the majority of questions and that most ques-
tions have missing responses for less than 2% of the sample [4]. There are
of course exceptions, such as household income, where there were initially
valid missing responses for more than 20% of the people interviewed. The
data dictionary describes that where missing responses were identified,
values were imputed using two methods of impution. The first technique
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was a random selection from the observed distribution and was used when
the percentage of items missing from a question was very small. Hot deck
imputation was also used, a process by which information from a similar
person is imputed to the respondent with missing data where similarity
was defined by household and individual characteristics. Once a ”similar”
individual had been used, they were eliminated from further use in the hot
deck imputation process.

The survey includes responses from adults, adolescents, and children
(given by their guardians), but only the data from adolescent respondents
is utilized here. Among the questions asked to adolescents, some were
proposed to all respondents and others specifically geared to the adoles-
cent population. Further, there were many questions specific to adolescent
subpopulations, such as those diagnosed with asthma. As given, before
any manipulation of data by the author, there were 3,382 adolescents in-
terviewed on 186 health related questions. A few overall characteristics of
the data are that males are more often smokers, females are more likely to
exercise infrequently and experience psychological stress, and all adoles-
cents are likely to consume less than the recommended servings of fruits
and vegetables per day.

3.2 Informing Work

The Center for Disease Control (CDC) studies on adolescents indicate that
adolescent health is largely informed by obesity, reckless or violent behav-
ior, poverty, substance use, and healthcare access. The limited research
on the clustering behavior of adolescent health data indicates clusters are
largely defined by gender and psychological distress [7]. CHIS data on
adolescents has previously been clustered in [7] where Mistry et al. ap-
ply K-means clustering to the 2003 CHIS adolescent data set using smok-
ing, alcohol use, low fruit/vegetable consumption, physical activity, gen-
der, parental involvement, parental supervision, adult role models, age,
race, income, and parental education as variables informing the analysis.
In group formation, unhealthy behavior is identified as smoking, using al-
cohol, infrequent exercise, and low fruit and vegetable consumption. The
authors first separate data by gender, then perform K-means to create 4
clusters for each gender which they classified (in order of healthfulness) as
Salutary Adherents, Active Snackers, Sedentary Snackers, and Risk Takers.
None of the individuals in the Salutary Adherents group displayed any
of the unhealthy behaviors identified by the authors. Active Snackers are
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distinguished by adolescents who consume few servings of fruits and veg-
etables, but exercise frequently, while Sedentary Snackers are characterized
as exercising infrequently with a smattering of low fruit and vegetable con-
sumers, cigarette users, and alcohol users. Finally, the Risk Takers cluster
includes many individuals currently using alcohol and rarely consuming
fruits and vegetables. Some Risk Takers use alcohol and exercise rarely.

The authors are specifically concerned with the gendered characteris-
tics of the clusters, which they characterize as gender specific in that males
and females engage in risk-taking behavior, perform exercise, experience
depression, and respond to parental involvement in different ways and
at different rates. On average, females have poorer psychological health,
greater parental supervision, and lower physical activity levels than males.
Generally adult involvement decreases the risk of being in an unhealthful
cluster for both genders [7].

This analysis shares with Mistry et al. a motivation to identify ado-
lescent populations which engage in unhealthy lifestyles so that health out-
reach programs can be tailored to the specific behaviors that are indicative
of low health and to the groups of adolescents which could most benefit
from healthful interventions. It is also valuable for researchers and health
professionals to be aware of the correlations between multiple behaviors
and risk of an unhealthy lifestyle. On this front, Mistry et al. conclude
that all interventions planned for adolescents should address a multitude
of overlapping and interacting health behaviors. In the two unhealthy clus-
ters, for example, they identify low fruit and vegetable consumption is cor-
related with low physical activity or alcohol use, so interventions should
address these overlapping issues simultaneously.

3.3 Implementation of Clustering

This analysis takes its lead from Mistry et al. in using the variables utilized
in their successful clustering analysis: gender, cigarette use and alcohol use,
physical activity, consumption of fruits and vegetables, exercise, parental
involvement, adult role models, age, race, income, and parental education.
The variables and their values that determine a healthy or unhealthy classi-
fication are given in Table 3.1. These variables also align with CDC reports
of accurate indicators of adolescent health, substance use, diet, exercise,
and psychological health [3].
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Table 3.1: Variables and Their Meaning for Clustering

Variable Healthy Unhealthy
Smoking Doesn’t Smoke Current Smoker

Alcohol Has never had more
than a few sips of alcohol

Has ever had more than
a few sips of alcohol

Exercise Exercises for an hour 4,
5, 6, or 7 days of week

Exercises for an hour 0,
1, 2, or 3 days of week

Fruits and Vegetables 5 or more servings yes-
terday

Less than 5 servings
yesterday

Psychological Distress Feeling nervous, hope-
less, restless, depressed,
apathetic some, few, or
none of the last 30 days

Feeling nervous, hope-
less, restless, depressed,
apathetic most or all of
the last 30 days

Hero Admires and wants to be
like someone

Does not admire and
want to be like someone

Adult Involvement Parent is present during
after school hours and
knows where adolescent
goes at night

Parent is not present af-
ter school and does not
know where adolescent
goes at night

3.3.1 Data Characteristics and Manipulations

While the 2009 CHIS Data Dictionary describes each health attribute as
having very few missing values, there are a fair number of individuals in
the adolescent data set where responses are labeled unknown for some of
questions. Due to the relatively small number of these individuals com-
pared to the total (88 of 3382), they were eliminated to arrive at the 3,294
individuals used in the following analysis. Additionally, 55 questions were
asked only to subpopulations and were coded as inapplicable (denoted
with a −1) for the remaining set of adolescents. An example of such a
question is, ”Do you have a written copy of your asthma plan?” Only 295
adolescents answered this question, while the remaining 3,084 individu-
als, a substantial 91% of respondents were assigned −1 for inapplicable.
In some cases, the percentage of inapplicable answers was as high as 97%.
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Since spectral clustering relies heavily on the attributes of individuals, it is
concerning to utilize data where some variables have entries that are, in a
way, meaningless. Further, we do not necessarily want two individuals to
be seen as more similar by the algorithm because they did not have specific
experience with the same subset specific questions. Since the analysis here
did not utilize all of the 300 measurements, most of these problematic vari-
ables were eliminated in the paring down of the data. For the few others,
the approach used here was to change inapplicables to the answer deemed
appropriate (if applicable), which in most cases was ”no”. This approach
was used on questions in the same vein as, ”Have you used an inhaler in
the last 12 months?” No other manipulations were required since the vari-
ables used in analysis were all fairly similar in scale.

3.4 Analysis and Results

3.4.1 How Many Clusters?

Other than examining subtle indicators or completing a full analysis of
clustering results, there is no set method of analysis to determine if the clus-
ters produced are ”correct,” because each instance of clustering is unique
and we wish for clustering to give information on unknown distributions.
However, this can make the selection of the number of groups to cluster
a difficult decision. It is an important one though, because the number of
groups will change how the patterns in the data are recognized and inter-
preted.

In order to gather information on the clustering tendencies of the
3294 individuals and 22 variables, clustering was performed in a variety
of combinations of 2, 4, and 20 groups based on strictly K-means, K-means
on 4 spectral clustering eigenvectors, and K-means on 20 spectral cluster-
ing eigenvectors. The results provide some subtle indications for the CHIS
adolescent data as seen in Table 3.2. By ”stable” and ”volatile” we refer to
the ability of K-means to produce the same results each time it is run on a
data matrix, A. Strictly K-means on 2 groups is very stable, while strictly
K-means clustering to create 4 groups is very volatile, leading to the con-
jecture that 2 groups are more clearly identifiable in the data than 4 groups.
K-means on 4 eigenvectors for both 2 and 4 groups is stable, but places a
trivial number of people in some of the groups; with 2 clusters, there are
only 7 people assigned to group 1 with the remaining 3287 individuals in
group 2. Similarly for K-means on 4 eigenvectors for 4 clusters, only 0.24%
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of the data are clustered into group 3 and group 4 with 99.76% of the data
in clusters 1 and 2, which does not provide much useful information about
overall trends in the data, but may indicate a propensity of the data to exist
in two clusters. Both K-means as applied to create 2 and 4 clusters pro-
duced volatile results when used on 20 spectral clustering eigenvectors,
which may indicate that using many more eigenvectors than needed (here,
18 and 16 respectively) introduces noise that prevents the clustering algo-
rithms from working effectively. Out of curiosity, the K-means algorithm
was run on different numbers of spectral clustering eigenvectors to create
20 clusters. The resulting groupings are volatile and often create groups
of less than 4 individuals, which is not entirely helpful when our aim is to
identify large scale patterns in the data.

Table 3.2: Stability or Volatility of Clustering Attempts

Method Two Clusters Four Clusters
Strictly K-means Stable Volatile

K-means on 4 eigenvectors Stable, but trivial groups Stable, but trivial groups
K-means on 20 eigenvectors Volatile Volatile

Other than these inferences, we must run analysis on the clusters produced
by the clustering algorithms in order to determine if they provide useful in-
formation about the data. Considering the information we gathered from
the stability and volatility of clustering attempts along with the idea that
the simplest groupings may provide the clearest distinctions between the
resulting groups, we move forward in analyzing the composition of the
data in two clusters provided by strictly K-means and strictly spectral clus-
tering. Two clusters may also allow us to see large patterns of adolescents
who are healthy or not.

3.4.2 Two Groups by K-means

The K-means function in MATLAB was used to cluster the 3294 x 22 data
matrix A into 2 groups. Group 1 has 1710 individuals (888 males and 822
females) and group 2 has 1584 individuals (935 males and 749 females).
The tendency of K-means to create clusters of the same size is true here. It
is interesting to note that the clusters also have similar numbers of males
and females. The composition of the groups was analyzed by running χ2
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tests on the data to examine if the proportion of adolescents in each cluster
reporting a certain variable significantly varies from the expected frequen-
cies given the sizes of the two groups.

Group 1 is characterized by adolescents who have no hero (p < 0.0001),
exercise infrequently (p < 0.0001), and come from impoverished fami-
lies (p < 0.0001) as well as females who experience psychological stress
(p = 0.0036). Group 2 has no specific characteristics other than the inclu-
sion of adolescents exhibiting the opposite behaviors of cluster 1 (in more
often having a hero, exercising, being financial security, and having low
levels of psychological stress). Individuals who smoke, consume alcohol,
consume low levels of fruits and vegetables, and have low parental in-
volvement or supervision are distributed insignificantly between the clus-
ters.

Table 3.3: K-means: Percentage of adolescents by cluster that exhibit un-
healthy behaviors

All Low Exercise Psychological Distress No hero Impoverished
Cluster 1 17.91 3.73 23.16 31.44
Cluster 2 12.57 2.13 15.73 5.41
Females Low Exercise Psychological Distress No hero Impoverished
Cluster 1 21.45 5.16 23.36 31.44
Cluster 2 14.32 2.67 14.51 5.41

Males Low Exercise Psychological Distress No hero Impoverished
Cluster 1 14.68 2.44 22.98 30.06
Cluster 2 10.97 1.63 16.83 5.40

As to the meaning of the clustering, we can conjecture that adolescents in
impoverished homes may experience more stress than other adolescents
due to their being held to standards in school for which they lack the re-
sources to attain and the potential extra burdens of childcare for younger
siblings, working outside of the home to support the family, or providing
emotional support. These factors would also decrease the time available to
the individual for physical activity. These guesses combined with the fact
that individuals who cannot identify a hero are more often in cluster 1 may
indicate that the adolescents are separated mainly due to their psycholog-
ical health. Cluster 2 would then represent adolescents with low levels of
psychological stress.

This clustering result may be useful to health professionals in the
field of psychology or to middle and high school counselors in helping to
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determine adolescents who could benefit from counseling services. Since
adolescents may not be forthcoming in issues of mental health, this clus-
tering by K-means could indicate the propensity of an individual to be as-
signed with the group associated with psychological stress and low exer-
cise. The result may also be helpful in studies of the effects on poverty
on adolescents in supporting the notion that financial insecurity is a causal
factor in stress.

3.4.3 Two Groups by Spectral Clustering

The spectral clustering algorithm was run to create two groups using the lo-
cal scaling 7th nearest neighbor parameter for σ in the Gaussian. However,
this clustering attempt failed. All eigenvectors of the Normalized Graph
Laplacian were equal to zero, giving no information on the data. This is
potentially a result of clustering integer data where repeats in data points
cause the 7th nearest neighbor to be the same node as the one being ana-
lyzed. This problem is fully discussed in Chapter 4.

Instead, a constant parameter was established, σ = 5, a choice made
according to the parameters found appropriate for the toy examples and by
a good shape of the resulting second eigenvector. Unfortunately, the second
eigenvector of the Normalized Graph Laplacian for our 3294 individuals
and 22 characteristics does not represent the ideal case in that it is a contin-
uous eignevector, as seen in Figure 3.1. Thus, a threshold at which to split
the individuals into groups was found by theNcutmethod detailed above,
(2.4), where different splitting points are tested and a threshold is chosen
by the splitting point that minimizes Ncut [10]. 40 potential thresholds
were tested and the point that minimized Ncut was found to be individual
2399 of 3294 with an Ncut value of 0.9973. So, the 2 clusters are defined by
grouping the individuals above and below this point on the eigenvector,
putting 2399 individuals in group 1 (1267 males and 1132 females) and 895
individuals in cluster 2 (456 males and 439 females). Interestingly, while
the clusters are of different sizes, the number of males and females in each
is very similar.

The statistical analyses used on the K-means clustering results were
also applied to the spectral clustering groups to determine if specific vari-
ables caused adolescents to be assigned to the clusters in significantly dif-
ferent frequencies than expected, based on the size of the clusters. The
results of the χ2 tests indicate that spectral clustering on the adolescent
data holistically grouped the individuals into a comprehensively unhealthy
cluster, cluster 1, and a more healthful group, cluster 2. For both gen-
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Figure 3.1: Spectral Clustering Second Eigenvector

ders, group 1 is characterized by smoking (p < 0.0001), low exercise (p <
0.0001), psychological distress (p < 0.0001), and poverty (p < 0.0001).
Within the variables that define overall adolescent group assignment, smok-
ing is a significantly more important factor for males (p = 0.0032), while
exercise (p < 0.0001) and mental health (p < 0.0001) are more determin-
ing for females. Beyond these four decisive variables, the clusters are de-
termined in part according to gender-exclusive variables (with higher, yet
still significant, p-values than the variables most determining in cluster
formation). While low adult supervision has no significant effect on fe-
male placement in either cluster, when looking specifically at males, low
adult supervision increases the risk of being placed in the unhealthy clus-
ter (p = 0.0227). Females who have ever consumed more than a sip of
alcohol are also more likely to be placed in cluster 1 (p = 0.0390) while al-
cohol has no significant effect for males. Factors that are non-determining
in the creation of clusters are adolescents not having a hero and a low con-
sumption of fruits and vegetables, which is likely due to the fact that the
majority of individuals in the data set are classified as low consumers.

These spectral clustering results may be useful for organizations seek-
ing to determine general causal factors of unhealthy adolescents. Cam-
paigns for healthy lifestyles could tailor their efforts to the variables indica-
tive of unhealthy behaviors as given by spectral clustering, such as exercise
and substance use. The results could also be used indicate to physicians
the status of overall health of their teen patients, which may close the gap
in communication of information about adolescents’ habits.
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Table 3.4: Spectral clustering: Percentage of adolescents by cluster that ex-
hibit unhealthy behaviors

All Smoking Alcohol
Use

Low
Exercise

Psych.
Distress

Low Parental
Involvement

Poverty

Cluster 1 4.12 25.05 26.87 5.74 15.15 29.87
Cluster 2 0.12 7.65 3.61 0.12 4.40 6.25
Females Smoking Alcohol

Use
Low
Exercise

Psych.
Distress

Low Parental
Involvement

Poverty

Cluster 1 3.06 24.19 31.06 7.64 14.83 29.98
Cluster 2 0.06 7.51 4.71 0.19 4.77 6.87
Males Smoking Alcohol

Use
Low
Exercise

Psych.
Distress

Low Parental
Involvement

Poverty

Cluster 1 5.11 25.83 23.04 4.00 15.44 29.77
Cluster 2 0.17 7.78 2.61 0.06 4.06 5.69

3.4.4 Comparison of Clustering Analyses

Clustering by both K-means and spectral clustering appear successful in
that the variables most affecting group formation are among those pre-
sented by the CDC as high indicators of adolescent health [3]. Further,
the differences between healthy and unhealthy individuals in the clusters
were significant for at least 4 variables in each clustering method. The clus-
ters identified by spectral clustering depended on 6 variables: smoking, al-
cohol use, exercise, psychological distress, low parental involvement, and
poverty. Other than the overlap of substance abuse in smoking and alco-
hol use, these variables seem to present a inclusive view of the health of
the adolescent. On the other hand, the unhealthier cluster identified by K-
means is characterized by 4 variables: exercise, psychological distress, no
hero, and poverty. Two of these variables overlap in the category of men-
tal health, psychological distress and hero, and the other two, low exercise
and poverty, provide information about the lifestyle of the adolescent. In
general, the spectral clustering clusters were defined by being informed
by more variables and having differences between the clusters that were
more significant than those of the K-means algorithm. It is possible that
the tendency of K-means to create closely sized groups based on linear
data caused these variables to be more important to clustering than others.
Then, we may infer that the patterns of relationship between the variables
determining the spectral clustering groups may be more complex.
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Three of the variables overlap between the clustering approaches: ex-
ercise, psychological distress, and poverty, which may indicate that these
variables are the most deterministic of adolescent health attributes, which
may be concerning to mathematicians and social scientists alike as the vari-
ables affecting overall teen health. Due to the different characteristics of
the clustering methods, the overlap between them may be the best starting
point for future work, since K-means has been proven to cluster healthcare
data before and spectral clustering has been argued as a better approach to
clustering problems. Both the results from the groups evaluated individ-
ually and the conclusions from the combined results indicate a successful
application of clustering to health care data.

In addition to differences between the results of K-means and spec-
tral clustering, we can compare the analysis here to the K-means clustering
of the 2003 CHIS data in [7]. A first obvious difference is that K-means
clustering on the 2003 data produced clusters very well characterized by
the factors noted by the authors. Very high percentages of adolescents re-
ported the behaviors of the group they were clustered into (even reaching
100% in some cases). While the differences noted in the clustering results
on the 2009 data are significant, the variables do not divide the groups as
starkly, seen in Tables 3.3 and 3.4. Also, while this analysis shares with
[7] cluster formation informed by smoking, alcohol use, and low exercise,
a final determining variable in Mistry et al. is low consumption of fruits
and vegetables, which is not seen in the analysis of the 2009 data. Instead,
poverty and psychological health play a more important role. This differ-
ence in results when the current K-means clusters are compared to the 2003
K-means groups may be a product of the 6 years between data collection
changing health concerns for adolescents, or the non-inclusion of low fruit
and vegetable consumption here may be a result of most adolescents in the
data set reporting low consumption. Additionally, the process of analysis
here differs in utilizing the spectral clustering algorithm to group data and
not separating the data before it is clustered, so as not to assume gendered
differences in the data and to be able to utilize gender as another informing
variable in clusters creation.





Chapter 4

Looking Forward

4.1 Practical Problems

Using Data Collected by Others
Problems may occur in the analysis of data collected by other researchers.
In general, there may be missing data or the data may be coded inappro-
priately for a specific kind of analysis. While the subset of data used here
alleviated many of the problems in the larger set, a researcher aiming to
cluster the entire data set would have to work through the missing values
and the many instances of ”inapplicable” as an answer. Depending on the
kind of analysis performed, the inapplicable answers may not matter, but
if they were problematic, imputation could potentially be used. Another
characteristic of the 2009 CHIS adolescent data set is a high variability in the
number of questions asked on each health topic. While there are four ques-
tions to determine cigarette use, there are 15 related to asthma. With respect
to these variables, clustering the data will result in groups that are defined
more by characteristics related to asthma than to smoking. This problem
of over-representation of certain variables could potentially be remedied
through careful scaling.

The general differences in scale in the data could be an issue since the
spectral clustering algorithm works by grouping people with similar nu-
merical profiles and involves the Euclidean distance formula which weights
larger data more heavily in grouping considerations. It is consequently im-
portant to have data within a similar range. For example, while the answer
to the question ”Are you currently taking physical education in school?” is
coded with a 1 for ”no” and a 2 for ”yes,” the question ”How much do you
weigh?” yields values as large as 200 lbs. These values will be weighted
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differently by the Gaussian similarity function, so not only will some ques-
tions be given larger importance than others, but these values may appear
dissimilar to others. Scaling is an easily fixed issue since the researcher can
manipulate the data by a constant, but it will not necessarily by clear in
which range all variables should exist.

7th Nearest Neighbor
The local scaling σ defined by the 7th nearest neighbor fails with the inte-
ger data used here. Because there are not the differences in data that result
from non-contrived quantitative data, there is potential for repeated points,
especially here when only 22 variables are used. Thus, in some cases, the
7th nearest point to a vertex was a point with the same coordinates, which
inserted zeros into the Weighted Adjacency Matrix, a problem for further
calculations of the Degree Matrix and the eigenvectors. This is a substantial
issue, since the local scaling sigma given by the 7th nearest neighbor is one
of few good options for choosing σ in the Gaussian. A possible solution
may be to look at a different kth nearest neighbor for cases of integer data.
An analysis could be devised in order to determine for a specific data set
which nearest neighbor would be necessary to advance beyond the repe-
tition of points. It is unclear, however, if this parameter would retain the
good properties of the 7th nearest neighbor in characterizing useful neigh-
borhoods and providing good clustering results. Alternatively, some ran-
domness could be added to each integer, to make the data set look more like
standard data, but this noise may interfere with clustering. A final poten-
tial solution is to add a dummy variable so that the points are recognized
as different [2].

Number of Variables
The researcher must determine the number of variables to include in a clus-
tering analysis. There are definite benefits to including many variables
since more information is then given to the clustering algorithm for bet-
ter, more useful clusters on the objects the variables describe. However,
the run time of the algorithm will be greatly increased by the inclusion of
many attributes, especially the time to create W , the Weighted Adjacency
Matrix and to find the eigenvectors of the Normalized Graph Laplacian.
Using few variables decreases computation time and allows for the visual
representation of data, so provides visual confirmation that clustering has
or has not worked (as in the toy examples). However, using few variables
may result in a failure of the clustering algorithm if the variables chosen do
not correlate in a significant way. Initially, for ease of computation, clus-
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tering analyses were run on three variables from the CHIS adolescent data
as informed by [3]. Self-health analysis, smoking in the household, ner-
vousness, body mass index, and serious psychological stress were used
in different combinations of three, all of which gave second eigenvectors
equal to zero. This could indicate that the question that clustering was ask-
ing on these variables was poorly chosen or that three variables are simply
insufficient with abstract, repeated, integer data.

4.2 Future Work

CHIS Adolescent Data
There are many potentials for the application of clustering to the 2009 CHIS
data set other than the analysis performed here. A first, obvious, idea for
future work is to use different variables in order to answer a more specific
question. Since part of the purpose of this work was to see if spectral clus-
tering produced meaningful results on healthcare data, no specific question
informed the analysis on the 22 variables. This could provide interesting re-
sults to the healthcare community on specific adolescent health behaviors.
For example, individuals with asthma could be assigned to one cluster and
then other variables could be introduced into the algorithm to determine
through clustering which health attributes are associated with asthma.

It could also be illustrative to intentionally weight the data accord-
ing to the importance of certain variables to overall health, as informed by
prior research on adolescent health behaviors. An objective measure could
be obtained from the Department of Health and Human Services websites
on causes of death or illness. For example, it is possible that by weighting
”Do you walk or bike to school?” less than ”How many cigarettes do you
smoke per day?” could provide more informative indications on the over-
all health of adolescents.

Other Applications
The CHIS adolescent data set was not available at the onset of research for
this project, so a different application was considered on Alzheimer’s dis-
ease. Alzheimer’s is important to study because it is a prevalent disease
in the elderly population of the US (a segment of the population which
is growing) and the disease remains much of a mystery to health profes-
sionals and the research community. It is possible that spectral clustering
could provide information about the predictors of the disease to inform
early detection of and preventive treatments for individuals likely to de-
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velop Alzheimer’s. A variety of research has already been performed on
individual characteristics or experiences that increase the likelihood of de-
veloping Alzheimer’s. Factors shown to increase the risk of Alzheimer’s
are having immediate family members with Alzheimer’s and head injuries.
Clustering may be able to help prove or disprove the influence of potential
risk factors including stroke, high blood pressure, diet, social engagement,
education, environmental toxins, and medications [1].

4.3 Conclusion

K-means and spectral clustering are informative methods of analysis that
are easy to understand and to implement. Both are successful at clustering
healthcare data, although the results given by each are unique. Accord-
ing to the overlapping results of K-means and spectral clustering, exercise,
psychological distress, and poverty are strong indicators of health for ado-
lescent respondents in the California Health Interview Survey. This kind
of work and these results have applications for researchers in mathemat-
ics and the social sciences as well as health professionals in determining
risk factors for low health and in identifying topics for successful health
interventions.



Appendix A

Spectral Clustering for Two
Groups

%A = mxn Data Matrix
m = length(A);

%Create B, an mxm matrix of pairwise distances to be used in the
%’7th nearest’ calculation of W. B is characterized by 0’s along
%the diagonal.
B = zeros(m,m);
for j=1:m

for k=1:m
B(j,k) = norm(A(j,:)-A(k,:));

end
end

%Then, we wish to order the distances, so rearrange each row of
%B (dim = 2) so that the values are in ascending numerical order.
[bx, ix]=sort(B, 2, ’ascend’);

%Create W, the Weighted Adjacency Matrix of the Similarity
%Graph. W is an mxm matrix with elements sjk pairwise similarities.
%W is characterized by 1’s along the diagonal.
W = zeros(m,m);
for j=1:m

for k=1:m
W(j,k) = exp(-norm(A(j,:)-A(k,:))ˆ2 / (bx(j,7)*bx(k,7)));
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%or
W(j,k) = exp(-norm(A(j,:)-A(k,:))ˆ2 / (2*(sigma)ˆ2));
end

end

%Create the Degree Matrix of the Similarity Graph. D is
%an mxm matrix with elements dj along its diagonal.
%This gives the total similarity of a point to the others.
%These are our eigenvalues.
D = zeros(m,m);
for n=1:m

D(n,n)= sum(W(n,:));
end

%Solve Dˆ(1/2)*(D-W)*Dˆ(-1/2)*V = lambda*V for V, the
%matrix of eigenvectors by column, where D is a diagonal
%matrix of eigenvalues and V is a full matrix whose
%columns are the corresponding eigenvectors. X*V = V*D.
X = (Dˆ(-1/2)) * (D-W) * (Dˆ(-1/2));
[V,D] = eig(X);

%We want the eigenvector of the second smallest eigenvalue,
%so we pick the second column and sort it for ease.
v = V(:,2);
[vsorted, ix] = sort(v,’descend’);

%Plotting the sorted, second smallest eigenvector allows
%us to see clearly the break in values, which indicates
%where the ’cut’ should be made.
figure
hold on
plot(vsorted, ’O’);
hold off

%index for t, the threshold at which we make our cut
ixx = 1:m;
clust1 = ixx(v>=t);
clust2 = ixx(v<t);

%If there are few enough dimensions that we plot (Toy
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%Examples), we create the original plot with colors
%according to groups
figure
hold on
if size(A,2) == 2

plot(A(clust1, 1), A(clust1, 2), ’*r’);
plot(A(clust2, 1), A(clust2, 2), ’*b’);

elseif size(A,2) == 3
plot3(A(clust1, 1), A(clust1, 2), A(clust1, 3), ’*r’);
plot3(A(clust2, 1), A(clust2, 2), A(clust2, 3), ’*b’);

end
hold off

%Otherwise, we create indices
group = zeros(m,1);
for i=1:t\\

group(i) = 1;
end
for i=(t+1):m

group(i) = 2;
end

%Combine the index and the group assignments and sort them in a
%useful order.
index=(ix, group);\\
scsort = sortrows(index,1);
sc2 = scsort(2) ;





Appendix B

Spectral Clustering for Four or
Twenty Groups

% Spectral Clustering and then Kmeans clustering on CHIS data

%A is the 3294 x 22 matrix of adolescents and 22 healthcare
%questions
m = length(A);

%Create W, the Weighted Adjacency Matrix of the Similarity Graph.
%W is an mxm matrix with elements sjk pairwise similarities. W
%is characterized by 1’s along the diagonal.
W = zeros(m,m);
for j=1:m

for k=1:m
W(j,k) = exp(-norm(A(j,:)-A(k,:))ˆ2 / (2*(sigma)ˆ2));

end
end

%Create the Degree Matrix of the Similarity Graph. D is an
%mxm matrix with elements dj along its diagonal. This gives
%the total similarity of a point to the others. These are our
%eigenvalues.
D = zeros(m,m);
for l=1:m

D(l,l)= sum(W(l,:));
end
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%Solve Dˆ(1/2)*(D-W)*Dˆ(-1/2)*V = lambda*V for V, matrix
%of eigenvectors by column. Where D is a diagonal matrix of
%eigenvalues and V is a full matrix whose columns are the
%corresponding eigenvectors. So, X*V = V*D
X = (Dˆ(-1/2)) * (D-W) * (Dˆ(-1/2));
[v,d] = eig(X);
[E order] = sort(diag(d),’ascend’);
V = v(:,order);

%We want the first four (twenty) eigenvectors as the four
%(twenty) attributes of our people we will cluster by kmeans

v1 = V(:,1);
[vsorted1,ix] = sort(v1, ’descend’);
v2 = V(:,2);
[vsorted2,ix] = sort(v2, ’descend’);
v3 = V(:,3);
[vsorted3,ix] = sort(v3, ’descend’);
v4 = V(:,4);
[vsorted4,ix] = sort(v4, ’descend’);
...
etc.

%n = 4 or 20
for i=1:n
figure
hold on
plot (vsortedi, ’O’);
hold off

vk4 = [v1,v2,v3,v4];
vk20 = [v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,v13,v14,v15,

v16,v17,v18,v19,v20];

%Run kmeans
%4 eigenvectors, 4 clusters:
z44 = kmeans(vk4,4);
%4 eigenvectors, 20 clusters:
z420 = kmeans(vk4,20);
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%20 eigenvectors, 4 clusters:
z204 = kmeans(vk20,4);
%20 eigenvectors, 20 clusters:
z2020 = kmeans(vk20,20);
%20 eigenvectors, 2 clusters:
z202 = kmeans(vk20,2);
%4 eigenvectors, 2 clusters:
z42 = kmeans(vk4,2);





Appendix C

Identifying Characterics of
Cluster Members

%Variables of A, the mxn data matrix

%gender =1 for male and =2 for female
gender = A(:,17)

% smoking =1 for current smoker, 2 for not
smoking = A(:,2)

%alcohol =1 for more than a few sips of alc, 2 for not
alcohol = A(:,4)

%exercise = # of days in past week active for > 60 mins
%count <= 3 as low physical activity
exercise = A(:,7)

%fruits and veggies. fg = combined servings of fruits and
%vegetables yesterday
% fg < 5 indicates low consumption
f = A(:,5)
g = A(:,6)
fg = f + g

%Psych sums nervousness, hopeless, restless, depressed, apathetic,
%worthless with responses 1:all the time, 2:most of the
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%time, 3:some of the time, 4:a little of the time, 5:not
%at all psych < 20 indicates psychological distress
psych = A(:,8)+A(:,9)+A(:,10)+A(:,11)+A(:,12)+A(:,13)

%Hero =1 for admires and wants to be like some person,
%=2 for no heroes
hero = A(:,14)

%Adult involvement sums frequency of an adult around
%during after school hours measured as 1:always, 2:most
%time, 3:some time, 4:almost never, 5:never and how
%much guardian knows about whereabouts at night
%measured as 1:a lot, 2:most time, 3:nothing, 4:doesn’t
%go out at night.
%if adult > 3.5 we say there is little parental involvement
adultaround = A(:,15)
adultknows = A(:,16)

know = zeros(3294,1)
for k=1:3294

if adultknows(k) == 4
know(k) = 0;

else know(k) = adultknows(k);
end

end

adult = adultaround + know

%Poverty where 1:0-99% FPL, 2:100-199%, 3:200-299%, 4:300%
%and above. We say an adolescent lives in an impoverished
%home if poverty <=2
poverty = A(:,18)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%a = number of eigenvectors
%b = number of groups
%index = vector of the cluster assignments where index(i) =
%cluster assignment for individual i
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%Gender
gen = zeros(a,b);
for i = 1:a

for j = 1:b
gen(i,j)=sum((index == i).*(gender == j));
end

end
gen

%Smoking
smok = zeros(a,b);
for i = 1:a

for j = 1:b
smok(i,j)=sum((index == i).*(gender == j).*(smoking == 1));
end

end

%Alcohol
alc = zeros(a,b);
for i = 1:a

for j = 1:b
alc(i,j)=sum((index == i).*(gender == j).*(alcohol == 1));
end

end

%Exercise
exer = zeros(a,b);
for i = 1:a

for j = 1:b
exer(i,j)=sum((index == i).*(gender == j).*(exercise <= 1));
end

end

%Fruits and Veggies
fveg = zeros(a,b);
for i = 1:a

for j = 1:b
fveg(i,j)=sum((index == i).*(gender == j).*(fg < 5));
end

end
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%Psychological Distress
psy = zeros(a,b);
for i = 1:a

for j = 1:b
psy(i,j)=sum((index == i).*(gender == j).*(psych < 20));
end

end

%Hero
her = zeros(a,b);
for i = 1:a

for j = 1:b
her(i,j)=sum((index == i).*(gender == j).*(hero == 2));
end

end

%Adult Involvement
adu = zeros(a,b);
for i = 1:a

for j = 1:b
adu(i,j)=sum((index == i).*(gender == j).*(adult > 3.5));
end

end

%Poverty
pov = zeros(a,b);
for i = 1:a

for j = 1:b
pov(i,j)=sum((index == i).*(gender == j).*(poverty <= 2));
end

end



Appendix D

Ncut Implementation

%The best option to choose the threshold in a continuous
%eigenvector is to search for the splitting that gives the best
%Ncut(A;B) value for the resulting partition. This is achieved by
%testing potential thresholds and choosing the value with the
%best Ncut as the splitting point.

%l = individual at which to divide the eigenvector
la = A((1:l),:);
lb = A(((l+1):3294),:);

Wcut = zeros(l,l);

for j=1:l
for k=1:(3294-l)

Wcut(j,k) = exp(-norm(la(j,:)-lb(k,:))ˆ2 / (2*(5)ˆ2));
end

end

Wcut1 = sum(Wcut,1);
cutAB = sum(Wcut1,2);

WassocAV = zeros(l,l);

for j=1:l
for k=1:m
WassocAV(j,k) = exp(-norm(la(j,:)-A(k,:))ˆ2 / (2*(5)ˆ2));
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end
end

WassocAV1 = sum(WassocAV,1);
assocAV = sum(WassocAV1,2);

WassocBV = zeros((3294-l),(3294-l));

for j=1:(3294-l)
for k=1:m
WassocBV(j,k) = exp(-norm(lb(j,:)-A(k,:))ˆ2 / (2*(5)ˆ2));
end

end

WassocBV1 = sum(WassocBV,1);
assocBV = sum(WassocBV1,2);

NcutAB = (cutAB/assocAV) + (cutAB/assocBV)
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