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MATHEMATICAL MODELING OF REGULATORY T CELL

EFFECTS ON RENAL CELL CARCINOMA TREATMENT

Lisette de Pillis

Department of Mathematics, Harvey Mudd College
Claremont, CA 91711 USA

Trevor Caldwell, Elizabeth Sarapata and Heather Williams

Harvey Mudd College
Claremont, CA 91711, USA

Abstract. We present a mathematical model to study the effects of the regu-

latory T cells (Treg) on Renal Cell Carcinoma (RCC) treatment with sunitinib.
The drug sunitinib inhibits the natural self-regulation of the immune system,

allowing the effector components of the immune system to function for longer

periods of time. This mathematical model builds upon our non-linear ODE
model by de Pillis et al. (2009) [13] to incorporate sunitinib treatment, regula-

tory T cell dynamics, and RCC-specific parameters. The model also elucidates

the roles of certain RCC-specific parameters in determining key differences be-
tween in silico patients whose immune profiles allowed them to respond well

to sunitinib treatment, and those whose profiles did not.
Simulations from our model are able to produce results that reflect clinical

outcomes to sunitinib treatment such as: (1) sunitinib treatments following

standard protocols led to improved tumor control (over no treatment) in about
40% of patients; (2) sunitinib treatments at double the standard dose led to a

greater response rate in about 15% the patient population; (3) simulations of

patient response indicated improved responses to sunitinib treatment when the
patient’s immune strength scaling and the immune system strength coefficients

parameters were low, allowing for a slightly stronger natural immune response.

1. Introduction. Immunotherapy has recently taken center-stage in the develop-
ment of multi-faceted treatment approaches used to combat certain forms of cancer.
One such cancer is renal cell carcinoma (RCC), which has been particularly resistant
to most traditional forms of cancer treatment, such as chemotherapy and radiation
therapy [51]. The resiliency of RCC has spawned the search for new treatment meth-
ods that can effectively harness the natural power of the immune system. There has
been limited success with some immunotherapies, such as high-dose interleukin-2
(IL-2), which is a natural cytokine (a signaling protein used by immune cells for
communication) that acts as a growth factor for various immune cells [1]. Despite
the promise of reproducible trials using IL-2 therapy, the overall response rates (at
least a 30% decrease in tumor size, as defined by the Response Evaluation Criteria
for Solid Tumors) have not been overwhelmingly positive, usually falling between
5% and 20% [53, 17]. However, sunitinib malate (SUT), a novel tyrosine kinase
inhibitor, has been used to a greater degree of success, with response rates between
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30% and 40% [31, 53]. Sunitinib was designed to inhibit growth receptors im-
portant for tumor growth and angiogenesis [24, 63]. However, there is now strong
evidence that in addition to its antiangiogenic effects, sunitinib may directly inhibit
the immunosuppressive environment through reducing the number of regulatory T
cells (Treg) in patients [25, 63, 6]. Regulatory T cells (Treg cells) are responsible for
the inhibition of other immune cells, such as effector CTL cells (cytotoxic T lym-
phocytes). Treg function is critical to preventing autoimmune disease. However, it
is also the case that Treg suppression of effector immune cell activity may be playing
a role in reducing the effectiveness of some immunotherapies. In fact, according
to [19], one important mechanism by which RCCs evade immune destruction is
through active recruitment of immunosuppressive cells such as Tregs. Some studies
have noted that RCC patients have increased numbers of Tregs in both peripheral
blood and tumors. This is important, since these increased numbers of Tregs are
inversely correlated to overall survival [62, 11, 30, 25]. The significance of Treg

levels in the prognosis of an RCC patient is a motivator for focusing our attention
on mathematically modeling the action of Tregs in an RCC system, as well as the
effect that sunitinib has on suppressing Treg activity. Therefore, although the an-
tiangiogenic properties of sunitinib are certainly of interest, we choose to focus our
attentions on modeling the Treg suppressive effects of sunitinib alone. In particular,
patient specific Treg levels in the peripheral blood are relatively easy to measure, as
compared to degree of vascularization or number of growth receptors present in the
tumor tissue itself. Patient trials in which patient-specific Treg data are collected
may then benefit from the insights the model we present may provide.

Theoretically, the combination of sunitinib with immunotherapy should boost
the efficacy of immune cells without the inhibition from Treg cells, maximizing the
ability of the immune system to fight off a tumor. However, in order to find how
to best maximize the effectiveness of the immune system, we must first understand
the complex dynamics of the interactions between various immune cells and tumor
cells. Our aim in this work is to gain insight into these dynamics via a mathematical
model employing a system of nonlinear ordinary differential equations.

Some recent cancer modeling endeavors have incorporated a multi-scale approach
in order to connect dynamics of complex biological interactions on various scales.
These can include the molecular scale and gene expression (see, e.g., [56, 26]), the
cellular scale that incorporates cell-cell signaling and interactions (as does the model
we present in this paper), and the macroscopic scale that includes tissue models.
Multiscale work that incorporates two or more of these scales within one model can
be found in, for example, [5]. Some helpful reviews and overviews of the multi-
scale modeling approach can be found in [64, 10, 18]. We do not take an explicitly
multiscale approach in this paper, however. Our interest in this case is in gain-
ing qualitative insight into the effect regulatory T cells have on the tumor-immune
dynamic. Following the philosophy that a model should be as simple as possible
while still capturing the behavior of interest, we therefore choose to focus on just
the cellular scale. Relatively simple cellular scale models can be quite powerful. As
was done in, for example, [42], the authors present a prostate cancer immunother-
apy model that takes a cellular scale approach. This cellular scale patient specific
model yields results that closely reflect clinical data and that can provide powerful
predictive information on various treatment approaches. Future work may call for
the addition of more scales in the model, but whether and how these are incorpo-
rated will be driven by the questions we wish to address. Although not many
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mathematical models of RCC have yet been developed, Leon et al. have created
a non-multi-scale two-compartment general tumor-Treg interaction model [45, 46]
that includes a lymph node compartment and a tumor compartment. The model
populations include a general solid tumor, effector cells, regulatory T cells and anti-
gen presenting cells. The authors explore the effect of a variety of parameter ranges
on model dynamics, and find that their model allows for two classes of tumors:
one class that induces the expansion of effector T cells that is greater than Treg

expansion, and one class that induces expansion of both effector and regulatory T
cells at similar rates. In both cases they find that tumor growth without treatment
intervention within the parameter ranges chosen is not controlled by the effector
T cells. However, in [46] they extend their model explorations to include a variety
of treatment protocols, including surgery and vaccination. In contrast to an explo-
ration of general tumor-Treg dynamics, our model is somewhat more focused. We
have chosen model components and parameters specifically to reflect the dynamics
of RCC. Our aim is to develop a mathematical model that qualitatively reflects
clinical RCC observations, and that may provide some insight into patient-specific
responses to treatments.

The model we present can be viewed as an extension and modification of the
model created by de Pillis et al. [13]. As with the de Pillis et al. model, our state
variables include a tumor cell population, the concentration of natural killer (NK)
cells, activated cytotoxic CD8+ T cells, circulating lymphocytes, and the concen-
tration of endogenous IL-2 per liter of blood. In this work, our primary goal is
to examine the effects of regulatory T cells (Treg cells), which mediate the immune
response against a tumor by suppressing other immune cells. To this end, we extend
the model of [13] to include regulatory T cell (Treg) dynamics, sunitinib treatment,
and RCC-specific parameters both for tumor growth, immune interactions, and re-
sponse to RCC-specific treatment with sunitinib. To the best of our knowledge, this
is the first mathematical model that attempts to study the effects of the regulatory
T cells on renal cell carcinoma with sunitinib treatment. We have chosen to focus
on the effects that sunitinib has on depleting the number of Treg cells rather than
the direct inhibition of tumor growth factor receptors.

In section 2, we present the full system of differential equations, along with
explanations for each term in the equations. In section 3 we examine biological
homeostasis values for a zero-tumor and high-tumor state. In section 4 we provide
derivations and explanations of parameter values used in the model. In section 5 we
present model analysis and simulation results. In particular, in sections 5.1 and 5.2
we present model validation both without and with treatment intervention through
comparison with published laboratory clinical data. In section 5.3 we explore the
results of hypothetical treatment strategies through model simulations. In section
5.4, we perform a sensitivity analysis on the model parameters to determine which
parameters have the greatest impact on model outcomes. Finally, in sections 6
and 7 we discuss the significance of our results and suggest future directions for
mathematical modeling of RCC growth and treatment.

2. The mathematical model. We present the full ODE system with a detailed
derivation of the governing equations for each state variable. Our RCC model builds
upon our earlier model in de Pillis et al. [13], extending it to include regulatory
T cells, new treatments, and parameters adjusted to fit specifically with renal cell
carcinoma.
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The new RCC model considers six cell populations, endogenous IL-2 and the
sunitinib concentration, and is defined as follows:

• T (t): the total (cells) tumor cell population in number of cells
• N(t): the concentration (cells/L) of Natural Killer (NK) cells per liter of blood
• L(t): the concentration (cells/L) of CD8+ T cells per liter of blood
• R(t): the concentration (cells/L) of CD4+CD25+ regulatory T (Treg) cells

per liter of blood
• C(t): the concentration (cells/L) of lymphocytes per liter of blood, not in-

cluding NK cells, CD8+ T cells, and regulatory T (Treg) cells
• I(t): the concentration (IU/L) of IL-2 per liter of blood
• S(t): the concentration (mg/L) of sunitinib per liter of blood
• vS(t): the amount of sunitinib injected per day per liter of body volume (in

mg/L per day)

Our model consists of the following ODEs:

dT

dt
= aT (1− bT )− ce−λTRNT −DT (1)

dN

dt
= f

(
e

f
C −N

)
− pNT +

pNNI

gN + I
(2)

dL

dt
= −mL− qLT + (r1N + r2C)T +

pILI

gI + I
− zL2RI

κ+ I
(3)

+j
T

k + T
L

dR

dt
= u

(w
u
C −R

)
+

pRRI

gR + I
−HR

(
1− e−λRS

)
R (4)

dC

dt
= β

(
α

β
− C

)
(5)

dI

dt
= −µII + φC +

ωLI

ζ + I
(6)

dS

dt
= −ηS + vS(t), (7)

where

D = d

(
L
T

)l
s+

(
L
T

)l . (8)

The dynamics of the populations of tumor cells (T), natural killer cells (N),
CD8+T cells (L), circulating lymphocytes (C), and endogenous IL-2 (I), generally
follow the dynamics developed in de Pillis et al. [13]. In addition, in this RCC model
we introduce the effects of regulatory T cell dynamics and sunitinib treatment.
These effects are included through the new term ce−λTRNT in equation (1), the

new term zL2RI
κ+I in equation (3), and the new equations (4) and (7) representing

Treg and sunitinib dynamics, respectively. Table (1) provides an overview with a
brief description of each model term. We now present a detailed explanation of each
model term.

In equation (1), the first term represents logistic tumor growth. Intrinsic growth
laws can vary, depending on tumor type, host type, and so forth, but we have
found that the use of the logistic growth law provides sufficient flexibility to achieve



MATHEMATICAL MODEL: REGULATORY T CELL EFFECTS ON RCC TREATMENT 919

reasonable fits to tumor growth data. The last term in this equation, DT, represents
CD8+T cell induced tumor death, where D is defined in equation (8). This form
of term D is supported by cell lysis experiments that indicate that percent lysis
is a function of the ratio of CD8+T cells to tumor cells. Further justification and
background can be found in [16] and [15].

Treg activity affects tumor cell dynamics. The Treg effect on tumor growth is
included in this model through the term ce−λTRNT, which represents the rate of
NK-induced tumor death. Trzonkowski et al. [66] found that the cytotoxic effect
of NK cells was suppressed when cultured with CD4+CD25+ regulatory T cells.
However, the number of conjugates formed between NK cells and target cells did not
noticeably decrease, suggesting that the effectiveness of NK-induced tumor death
decreases in the presence of Treg cells. We choose an exponential term to allow NK
cells to kill tumor cells at the maximal rate c without any regulatory cells in the
immune system and so that the kill rate stays strictly positive.

Equation (2) is similar to the equation for NK cell growth discussed in [13]. The
first term, eC, represents baseline NK cell production from circulating lymphocytes.
The second term, −fN, represents natural cell death. The first two terms are
written with f as a constant multiplier to highlight the fact that the constant
e/f , which denotes the average baseline fraction of circulating lymphocytes that
are NK cells, can be found [1]. Inactivation of cytolytic potential occurs when an
NK or CD8+T cell has interacted with tumor cells several times and ceases to be
effective. The mass-action term −pNT represents this inactivation of NK cells by
tumor cells, as presented in [16]. The final term, pNNI

gN+I , represents IL-2-induced

NK cell proliferation. NK cells express the IL-2RβγcIL-2 receptor, and IL-2 binding
stimulates NK cell proliferation [1]. Although the enzyme dissociation constant
kd for this binding is sufficiently large that IL-2-stimulated NK cell proliferation
is minimal in healthy individuals, it has been show that additional IL-2 can more
than double the NK cell population [50]. Consequently, in the presence of elevated
serum IL-2, as can occur with some cancer cases, this interaction may be important
[22, 54], and is therefore included in the model.

In equation (3), the term −mL represents CD8+ cell turnover, as in de Pillis et
al. [14]. There is no intrinsic growth term since activated CD8+T cells are assumed
not to be generated in the absence of tumor cells. As with the NK cell equation,
the cytolytic potential of the CD8+T cells decreases through interaction with the
tumor cells, and is represented by the second term, −qLT. The next two terms
represent T cell recruitment due to the presence of the tumor cells. CD8+T cells
may be recruited by the debris from tumor cells lysed by NK cells (see, e.g., Huang
et al., [34]). This recruitment term is proportional to the number of NK-tumor
interactions, r1NT. The immune system is also stimulated by the presence of tumor
cells to produce more CD8+T cells. Recognition of the presence of the tumor is
proportional to the average number of encounters between circulating lymphocytes
and the tumor, and is therefore represented by r2CT. The term pILI

gI+I represents

CD8+T cell activation by IL-2. The Michaelis-Menten form for this term was also
implemented in [39].

Treg dynamics also affect the CTL population. These dynamics are modeled

through the term, − zL
2RI
κ+I , which represents the breakdown of surplus CD8+ T

cells in the presence of IL-2 and regulatory T cells. From Abbas et al. [1], we note
that the deactivation of CD8+T cells occurs through a pathway that requires IL-2
and the action of CD4+T cells (most regulatory T cells are CD4+) but not NK cells.
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Moreover, the breakdown occurs only at high concentrations of activated CD8+T
cells. Consequently, use MichaelisMenten dynamics in IL-2 and including factors of
L2 and R. We choose to model Treg suppression of CD8+ cells like this rather than
changing the efficacy of the kill rate in the presence of regulatory cells (as we do
with NK cells) because the number of conjugates between CD8+ cells and target
cells decreases in the presence of Treg cells [66]. The final term, j T

k+T L, represents
CD8+T cell stimulated accumulation of effector cells, and takes the same form as
the effector cell recruitment term used in [43].

In equation (4), we introduce new terms to model the rate of change of CD4+25+

Treg cells involved in the immune response. We use a multiplier u that comes from
the first and second terms (representing the creation and turnover of Treg cells) in
order to emphasize the fact it is possible to measure the ratio of Treg cells to other
circulating lymphocytes in the absence of IL-2 [68, 1]. We then have a Michaelis-
Menten term in IL-2, representing IL-2-induced Treg proliferation [49].

The kill term HR

(
1− e−λRS

)
R representing the inhibition of Treg cells by

sunitinib, is used to reverse immune suppression and enhance the efficacy of im-
munotherapy [55]. Making the reasonable assumption that the effectiveness of suni-
tinib treatment is bounded, we use the saturation term 1− e−λRS to represent the
effect of sunitinib stimulating fractional regulatory T cell kill. Note that at rela-
tively low concentrations of drug, the kill rate is nearly linear, while at higher drug
concentration, the kill rate plateaus. The mathematical term we use reflects the
doseresponse curves to chemotherapy suggested by the literature [28]. It has been
found that sunitinib does not directly cause apoptosis (programmed cell death) in
Treg cells, but rather that it appears to reduce naive T cell differentiation into Treg

cells [31]. However, we have chosen to model the main contribution of of sunitinib,
which is to reduce the total population of effective regulatory T cells.

In equation (5), the circulating lymphocytes are modeled by constant growth
and population dependent turnover. Note that the turnover rate not only rep-
resents natural death, but also the differentiation of circulating lymphocytes into
other immune cells. Although Treg cells have been observed to have a suppressive
effect on CD4+ proliferation [38], we choose not to include that effect directly in
this equation, but instead to model the significant result, the suppression of IL-2
production by Treg inhibited CD4+ cells in equation (6). This allows us to keep
circulating lymphocytes at a constant level, which simplifies the dynamics, as has
been done in [13]. We believe that even with this simplification, the most critical
suppressive effects of the regulatory T cells are captured in our model.

Equation (6) is similar to the IL-2 equation used in [13]. The term −µII
represents natural decay. The term φC represents a constant rate of IL-2 production
from circulating lymphocytes (specifically CD4+T cells and, to a lesser extent, naive
CD8+T cells). The Michaelis-Menten term ωLI

ζ+I represents the production of IL-

2 from activated CD8+T cells, which is inhibited in a concentration-dependent
fashion by IL-2 [1]. We note that although the presence of Treg cells likely has some
effect on IL-2 production, we have decided not to include detail on IL-2 that is more
explicit than what has already been included in the model of [13]. In a future work,
we plan to examine IL-2 interactions more carefully, in which exogenous as well as
endogenous IL-2 effects will be explored.
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In equation (7) we introduce the term −ηS to represent the natural exponential
decay of the inhibitory drug sunitinib [24]. The equation also contains the time-
dependent function vS(t), representing sunitinib dosing. The rate of change of
sunitinib is zero when no sunitinib is supplied.

3. Homeostasis values. Before determining the various unknown parameters in
our model, we first seek to find reasonable homeostasis values (biological equilibrium
values) for a no-tumor condition and a high-tumor condition.

3.1. Zero tumor homeostasis values. In the absence of the tumor, T and S
are defined to be equal to zero. Abbas et al. [1] indicates that NK cells make
up approximately 10% of total circulating lymphocytes in the absence of a tumor,
so if we assume that the total lymphocyte count is 2.5 × 109 cells per liter, as is
described in de Pillis et al. [13], then we have N = (2.5× 109)× 0.10 = 2.5× 108.
The value of I is the same as the no-tumor value used in de Pillis et al. [13].
I is obtained from Orditura et al. [54], who note that healthy control subjects
had average serum IL-2 levels of I = 2.99 pg/ml = 48.9273 IU/l, where we have
converted to IU using the assumption that we have 18 × 106 IU IL-2 per 1.1 mg
IL-2 [57]. The value for L also mirrors the value used in [13]. Data taken from
Pittet et al. [58] and Speiser et al. [65] indicate that approximately 0.004 % of
all CD8+T cells are expected to be activated and specific for a tumor-associated
antigen. Combining this with the assumption that the total number of CD8+T
cells is about 6× 108 [36, p.751], we arrive at a homeostasis value of L = 2.4× 104.
From Jonuleit and Schmidt [37], we know that CD4+25+ Treg cells make up 5 to
10% of all peripheral CD4+ cells. Abbas et al. [1] indicate that 50 to 60% of all
circulating lymphocytes are CD4+ cells, and again assuming the total number of
circulating lymphocytes is 2.5 × 109 cells per liter, we can find a range of possible
R values. On the lower end, 2.5 × 109 × 0.05 × 0.50 = 6.25 × 107, and on the
upper end, 2.5 × 109 × 0.10 × 0.60 = 1.5 × 108. An intermediate value for R
can be found by choosing intermediate values of 8% and 55%. This then yields
2.5 × 109 × 0.08 × 0.55 = 1.1 × 108, the value we will choose for our no-tumor
homeostatic value for R. Assuming now that our population C does not include N
and R, since we have separated these out, then subtracting N and R from 2.5×109

(L is essentially negligible) gives us 2.14× 109, our equilibrium value for C.
In summary, for the no-tumor homeostasis point, we have:

T0 = 0, N0 = 2.5× 108, L0 = 2.4× 104, R0 = 1.1× 108, (9)

C0 = 2.14× 109, I0 = 48.9, S0 = 0.

3.2. High tumor homeostasis values. With a tumor present but no treatments
administered, S remains equal to zero. We assume that the non-zero tumor home-
ostasis value is the carrying capacity of the tumor (see Section 4.1). N and C
remain the same as in the zero-tumor homeostasis state. L and I change due to the
presence of a tumor, which induces the activation of cytokines and CD8+ cells; we
use the values found by de Pillis et al. [13]. The value for I was taken from Orditura
et al. [54], who measure that IL-2 serum levels were on average I = 71.69 pg/mL =
1173 IU/L in stage III non-small cell lung cancer patients. Although these measures
were not for RCC patients, we are using the approximate values as a proxy in the
absence of more specific RCC data. The value for was derived L using percentages
of activated CD8+ T cells from Lee et al. [44] and total CD8+ T cell values from
Janeway et al. [36]. The study by Lee et al. [44] focused on melanoma, but again
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we are using these numbers as a proxy. We derived our value for R from Cesana et
al. [7], who found that the frequency of regulatory T cells increased 3.2-fold in RCC
patients, assuming that the patients have sufficiently large tumors for this value to
be reasonable.

In summary, for the high-tumor homeostasis values we have:

T1 = 4.662× 109, N1 = 2.5× 108, L1 = 5.268× 105, R1 = 3.52× 108, (10)

C1 = 2.14× 109 I1 = 1173, S1 = 0.

4. Parameter estimates. With the large number of parameters in this RCC
model, we had to determine parameter estimates using a variety of methods. In
some cases, it was possible to find numerical ranges in the biological literature.
In other cases, we had to perform numerical fits to published data. In yet other
cases, when there was no relevant information available, we chose our parameter
values that allowed model behavior to be biologically reasonable. A summary of
the parameter descriptions and their numerical values is given in tables (2) and (3)
respectively. We now outline our approach to estimating numerical values for each
model parameter.

4.1. The tumor.
The tumor growth rate, a = 2.065 × 10−1 day−1, is found by using MATLAB’s

fminsearch to fit the logistic growth equation (1) to RCC tumor growth data in
nude mice from Gao et al. [27] and Doehn et al. [21]. The Doehn paper data are on
a larger time scale, but the Gao data have better resolution for early tumor growth,
so we chose to combine the two data sets to give us a more comprehensive set of
data, as shown in Figure 1. The mice were injected with smaller initial tumors in
the Doehn study, so we assume a seven day delay between the two data sets. For
t = 0 to 20 days, we use data from days 0 through 20 in the Gao study, and for
t = 21 to 44 days, we use data from days 28 to 51 in the Doehn study. This gives us
a value for the tumor growth rate that is consistent with the individual data sets.

The inverse of the tumor carrying capacity, b = 2.145 × 10−10 cells−1, is found
by looking at endpoints in tumor growth data from Doehn et al. [21]. Doehn et
al.[21] indicate a reasonable approximate endpoint value could be 8.5× 103 mm3 =
8.5×1012µm3. Assuming a spherical tumor cell diameter of approximately 15.15µm
[9, 8, 3], yields a tumor cell volume of approximately 1.82× 103µm3. Dividing total
tumor volume by cell volume yields a total cell count of approximately 4.7 × 109.
Taking the inverse of the total cell count gives our value for b.

The maximal rate of NK-induced tumor death, c = 8.68×10−10 L cells−1 day−1,
is found to give the best fit to known data.

The Treg induced NK inhibition coefficient, λT = 1.590 × 10−9 L cells−1, is an
ad hoc value and has been chosen to give reasonable biological outcomes. As more
data become available, it should be possible to fit this parameter to more closely
reflect the degree NK inhibition by regulatory T cells.

The CD8+T cell tumor kill term, D = d
( L

T )
l

s+( L
T )

l , involves three parameters (d, l,

and s), which reflect the efficacy of patient-specific immune systems. The immune
system strength coefficient is d (day−1), the immune strength scaling coefficient
is l (unitless), and the constant s (unitless) is the value of (L/T )l necessary for
half-maximal CD8+ T cell toxicity. In our numerical simulations, we use uniform
probability distributions ranging from 1.7 to 2.2 to generate random values of d and
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Figure 1. Fit to combined data from Gao et al. (2010) (days 0
through 20) and Doehn et al. (2009) (days 21 through 44) to find
parameter a.

l for each individual patient. The value of s = 3.5 × 10−2 is kept unchanged from
the de Pillis et al. [13] model.

4.2. The natural killer cells. The ratio of NK cell synthesis to turnover, e/f =
1.168× 10−1, is equal to the ratio N/C at equilibrium if we ignore the small effect
of IL-2 on NK proliferation. Note that in this model, C measures the total number
of lymphocytes that are not CD8+ T cells, NK cells, or Treg cells.

The rate of NK turnover, f = 1.25 × 10−2 day−1, is taken from de Pillis et al.
[13]. They found this value for f by employing metabolic scaling, noting that the
average mass of an adult human male is 77kg [67] and 11.9kg for an average adult
male rhesus monkey [59]. From Gillooly et al. [29], we have that the mass-specific
metabolic rate B scales as

B/M ∝M−1/4,

where M is mass. The de Pillis et al. [13] team assumed that f , the turnover
rate of NK cells, was proportional to the mass-specific metabolic rate. They found
fmonkey = 2× 10−2 for a rhesus monkey from De Boer et al. [12]. Thus, we have

f = Γ(B/M) = Γ′M−1/4,

where Γ and Γ′ are constants. Then,

Γ′ =
fmonkey

M
−1/4
monkey

= 0.0371,



924 L. DE PILLIS, T. CALDWELL, E. SARAPATA AND H. WILLIAMS

which then yields

f = Γ′M
−1/4
human = 1.25× 10−2

for an average human.
The rate of NK cell death due to tumor interaction, p = 6.682× 10−14 L cells−1

day−1, is obtained by considering the large tumor equilibrium in the absence of
medicine. We have

0 =
dN

dt
= f

(
e

f
C −N

)
− pNT +

pNNI

gN + I
.

Since we suppose that e/f = N/C at equilibrium, this simplifies to

p =
pNI

T (gN + I)
.

Using the equilibrium values from the high-tumor equilibrium, we arrive at our
value for p.

The rate of IL-2 induced NK cell proliferation, pN = 6.68 × 10−2 day−1, is
calculated using the same method as de Pillis et al. [13]. They used data from
the study of Meropol et al. [50], that examined IL-2 induced NK cell expansion in
patients. They assumed that the peak NK cell count from Meropol et al. [50] in
the absence of tumor corresponds to the equilibrium value of N subject to the peak
value of IL-2 (including non-negligible exogenous supplementation). Thus, we have:

dN

dt
= 0 = f

(
e

f
C −N

)
+
pNNI

gN + I
,

which gives

pN =
f
(
N − e

f

)
(gN + I)

NI
.

Using our value of C = 2.14×109 and the Meropol et al. [50] values for N (2.3×109)
and I (5.0073× 104), we arrive at our value for pN .

The concentration of IL-2 required for half-maximal NK cell proliferation, gN =
2.5036× 105 IU L−1, is left unchanged from the value found by the de Pillis et al.
[13] team, who derived gN using IL-2 binding data from Abbas et al. [1]. From
Abbas, we see that the concentration of IL-2 required for half-maximal binding of
cells expressing the IL-2RβγC receptor complex is 10−9 mol/L. IL-2 has a molecular
mass of 15, 300 Da (15, 300 g/mol), and there are 18 × 106 IU of IL-2 per 1.1 mg
[35]. Converting to IU/L, we have

gN =

(
1× 10−9mol

1L

)(
15, 300g

1mol

)(
1000mg

1g

)(
1.8× 107IU

1.1mg

)
= 2.5036×105IU/L.

4.3. The CD8+ T cells. The rate of CD8+ turnover, m = 9× 10−3 day−1, is left
unchanged from de Pillis et al. [13], who derived their value for m from Hellerstein
et al. [33]. They put the half-life of CD8+ cells at 77 days in healthy donors.

Assuming exponential decay, we have m = ln(2)
77days .

The rate of CD8+ T cell death due to tumor interaction, q = 3.422 × 10−10

cells−1 day−1, is borrowed from de Pillis et al. [13]. The value of q was in turn
taken from Kuznetsov et al. [43], who used mouse data to model the dynamics of
a general effector cell population and a tumor. Other studies suggesting alternate
values for q, j, and k were not found.
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The rate of NK-lysed tumor cell debris activation of CD8+ cells, r1 = 8.68×10−12

cells−1 day−1, is derived using similar methods as de Pillis et al. [13]. Data directly
measuring the rate of NK cell activation as a result of lysed tumor debris are not
readily available. However, in order to determine a reasonable approximate rate,
we followed the argument of [13], where it is assumed that each lysed tumor cell,
through antigen-presenting pathways, leads to activation of CD8+T cells. Rates
of activation were adapted from Avigan [4] and Ruedl [61], which indicate that
a dendritic cell may stimulate between 10 and 3000 T cells over the course of its
lifetime, and that an average lifetime for some DCs is about 10 days. Assuming that
only a fraction of lysed tumor cells activate a single DC, we set r1 = 0.01× c. Here
we estimate that a lysed tumor cell, through DC activation, will stimulate 1/100 of
1 T cell per day. Recall that c represents the rate of NK-induced tumor cell death.

The rate of CD8+ T cell production from circulating lymphocytes is given by
r2 = 1 × 10−15 cells−1 day−1. Since we found no data measuring the relevant
kinetics of CD4+T cell activation of CD8+T cells, this value is chosen to obtain a
model consistent with expectations.

The rate of IL-2 induced CD8+ T cell activation, pI = 1.111 day−1, is derived
using a system of equations designed to produce reasonable behavior at homeostasis
levels. We set dL/dt = 0 and insert both sets of homeostasis values along with
all parameters besides pI and z to obtain a system with two equations and two
unknowns. Solving these equations then yields values for pI and z. We note that
the system of equations is ill-conditioned. However, although the values of pI and z
may vary based on how the solution of the system is carried out numerically, repeat
calculations with varying solution strategies give rise to values of the same order of
magnitude.

The concentration of IL-2 for half-maximal CD8+ T cell activation, gI = 2.5036×
103 IU L−1, is left unchanged from the value found by de Pillis et al. [13], who found
their value for gI using IL-2 binding data from Abbas et al. [1]. The derivation is
the same as for gN , except that the concentration for half-maximal binding is 10−11

mol/L for the IL-2Rαβγc receptor on CD8+ T cells, which yields 2.5036×103 IU/L.
The Treg induced CD8+ inhibition coefficient, z = 2.3085 × 10−13 L2 cells−2

day−1, is part of the solution of the system of equations used to calculate pI .
The concentration of IL-2 needed to halve the magnitude of Treg inhibition,

κ = 2.5036× 103 IU L−1, is left unchanged from the value found by de Pillis et al.
[13], who derived κ in the same way as gI . Refaeli et al. [60] observe that upon
removal of the a IL-2 receptor chain, CD8+T cells fail to self-regulate. This affirms
that k should correspond to the disassociation constant for the IL-2Rαβγc receptor.

The rate of CD8+ T cell lysed tumor cell debris activation of CD8+ cells, j =
1.245 × 10−1 day−1, is left unchanged from de Pillis et al. [13], who took j from
Kuznetsov et al. [43] for lack of data in humans.

The tumor size for half-maximal CD8+ T cell lysed debris CD8+ T cell activation,
k = 2.019 × 107 cells, is left unchanged from de Pillis et al. [13], who took k from
Kuznetsov et al. [43] for lack of data in humans.

4.4. The regulatory T cells. The ratio of Treg production to turnover, w/u =
0.0122, is equal to R/C at a homeostasis state with no IL-2. From Yu et al. [68],
we find that somewhere between 2% and 10% of CD4+ cells are regulatory T cells
in the absence of IL-2. Assuming that 2% of CD4 cells are Tregs, and assuming that
there are 2.5× 109 circulating lymphocytes per liter and that 55% of lymphocytes
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are CD4+ cells [1], we have R = 2.75 × 107 and C = 2.2225 × 109 , which yields
w/u.

The rate of Treg turnover, u = 3.851 × 10−2 day−1, is found by assuming ex-
ponential decay of regulatory T cells. We find that these cells had a half life of
approximately 18 days [48]. Thus, we have

u =
ln(2)

18 days
.

The rate of IL-2 induced regulatory T cell proliferation, pR = 3.598×10−2 day−1,
is found by solving a system of equations designed to produce reasonable behavior at
homeostasis states. We set equation (4) to zero and insert both sets of homeostasis
values, along with the unknown parameters pR and gR. We then have a system
of two equations and two unknowns. Recall that the zero tumor and high tumor
homeostasis values are given in sections 9 and 10 respectively. Using these values,

we solve for ~x in the system A~x = ~b where

A =

[
R0I0 wC0 − uR0

R1I1 wC1 − uR1

]
~x =

[
pR
gR

]
~b =

[
I0(−wC0 + uR0)
I1(−wC1 + uR1)

]
(11)

Solving this system yields our desired parameters. In this case, the matrix A is not
well conditioned, so the values of pR and gR may vary slightly depending on how
the system solve is carried out, but the variance yields values of the same order of
magnitude, and does not appear to affect the model outcome significantly.

The concentration of IL-2 necessary for half-maximal activation of Treg cells,
gR = 11.027 IU L−1, is found by noting that CD4+25+ cells express both the
IL-2Rβγc receptor complex and the IL-2Rαβγc receptor complex [1]. Since both
receptor complexes are present, we assume that we cannot simply take one of the
IL-2 binding rates, so we instead solve for gR through system (11) as described for
parameter pR above.

The rate of Treg inhibition from sunitinib, HR = 2.27×10−2 day−1, was found by
running simulations with data from Finke et al. [25]. They show that the percentage
of CD4+ cells that differentiate into Treg cells (including both CD4+CD25hi+ cells
and CD4+CD25hi+FoxP3+ cells) decrease from about 6.65% to 5.98% after 28 days
of sunitinib treatment, so we numerically determine values for HR and λR that give
us this desired Treg behavior.

The sunitinib efficacy coefficient, λR = 50.02 L mg−1, was found as part of the
numerical calculation of HR.

4.5. The circulating lymphocytes. The ratio of lymphocyte synthesis to turnover,
α/β = 2.14×109 cells L−1, is equal to C at homeostasis with no treatments present.
We have taken an average value of circulating lymphocytes to be 2.5× 109 cells [1],
but we factor out NK, CD8+, and Treg cells, yielding our desired value.

The rate of lymphocyte turnover, β = 6.3 × 10−3 day−1, is taken from the de
Pillis et al. [13] model. It was found by applying metabolic scaling, as was done for
finding parameter f, to the 1% turnover rate of CD4+ cells found in rhesus monkeys
[12].

4.6. The IL-2. The rate of IL-2 excretion and elimination, µI = ln 2/5.9×10−2 =
11.7483 day−1, is taken from de Pillis et al. [13]. The value was derived using the
assumption of exponential decay, with a tissue elimination half-life of 85 minutes
taken from Konrad et al. [41].
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The rate of IL-2 production from CD8+ T cells, ω = 7.879 × 10−2 day−1, is
calculated using a system of equations designed to produce reasonable homeostasis
behavior. Setting equation (6) to zero, inserting both sets of homeostasis values,
and solving for the unknown parameters φ and ω, yields the following system:

A =

[
C0

L0I0
ζ+I0

C1
L1I1
ζ+I1

]
~x =

[
φ
ω

]
~b =

[
µII0
µII1

]
(12)

We then solve for ~x in the system A~x = ~b. Solving this system yields values for both
ω and φ.

The rate of IL-2 production from CD4+T cells and naive CD8+T cells is given
by φ = 2.5153 × 10−7 IU cells−1 day−1, This value is calculated using the system
of equations (12) designed to produce reasonable homeostasis behavior, as outlined
in the description of the calculation for ω.

The concentration of IL-2 needed for half-maximal CD8+ T cell IL-2 production,
ζ = 2.5036× 103 IU L−1, is left unchanged from the value found by de Pillis et al.
[13], who set ζ = gI , since CD8+ T cell IL-2 synthesis induced by IL-2 depends on
the IL-2Rαβγc receptor [1].

4.7. The Treg inhibitor: Sunitinib. The rate of excretion and elimination of
sunitinib, η = 0.277 day−1, is taken from Faivre et al. [24]. It is derived using the
assumption of exponential decay with a half-life of 60 hours (2.5 days). Faivre et al.
[24] note that sunitinib has a half-life of 41 to 86 hours but do not report a mean

or median, so we choose a value from that range and calculated η as
ln(2)

2.5 days
.

The sunitinib dose function, vS mg/L, is a function of time, and is determined
as follows. The dosing schedule for sunitinib, vS , was derived from Ko et al. [40]
and Motzer et al. [52, 53], whose dosing schedule consists of 50 mg/day taken orally
every day for 28 days followed by 14 days of rest; this comprises a single 6-week
cycle. A study performed by Motzer et al. [52] tells us that the average number of
cycles that patients typically go through is 5. Assuming the average body volume
of a human male to be 59.71 L (the same assumption used by de Pillis et al. [13] in
their dosage calculations), we have vS = (50mg/day× 28days)/59.71L, which gives
us

vS = 23.4467mg/L

each cycle for an average of 5 cycles. The value of vS is set to zero in between
dosing cycles.

5. Results and analysis. In this section, we present numerical outcomes of model
simulations. We will first provide model verification by examining numerical model
dynamics in the absence of treatment interventions, followed by simulations using
clinically tested sunitinib dosing schedules and comparing these outcomes to clini-
cal data. Finally, we present experimental hypothetical dosing schedules that can
provide improved tumor growth control.

5.1. Model validation - Simulations with no treatment. In this section we
run model simulations to determine whether model outcomes are reasonable and
reflect expected clinical outcomes.

We first examine the biological homeostasis values, and test whether they are
close to numerical equilibrium values. We should expect to see at least a slight
difference between the biological and the numerical values since our homeostasis



928 L. DE PILLIS, T. CALDWELL, E. SARAPATA AND H. WILLIAMS

values are approximations using simplifying assumptions, while the model simula-
tions provide the outcomes incorporating full system interactions. For example, the
high tumor homeostasis value is chosen to be the tumor carrying capacity, which
does not account for immune control, so we would expect our simulated outcomes
to evidence a slightly lower “high tumor” equilibrium because of the presence of the
immune components in the system.

Figure 2 shows the no-tumor and the high-tumor scenarios, in which initial val-
ues of the state variables are given by the biological homeostasis values provided
in section 3. The parameter values used for these simulations are provided in table
3, with d = l = 1.7. The no-tumor homeostasis values are very close to the nu-
merical equilibrium values. Numerically, all values remain within the same order
of magnitude, and visually it is difficult to detect much change in the values over
time. The high tumor homeostasis values are also close to the numerical high tumor
equilibrium values, but as expected, the numerical equilibrium values are slightly
lower because of the interaction with the immune components. The homeostasis
value for the tumor was chosen to be the carrying capacity, 4.662 × 109, while the
numerical high tumor equilibrium is closer to 2.14× 109.

Numerically, it appears that the high tumor equilibrium is stable. The natural
question to ask is whether the low tumor equilibrium is also stable. In figure 3
we see that the zero tumor equilibrium is indeed numerically stable, and in fact,
it appears that the bifurcation point lies at around 1.77 × 107. That is, when the
initial tumor size is set to a value at or below 1.77 × 107, the tumor shrinks back
down to zero, but if it is initiated at a value above, for example at 1.78× 107, then
the tumor grows to the high equilibrium value. In both these scenarios, all other
initial states are the zero tumor homeostasis values. This model does not address
the interesting question of tumorigenesis, that is, if the zero tumor state is stable,
how does a tumor ever grow to carrying capacity. We hypothesize that this can
be in part caused by a breakdown in immunosurveillance. In fact, if we remove all
immune control in the model, then even a single tumor cell will grow to carrying
capacity (figure not shown).

In figure 4, we present the result of simulating tumor growth for 100 different
patients over 300 days. All parameters are fixed at the values presented in table 3,
except for d and l. These two parameters, which modulate the effectiveness of the
CD8+T cells, can vary from 1.7 to 2.2 in our model. This range was chosen since it
reflects biologically reasonable values for d and l as found in [13]. For each simulated
individual, random values of d and l are chosen from a uniform distribution. Each
patient starts at day 0 with an initial tumor size of 1 × 108 tumor cells, which is
above clinical detection levels. In this simulation, there is no treatment intervention,
and in every case, the tumor grows by an order of magnitude. It is clear from this
simulation that the effect of varying d and l within the specified range is not sufficient
by itself to control tumor growth.

We increased the d and l range of values in order to explore whether there were
any parameter combinations that would allow for the immune system to control
tumor growth with no treatment intervention. Allowing l and d to take on values
between 0.5 and 3.0, we observed the outcome at day 300, using every (d, l) com-
bination in increments of 0.1 (resulting in a total of 676 scenarios). As we would
expect, each scenario resulted either in a complete response (CR), or progressive
disease (PD). That is, the system was driven to either the zero tumor or the high



MATHEMATICAL MODEL: REGULATORY T CELL EFFECTS ON RCC TREATMENT 929

0 50 100 150 200 250 300
100

102

104

106

108

1010

1012

Time (days)

Sta
tes

 (lo
ga

rith
mi

c s
ca

le)

Model Simulation: No Tumor Homeostasis

 

 

Tumor Cells
Natural Killer Cells
CD8+ T Cells
Regulatory T Cells
Circulating Lymphocytes (cells)
IL 2 (IU)
Sunitinib (mg)

0 50 100 150 200 250 300
100

102

104

106

108

1010

1012

Time (days)

Sta
tes

 (lo
ga

rith
mi

c s
ca

le)

Model Simulation: High Tumor Homeostasis

 

 

Tumor Cells
Natural Killer Cells
CD8+ T Cells
Regulatory T Cells
Circulating Lymphocytes (cells)
IL 2 (IU)
Sunitinib (mg)

Figure 2. Numerical equilibrium values appear to be stable. Top
panel: initial conditions are tumor free. Bottom panel: initial
conditions are a high-tumor state. Numerical initial condition val-
ues are given by the low-tumor and high-tumor homeostasis values
provided in section 3. Parameter values are given in table 3, with
d = l = 1.7

tumor homeostasis value. As can be seen in figure 5, there is a range of (d, l) combi-
nations that represent a sufficiently strong immune response. For all tested values of
d, as long as l ≤ 1, the tumor was eliminated. Also, for larger values of d, the values
of l could also increase slightly, and the tumor can still be controlled. Parameter l
represents how the target lysis rate depends on the effector-target ratio. According
to [15], this is a patient-specific parameter that can, in theory, be measured. In
[15], they found that for the two patients whose data was examined, the respective
values for l were greater than 1. However, it is possible that certain treatments may
effectively reduce this parameter value, representing a strengthening of the immune
response [15, 20].

In the next section, we explore simulation outcomes with sunitinib intervention.
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Figure 3. The zero tumor equilibrium stable. Initial tumor size in
the top panel is T0 = 1.77×107, and the tumor shrinks down to zero
over time. Initial tumor size in the bottom panel is T0 = 1.77×107,
and the tumor grows to the high tumor equilibrium value. Initial
conditions of the other state variables are given by the low-tumor
homeostasis values provided in section 3. Parameter values are
given in table 3, with d = l = 1.7

5.2. Model validation - Simulations with sunitinib treatment. We now ex-
amine simulated outcomes in response to sunitinib dosing. In figure 6, we present
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Figure 4. Simulation of 100 patients. Tumor growth after 300
days, no treatment. Immune strength parameters d and l sampled
from a uniform distribution within [1.7, 2.2]. Initial tumor size for
all patients 1×108. Final tumor size for all patients approaches on
the order of 1× 109.

the result of simulating tumor growth for 100 different patients over 300 days with
sunitinib dosing according to standard sunitinib dosing schedules. The same dos-
ing schedule was followed in, for example, the studies described in [47, 40, 52, 53].
See section 4.7 for dosing details. We classify our simulated patient responses
following the patient response classification schemes of the clinical studies data we
used [47, 40, 52, 53]. In each of the studies in [47, 40, 52, 53], the authors assess
clinical response using the Response Evaluation Criteria in Solid Tumors (RECIST)
guidelines [23, section 4.3]. According to these guidelines, a complete response (CR)
means all target lesions have “disappeared”. A partial response (PR) means there
has been at least a 30% decrease in the sum of diameters of the target lesions.
Progressive disease (PD) means there has been at least a 20% increase in the sum
of the diameters of the target lesions, and stable disease (SD) means there has been
neither lesion shrinkage greater than 30% nor lesion growth greater than 20%. An
“objective response rate” combines both complete and partial responses. In [32],
the relevance of these categorizations is questioned, particularly the distinction be-
tween SD and PD. In this paper, the authors state, “Many physicians have tried to
identify the clinical significance of SD and some claim that patients with initial SD
after their first-line chemotherapy have poorer survival outcome and less sympto-
matic benefit than those with PR.” [32] Our interest is in whether the treatments
lead to significant tumor shrinkage. Therefore, for the purposes of our simulations,
we combine the SD and PD categories, and categorize patients as having “no re-
sponse” (or no objective response) when the tumor has not decreased in size by
at least 30%. The study of [40], for example, provides numbers only for PR and
PD categories. In many studies, the “best overall response” is reported. The
“best overall response” refers to the “best” response at any point from the start
of treatment until disease progression or the end of the observation period. The
time point at which the best response was achieved is rarely reported. Likewise, the
time point at which the disease is considered SD or PD is almost never specified.
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Figure 5. Simulation of 676 patients. No treatment. Patients
either experience complete response (CR - circles) or progressive
disease (PD - triangles) by day 300. All combinations of immune
strength parameters d and l presented, each taking values from 0.5
to 3.0. Initial tumor size for all patients 1× 108. Final tumor size
for patients in the PD category on the order of 1× 109.

For the purposes of our simulations, therefore, we also measure the best response
within the simulation period, and we have translated the RECIST criteria to mean
the following: A complete response (CR) in our simulations means that the tumor
level has gone below 100 cells by day 300. Since this level is far below clinical
detection levels, we have chosen this to align with the RECIST meaning of having
“disappeared”. As we saw earlier, with tumor levels this low, a non-compromised
immune system will allow the tumor size to be driven zero over time. A partial
response means that at least a 30% decrease in tumor size has been achieved, as
specified by RECIST. And, as we have stated, “no response” means the response
could neither be categorized as complete nor partial.

As in the non-intervention case, 100 simulations are carried out to represent
100 patients of varying CD8+T cell strength as reflected by modification of the
parameters d and l. Parameters d and l are randomly chosen from a uniform
distribution varying between 1.7 and 2.2. As before, each patient starts at day 0
with an initial tumor size of 1× 108 tumor cells.

Our simulations in this case show that about 60% of patients did not respond
to treatment. About 35% achieved a partial response, and about 5% achieved
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a complete response. These results are in line with expected response rates to
sunitinib treatment, as seen in [47, 40, 53]. For example, in [47], a total of 36 RCC
patients were treated with sunitinib and followed for 15 months. In this study,
29.4% achieved partial response, and 70.6% had stable or progressive disease for at
least two cycles. In [53], 248 patients received sunitinib treatment and were followed
for six months. Approximately 30% achieved PR, while about 70% had no objective
response, while one patient may have achieved a complete response. The study of
[40], which enrolled 23 metastatic RCC patients followed over two years, reported
partial response for 43% of patients.

The simulation results indicate that the model is able to capture qualitatively
realistic responses to sunitinib treatment, even in the absence of patient-specific
data. We note that our simulations did give rise a complete response in about 5%
of patients, which was a fairly rare outcome in the clinical studies. It is interest-
ing that varying only the two immune-strength parameters d and l from patient
to patient yields simulated results that reflect clinical outcomes reasonably well. If
patient-specific data were to become available, model parameters could be tuned
accordingly, and simulations would likely align even more closely to clinical out-
comes.
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Figure 6. Simulation of 100 patients. Tumor growth after 300
days with sunitinib treatment as outlined in section 4.7. Immune
strength parameters d and l sampled from a uniform distribution
within [1.7, 2.2]. Initial tumor size for all patients 1× 108.

5.3. Experimental dosing schedules. Once we validated our model’s correlation
with clinical response data, we varied the clinical dosing schedule of sunitinib to test
whether this would yield better response rates. We experimented with increasing
the amount of time the drug was administered by two days and decreasing the
number of days in a full treatment cycle by two days (that is, resuming treatment
two days sooner than the standard), giving us four permutations of scheduling. For
these new schedules, we also varied the dose of sunitinib administered between the
normal dosage amount (50 mg), a half dose, and a double dose. These changes gave
us 12 experimental trials. We found that doubling the dosage amount, but keeping
the dosing schedule the same as in our model validation (figure 7), yielded the best
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response rates. The simulation shows that about 50 % of patients achieved a partial
response, which is a 15 % increase over our original response rates. It is interesting
to note that although the partial response rate is increased, the number of patients
who with a complete response to the drug is not changed. We present the outcomes
of an individual patient in figure 8 that would benefit from the doubled dosage of
sunitinib. With no treatment, this patient’s tumor grows to carrying capacity, as
expected. With normal sunitinib treatment, this patient achieves a partial response.
Then, when we double the dose amount, the patient achieves a complete response
by day 300.
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Figure 7. Simulation of 100 patients. Tumor growth after 300
days with amount of sunitinib treatment administered daily dou-
bled from the amount outlined in section 4.7. Immune strength
parameters d and l sampled from a uniform distribution within
[1.7, 2.2]. Initial tumor size for all patients 1× 108.

5.4. Parameter sensitivity. We carried out a numerical parameter sensitivity
analysis on the system of differential equations with no treatment intervention. We
followed the standard approach of changing one parameter at a time by a certain
percent (both increasing and decreasing) while leaving all other parameters fixed.
Numerical initial condition values for all but the initial tumor size were chosen to
be the no-tumor homeostasis values provided in section 3. Initial tumor size was
set to 1.78× 107 cells, somewhat lower than the high-tumor equilibrium values for
this model. We measured the effect of varying each parameter by evaluating the
resulting percent change in final tumor size on day tfinal = 300. The percent change
in final tumor size as a result of each parameter change can be seen in figure 9.

In figure 9 it is clear that there are three parameters that have the greatest impact
on final tumor size. These are a, intrinsic tumor growth rate, c, a measure associated
with NK cell effectiveness, and l, a measure associated with T cell effectiveness. It
seems biologically reasonable that these three parameters should affect the system
outcome significantly. It is also interesting to note that it may be possible to
determine patient-specific values for these important parameters, as was highlighted
in de Pillis et al. (2005) [15].
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Figure 8. Individual patient dynamics. Top panel: patient tumor
grows with no treatment. Middle panel: patient achieved partial
response to normal sunitinib treatment. Bottom panel: patient
achieved complete response with doubled dose of treatment. In
our simulation, this patient had d and l values of 1.72989.

6. Discussion. The goal of the model presented in this paper was to explore the
interaction between tumor growth and the activity of regulatory T cells (Treg cells),
and how these might vary according to patient-specific immune strength. Tumor
model parameters were chosen to reflect renal cell carcinoma. Sunitinib, a drug that
can suppress the activity of regulatory T cells, was the treatment simulated. We
have demonstrated that the model with the chosen parameter set can give simulated
results that qualitatively and quantitatively reflect clinic study data.

1. Model Validation: In a simulated sample population of 100, sunitinib treat-
ments following standard protocols led to improved tumor control in approx-
imately 30% to 40% of patients, which reflects the numbers seen in clinical
studies.

2. Hypothetical Dosing: Simulations of experimental sunitinib treatments at
double the standard dose led to a greater response rate in about 15% the
patient population. However, about 45% of patients still had no objective
response, even to the larger dose treatment.

3. Role of Patient Specific Immune Strength: The key in the difference
between patients that responded well to sunitinib and those who did not
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Figure 9. Parameter sensitivity. Change in final tumor size after
300 days in response to 0.1% change in parameter value. Initial
tumor size is 1.78 × 107 cells. All other initial values are the no-
tumor homeostasis values provided in section 3. Baseline values for
l and d are 1.7.

was the relative immune strength of each patient, reflected in the model by
varying the values of the parameters d and l. These two parameters affect
the strength of T cell control of a tumor. However, as can be seen from
the parameter sensitivity analysis, increasing l weakens tumor control, while
increasing d strengthens tumor control. In our simulations, we assigned l and
d the same values, allowing these parameters to increase or decrease together.
With this approach, we did not give one group of patients a clear advantage
over another. This was one way of capturing possible differences in individual
patient immune strengths, but other approaches are possible.

From the sensitivity analysis as well as the simulation of all possible (d, l)
pairs in figure 5, we see that the effect of shrinking parameter l is greater
than the counter-effect of increasing parameter d. This explains why, in our
simulations, the lower the values of l and d, the better the patient responded
to treatment. It is interesting to note that with no treatment, the differences
in relative immune strength, when constraining l and d to values within the
parameter range 1.7 to 2.2, did not affect tumor growth. It was only in the
presence of sunitinib treatment that innate immune differences affected patient
outcomes. Tumor control without medication could be achieved for values of
l ≤ 1, but l-values measured in patients may tend to be larger than 1[15]. The
connection between innate immune strength and patient prognosis may be
very significant. When patient-specific immune parameters can be measured
- and it is possible to do so in certain cases [15] - this may give clinicians
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the ability to predict which patients have a good chance of responding well to
certain immunotherapies, and which patients do not. It may also allow the
personalizing of treatments based on patient parameters.

7. Future directions. There are some modifications that may be useful to im-
plement in future versions of this model. One possibility is to model explicitly the
activity CD4+ helper T cells as a separate population, rather than including them
in the circulating lymphocyte population. In the current model, circulating lym-
phocytes are assumed to include, and therefore act as a proxy for, the CD4+ T cell
population. It is known that CD4+ T cells are the main producers of IL-2, as well
as the source of Treg cells [2]. It is also known that sunitinib modulates Treg activity
by decreasing CD4+ T cell differentiation into Treg cells rather than killing the Treg

cells directly [31].Sunitinib is a tyrosine kinase inhibitor, meaning that it acts by
blocking the receptors of numerous tumor growth factors [55]. Since one goal of
our model was to test the endpoint effects that sunitinib can have through reducing
the number of Treg cells in the system, we chose to keep our model simple and
focus on the end result of sunitinib administration rather than the explicit path-
ways through which sunitinib achieves Treg down-regulation. However, determining
a way to model the exact mechanism by which sunitinib decreases Treg cells may
be worthwhile. Having a separate CD4+ T cell compartment could facilitate more
accurately modeling IL-2, Treg, and sunitinib dynamics. More accurately modeling
IL-2 activity would also allow us to include exogenous IL-2 treatments in the model,
thus allowing us to explore optimizing combination IL-2 and sunitinib therapies.

Finally, an important model extension would be to account for drug toxicity
and autoimmune reactions. It is known that high doses of both IL-2 and sunitinib
have potentially toxic effects on the body. Currently, our model does not account
for negative side effects when implementing experimental dosages. The additional
amount of treatment needed to improve response rates could cause so much harm
to the patients that it cannot be considered feasible in the clinic.
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Appendix A. Reference tables. The reference tables below provide a quick ref-
erence for parameter values, as well as descriptions of parameters and equation
terms.

Table 1: Equation Descriptions

ODE Term Description
dT/dt aT (1− bT ) Logistic tumor growth

−ce−λTRNT NK-induced tumor death with Treg inhibition

Continued on next page
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Table 1: Equation Descriptions

ODE Term Description
−DT CD8+ T cell induced tumor death

dN/dt eC Production of NK cells from circulating lympho-
cytes

−fN NK turnover
−pNT NK death by exhaustion of tumor-killing resources
(pNNI/gN + I) Stimulatory effect of IL-2 on NK cells

dL/dt −mL CD8+ T cell turnover
−qLT CD8+ T cell death by exhaustion of tumor-killing

resources
r1NT CD8+ T cell stimulation by NK-lysed tumor cell

debris
r2CT Activation of naive CD8+ T cells in general lym-

phocyte population
(pILI/gI + I) Stimulatory effect of IL-2 on CD8+ T cells
(−zL2RI/κ+ I) Inhibition of CD8+ T cells by Treg cells
(jTL/k + T ) CD8+ T cell stimulation by CD8+ T cell-lysed tu-

mor cell debris
dR/dt wC Production of Treg cells from circulating lympho-

cytes
−uR Treg cell turnover
(pRRI/gR + I) Stimulatory effect of IL-2 on Treg cells

−HR

(
1− e−λRS

)
R Inhibition of Treg cells due to sunitinib

dC/dt α Lymphocyte synthesis in bone marrow
−βC Lymphocyte turnover

dI/dt −µII IL-2 turnover
φC Production of IL-2 due to naive CD8+ T cells and

CD4+ T Cells
(ωLI/ζ + I) Production of IL-2 from activated CD8+ T cells

dS/dt −ηS Excretion and elimination of sunitinib
vS(t) Sunitinib injection
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Table 2: Parameter Descriptions

ODE Param Description
dT/dt a Growth rate of tumor

b Inverse of carrying capacity
c Maximal rate of NK-induced tumor death
λT Treg induced NK inhibition coefficient
d Immune system strength coefficient
l Immune strength scaling coefficient
s Value of (L/T )l for half-maximal CD8+ toxicity

dN/dt e/f Ratio of NK cell synthesis rate to turnover rate
f Rate of NK cell turnover
p Rate of NK cell death due to tumor interaction
pN Rate of IL-2 induced NK cell proliferation
gN Concentration of IL-2 for half-maximal NK cell proliferation

dL/dt m Rate of activated CD8+ T cell turnover
q Rate of CD8+ T cell death due to tumor interaction
r1 Rate of NK-lysed tumor cell debris activation CD8+ cells
r2 Rate of CD8+ production from circulating lymphocytes
pI Rate of IL-2 induced CD8+ T cell activation
gI Concentration of IL-2 for half-maximal CD8+ T cell activation
z Treg induced CD8+ T cell inhibition coefficient
κ Concentration of IL-2 to halve magnitude of CD8+ inhibition
j Rate of CD8+ T cell-lysed tumor debris activation of CD8+ T

cells
k Tumor size for half-maximal CD8+ T cell-lysed debris CD8+ T

cell activation
dR/dt w/u Ratio of Treg synthesis rate to turnover rate

u Rate of Treg turnover
pR Rate of IL-2 induced Treg proliferation
gR Concentration of IL-2 for half-maximal Treg activation
HR Rate of Treg inhibition from sunitinib
λR Sunitinib efficacy coefficient

dC/dt α/β Ratio of lymphocyte synthesis rate to turnover rate
β Rate of lymphocyte turnover

dM/dt γ Rate of excretion and elimination of doxorubicin
dI/dt µI Rate of excretion and elimination of IL-2

ω Rate of IL-2 production from CD8+ T cells
φ Rate of IL-2 production from CD4+ T cells and naive CD8+ T

cells
ζ Concentration of IL-2 for half-maximal CD8+ T cell IL-2 pro-

duction
dS/dt η Rate of excretion and elimination of sunitinib



MATHEMATICAL MODEL: REGULATORY T CELL EFFECTS ON RCC TREATMENT 943

Table 3: Parameter Values

ODE Param Value Units Source
dT/dt a 0.2065 1/day Estimated (see section 4.1)

b 2.145× 10−10 Cells−1 Estimated (see section 4.1)
c 8.68× 10−10 L Cells−1 Day−1 Estimated (see section 4.1)
λT 1.590× 10−9 L Cells−1 Estimated (see section 4.1)
d 1.7 [1.7-2.2] Day−1 de Pillis et al. (2009) [13]
l 1.7 [1.7-2.2] - de Pillis et al. (2009) [13]
s 3.5× 10−2 L−1 de Pillis et al. (2009) [13]

dN/dt e/f 0.1168 - de Pillis et al. (2009) [13]
f 1.25× 10−2 Day−1 de Pillis et al. (2009) [13]
p 6.682× 10−14 L Cells−1 Day−1 de Pillis et al. (2009) [13]
pN 6.68× 10−2 Day−1 de Pillis et al. (2009) [13]
gN 2.5036× 105 IU L−1 de Pillis et al. (2009) [13]

dL/dt m 9× 10−3 Day−1 de Pillis et al. (2009) [13]
q 3.422× 10−10 Cells−1 Day−1 de Pillis et al. (2009) [13]
r1 6.682× 10−12 Cells−1 Day−1 de Pillis et al. (2009) [13]
r2 1× 10−15 Cells−1 Day−1 de Pillis et al. (2009) [13]
pI 1.111 Day−1 de Pillis et al. (2009) [13]
gI 2.5036× 103 IU L−1 de Pillis et al. (2009) [13]
z 2.3085× 10−13 L2 Cells−2

Day−1
de Pillis et al. (2009) [13]

κ 2.5036× 103 IU L−1 de Pillis et al. (2009) [13]
j 1.245× 10−1 Day−1 de Pillis et al. (2009) [13]
k 2.019× 107 Cells de Pillis et al. (2009) [13]

dR/dt w/u 1.22× 10−2 - Estimated (see section 4.4)
u 3.851× 10−2 Day−1 Mabarrack et al. (2008)

[48]
pR 3.598× 10−2 Day−1 Method from de Pillis et al.

(2009) [13]
gR 11.027 IU L−1 Method from de Pillis et al.

(2009) [13]
HR 0.227 Day−1 Estimated (see section 4.4)
λR 50.02 L mg−1 Estimated (see section 4.4)

dC/dt α/β 2.14× 109 cells L−1 Abbas et al. (2007) [1]
β 6.3× 10−3 Day−1 de Pillis et al. (2009) [13]

dI/dt µI 11.7427 Day−1 de Pillis et al. (2009) [13]
ω 5.314× 10−2 Day−1 de Pillis et al. (2009) [13]
φ 3.594× 10−7 IU Cells−1

Day−1
de Pillis et al. (2009) [13]

ζ 2.5036× 103 IU L−1 de Pillis et al. (2009) [13]
dS/dt η 0.277 Day−1 Estimated (see section 4.7)
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