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We present a competition model of cancer tumor growth that includes both the immune sys- 
tem response and drug therapy. This is a four-population model that includes tumor cells, host 
cells, immune cells, and drug interaction. We analyze the stability of the drug-free equilibria 
with respect to the immune response in order to look for target basins of attraction. One of our 
goals was to simulate qualitatively the asynchronous tumor-drug interaction known as "Jeff s 
phenomenon." The model we develop is successful in generating this asynchronous response 
behavior. Our other goal was to identify treatment protocols that could improve standard 
pulsed chemotherapy regimens. Using optimal control theory with constraints and numerical 
simulations, we obtain new therapy protocols that we then compare with traditional pulsed 
periodic treatment. The optimal control generated therapies produce larger oscillations in the 
tumor population over time. However, by the end of the treatment period, total tumor size is 
smaller than that achieved through traditional pulsed therapy, and the normal cell population 
suffers nearly no oscillations. 

Keywords: Cancer, Tumor, Population Models, Competition Models, Mathematical Modeling, Immune 
System, Optimal Control 

1 INTRODUCTION AND BACKGROUND 

The growth of a cancerous tumor in vivo is a compli- 
cated process involving multiple biological interac- 
tions. The response of such tumors to active treatment 
such as chemotherapy and radiotherapy is also com- 
plex, but important to understand. Currently, there 
exists an array of mathematical models of cancer pro- 
gression and treatment, each of which tends to focus 
on simulating one or  two important elements of the 
-- 
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multifaceted process of tumor growth and response to 
therapy. In a cooperative effort with clinicians and 
research oncologists, we  have been investigating 
mathematical models of tumor growth with the goal 
of  better understanding how the various aspects of 
growth and treatment interact with one another. Our 
investigations led us  to develop our own generalized 
mathematical model of cancer growth, which incor- 
porates several key elements of the growth processes 
and the effect of their mutual interactions. Addition- 
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ally, we employ numerical optimal control methods to 
search for treatment protocols that, in theory, are 
improvements to the standard protocols in use today. 

1.1 Modeling Tumors 

The development of a cancerous tumor is complex 
and involves the interaction of many cell types. The 
tumor itself is not homogeneous; and normal tissue, 
lymphocytes, macrophages, and other types of cells 
either grow at the tumor site or are recruited to the 
tumor through chemotaxis. Cell growth may be 
stemmed as cells compete for resources and space, 
but may also be stimulated by the presence of certain 
cell populations. Through a biochemical process, 
immunogenic tumor cells and cytotoxic immune cells 
interact, first binding to form cell conjugates, and 
then splitting to produce lysed tumor cells, inactivated 
immune cells, undamaged tumor cells or undamaged 
immune cells, and debris; see (Kuznetsov et al. 1994) 
and (Owen and Sherratt 1998). When chemotherapy 
is administered, a toxic drug is introduced that in prin- 
ciple destroys all cell types to some extent, modifying 
this interplay among cell populations. Many clinically 
observed effects are still not well understood in terms 
of existing models. In this work, we investigate an 
approach to creating a mathematical model of tumor 
growth with chemotherapy in which multiple interac- 
tions are considered. 

As we have noted, much useful work has been done 
on simplified yet fundamental models involving the 
interaction between tumor cells and immune cells 
alone (see (Kuznetsov et al. 1994), (Owen and Sher- 
ratt 1998), and (Adam 1993)), between tumor cells 
and normal cells alone (see (Knolle 1988), (Dibrov et 
al. 1985), and (Eisen 1979)), and between tumor cells 
and chemotherapy treatments alone (see (Shochat, 
Hart, and Agur 1999), (Adam and Panetta 1995), 
(Martin 1992), (Murray 1990), (Martin et al. 1990), 
(Swan 1987), (Coldman and Goldie 1986), (Swan 
1985), (Dibrov et al. 1985), and (Eisen 1979)). 

These models, while extremely useful in providing 
an understanding of tumor growth and treatment from 
various perspectives, have not been sufficient to 
reproduce certain qualitative aspects of interest to the 

clinicians with whom we are working. To capture 
some of this elusive qualitative behavior, we have 
developed a model that incorporates the interactions 
among tumor cells, normal cells, immune cells, and 
chemotherapy. 

Some work has also been done in the development 
of stochastic models; see (Castellanos Moreno 1996), 
(Bartoszybski, Jones, and Klein 1985), (Duc 1985), 
(Serio 1984), and (Bramson and Griffeath 1980). A 
stochastic approach can be useful, especially in the 
context of interactions among populations with low 
densities. In this work, however, we concentrate on 
continuous-time deterministic models of tumor 
growth and treatment. This allows us to apply classi- 
cal optimal control theory, through which we deter- 
mine improved chemotherapy administration 
schedules. 

1.2 Theory versus Observation 

The design of a mathematical model of a biological 
system is governed by the need to distill the essential 
behavior of the system and the need to answer spe- 
cific questions about that system. In our case, our goal 
was to use the model to design a protocol for chemo- 
therapy that would produce an improved outcome by 
way of reducing final tumor size without causing 
large losses in the normal cell population. We also 
wished to develop a model of tumor growth that 
would evidence certain clinically observed phenom- 
ena brought to our attention by the research oncolo- 
gists with whom we have been working. The model 
we have developed, which is built from combining 
some of the most useful aspects of previously existing 
models, does in fact exhibit the qualitative behavior 
we wished to reproduce, including "Jeffs phenome- 
non" and tumor dormancy. 

1.2.1 Jeffs Phenomenon 

"Jeff s phenomenon" is a clinically observed temporal 
oscillation in tumor size which is apparently unsyn- 
chronized with the administration of chemotherapy. 
In some patients a tumor continues to grow after treat- 
ment, and then, some time after treatment has ceased, 
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FIGURE 1 The three null-surfaces for the parameter values listed in Section 5.1. The top graph shows the immune null surface N1, which is 
curved. The bottom graph shows the planar surfaces, N2 and N3, for the tumor and normal rate equations, respectively. The stable coexisting 
equilibrium for this particular parameter set is marked as a dot on each graph (See Color Plate I at the back of this issue) 

begins to decrease in size. According to Thornlinson drugs, we chose to model the interaction between a 
(1982), these asynchronous responses are not a result drug and the various cells as a continuous-time proc- 
of drug resistance, as some may speculate. Therefore, ess rather than an instantaneous kill, as in (Panetta 
to reflect this asynchronous reaction to cytotoxic 1996). Thus, the effect of the drug is incorporated into 
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the differential equations themselves, rather than 
occurring as pulsed, instantaneously effective treat- 
ments. In our new model the drug affects normal and 
immune cells, as well as tumor cells. This does, in 
fact, achieve the desired qualitative effect and causes 
oscillations in tumor size whose phase and period 
change over time and are asynchronous with drug 
administration. 

1.2.2 Tumor Dormancy 

Another phenomenon of current interest to clinicians 
is tumor dormancy. There is clinical evidence that a 
tumor mass may disappear, or at least become no 
longer detectable, and then for no apparent reason 
may reappear, growing to lethal size. The mecha- 
nisms and behavior of this phenomenon have been 
and continue to be studied from both clinical and 
mathematical modeling perspectives. Multiple clini- 
cal studies document the strong connection between 
the effects of the immune system and tumor dor- 
mancy. For example, Farrar et al. (1999) present the 
results of clinical studies on murine B cell lymphoma 
(BCLl) in mice vaccinated with BCLl Ig. Farrar et 
al. extend previous work, which demonstrated that T 
cell-mediated immunity is an important component, 
in the regulation of tumor dormancy, and demonstrate 
that CD8+ T cells in particular play a decisive role in 
both inducing and maintaining a state of tumor dor- 
mancy. Again in the context of BCLl in mice, the 
work of Morecki et al. (1996) indicates that 
cell-mediated antitumor immunity contributes to 
maintenance of the tumor dormant state. In (Matsu- 
zawa et al. 1991b) and (Matsuzawa et al. 1991a), it is 
shown that Lyt-2+, L3T4- T cells appear to mediate 
host antitumor immunity to B cell leukemia (DL811) 
in DDD mice to eradicate leukemic cells and maintain 
a dormant state. Muller et al. (1998) did a study on 
tumor dormancy in bone marrow and lymph nodes. 
Their experiments show that bone marrow and lymph 
nodes are sites where potentially lethal tumor cells are 
controlled in a dormant state specifically by the 
immune system. Stewart (1996) reviewed findings of 
six case studies of non-small-cell lung cancer in 
patients randomized to receive specific active immu- 
notherapy in controlled clinical trials. Stewart con- 

cluded that dormancy in these patients is the result of 
immune mechanisms. Also in this review, animal 
models of tumor dormancy were discussed; again, it 
was stated that the evidence is clear that dormancy 
can be induced by manipulating immune mecha- 
nisms. Gray and Watkins, Jr. (1975) presented a gen- 
eral review of immunotherapy and stated that 
long-term tumor dormancy can be explained only by 
host defense mechanisms. 

The effects of the immune system and how immune 
mechanisms could lead to oscillations in tumor size 
and to dormancy have also been modeled mathemati- 
cally. In (de Boer and Hogeweg 1986), a mathemati- 
cal model of the cellular immune response was used 
to investigate immune reactions to tumors. It was 
found that initially small doses of antigens do lead to 
tumor dormancy. The mathematical model of (Kir- 
schner and Panetta 1998), which also focuses on the 
tumor-immune interaction, indicated that the dynam- 
ics between tumor cells, immune cells, and IL-2 can 
explain both short-term oscillations in tumor size as 
well as long-term tumor relapse. The mathematical 
model developed by Kuznetsov (Kuznetsov and 
Makalkin 1992, Kuznetsov et al. 1994), in which the 
nonlinear dynamics of immunogenic tumors are 
examined, also exhibits oscillatory growth patterns in 
tumors, as well as dormancy and "creeping through": 
when the tumor stays very small for a relatively long 
period of time, and subsequently grows to be danger- 
ously large. In these mathematical models, the cycli- 
cal behavior of the tumor is directly attributable to the 
interaction with the immune response. 

In models such as those of Kuznetsov et al. (1994) 
and Kirschner and Panetta (1998), immune cells and 
tumor cells compete in what is known as a "preda- 
tor-prey" interaction, in which the immune cells play 
the role of the predator and the tumor cells play the 
role of the prey. This competition can give rise to 
cyclic growth and reduction in the cell populations in 
an intuitive way. The presence of tumor cells bio- 
chemically stimulates the production of immune cells. 
Simultaneously, the growth of the tumor cells is 
retarded by the presence of the immune cells. As the 
tumor cells die off, the immune cell population conse- 
quently decreases. But a decreasing immune cell pop- 
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p-s Parameter space: number and stability of coexisting equilibria 
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FIGURE :l Coexisting equilibria as a function of immune response rate p and source rate s. Depicted are Region 1: no equilibria, Region 
2: one unstable equilibrium, Region 3: one stable equilibrium. Region 4: one stable and one unstable equilibrium, Region 5: two stable equi- 
libria, Region 6: two unstable equilibria and one stable equilibrium, and Region 7: two stable equilibria and one unstable equilibrium (See 
Color Plate I1 at the back of this issue) 

ulation will allow the tumor cells to begin growth action of the immune cells significantly impacts the 
once again. Depending on the system parameters, the dynamics of tumor growth, we include the interaction 
cycle could continue indefinitely, or eventually spiral of the immune and tumor cells in our model. In the 
to a point of equilibrium. Because it is clear that the model we develop, it is easily shown that if the 
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immune system is removed, cyclical behavior cannot 
arise. This is because the resulting competitive system 
has either one globally stable equilibrium (stable 
competition) or two stable equilibria and a saddle 
point (competitive exclusion). See, for example, (Bor- 
relli and Coleman 1998, p. 282) for a discussion of 
stable competition and competitive exclusion. 

1.3 Optimal Control Theory 

Once an adequate model of interacting cell popula- 
tions is constructed, we then focus on the design of an 
improved treatment protocol. To this end, we employ 
the tools of optimal control theory. This theory origi- 
nated in economics, where it was used to optimize 
returns on investments. It was subsequently applied to 
engineering problems and finally to biological mod- 
els. The goal of chemotherapy is to destroy the tumor 
cells, while maintaining adequate amounts of healthy 
tissue. From a mathematical point of view, adequate 
destruction of tumor cells might mean forcing the sys- 
tem out of the basin of an unhealthy spiral node, or 
out of a limit cycle, and into the basin of attraction of 
a stable, tumor-free equilibrium. Alternatively, if the 
therapy pushes the system into a limit cycle in which 
the size of the tumor is small for a long period of time 
(as long as the life of the patient, for example), this 
could also be considered a "cure." 

Optimality in treatment might be defined in a vari- 
ety of ways. Some studies have been done in which 
the total amount of drug administered is minimized, 
or the number of tumor cells is minimized (Swiemiak, 
Polanski, and Kimmel 1996), (Swierniak and Polan- 
ski 1994), (Swiemiak 1994). The general goal is to 
keep the patient healthy while killing the tumor. Since 
our model takes into account the toxicity of the drug 
to all types of cells, we chose to minimize the tumor 
population, while constraining the normal cells to stay 
above some minimum level. Therefore, the develop- 
ment of a chemotherapy protocol can be phrased as an 
optimal control problem with constraints: for a fixed 
time interval, find the points within that interval at 
which the drug should be administered so that the 
number of tumor cells has been minimized, while the 

number of healthy cells has been kept above a pre- 
scribed threshold. 

1.4 Numerical Methods 

While general optimal control problems can often be 
difficult to solve analytically, one can sometimes 
appeal to numerical methods for obtaining solutions. 
Numerical methods for constrained optimal control 
are very sensitive to parameter adjustments, and do 
not always converge to realistic solutions, so in this 
arena we must exercise caution as well. We have 
employed a numerical approach to optimal control to 
determine a set of potentially optimal courses of treat- 
ment. A numerical approach has been used in, for 
example, (Martin 1992), (Martin et al. 1990), (Knolle 
1988), (Murray 1990), (Swan 1987) and (Swan 1985), 
for simpler models without interaction between dif- 
ferent cells. We present numerical results based on 
our model, and compare these solutions to a standard, 
periodically pulsed therapy. 

2 THE MODEL 

In this section we describe in detail the model we 
developed. 

2.1 The Model - Overview 

Culling useful aspects of previously developed math- 
ematical models, we combine the following features 
in this model: 

Immune response: the model includes immune 
cells whose growth may be stimulated by the pres- 
ence of the tumor and that can destroy tumor cells 
through a kinetic process. We point out that the 
presence of a detectable tumor in a system does 
not necessarily imply that the tumor has com- 
pletely escaped active immunosurveillance. It is 
entirely possible that although a tumor is immuno- 
genic, the immune system response is not suffi- 
cient on its own to completely combat the rapid 
growth of the tumor cell population and the even- 
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tual development into a tumor. In fact, there is 
even some speculation that all tumors are imrnu- 
nogenic; see, for example, (Prehn 1994). 

Competition terms: normal cells and tumor cells 
compete for available resources, while immune 
cells and tumor cells compete in a predator-prey 
fashion. 

Optimal control theory for chemotherapy: a set of 
optimal drug therapies is calculated that minimize 
the tumor population by the end of the treatment 
period, while keeping the normal cells above a 
required level; these solutions are then used to 
design a practical treatment protocol. 

We focus on tissue near the tumor site, and we 
assume a homogeneous tumor. We choose to model 
the reaction of the immune cells with the tumor cells 
in the same manner as that described in (Kuznetsov, 
Makalkin, Taylor and Perelson 1994). For the growth 
law terms, we considered several possible models, 
including exponential growth, Gompertz growth, and 
logistic growth. The exponential growth law in the 
context of a tumor cell population assumes that the 
rate of increase in the population at a certain point in 
time is directly proportional to the size of the tumor 
population at that time; the exponential curve is 
unbounded as time increases. The pattern of growth to 
which the Gompertz law gives rise is similar to that of 
exponential growth in the early stages, but plateaus as 
tumor size increases; the Gompertz growth curve is 
sigmoid. The logistic growth law is again similar to 
the exponential growth law, with the exception that it 
includes an intrinsic population carrying capacity 
beyond which the population size cannot grow. In 
cases in which specific biological data are available, 
the choice of growth law term and the parameters 
involved can be important. In (Vaidya and Alexandro, 
Jr. 1982), the derivation and behaviors of all three of 
the above growth laws, in addition to a fourth law, 
Bertalanffy growth, are described in detail. Each of 
these laws was evaluated against clinical data on 
untreated primary carcinoma of the human lung, as 
well as induced sarcoma in mice. The authors found 
that Bertalanffy growth gave the best results in the 
cases of mouse sarcoma, but that logistic growth most 

accurately described the progression of human lung 
carcinoma. In a more recent study (Hart, Shochat, and 
Agur 1998) the Gompertz, logistic, exponential, and 
power growth laws were compared. The power 
growth law is a direct generalization of exponential 
growth and is fully described in the study. In this case, 
model outcomes were compared to clinical data for 
primary breast cancer growth. For these particular 
breast cancer studies, the power growth law with an 
exponent of about 0.5 gave the best f 3  to the data. 

Since the model we are developing is intended to 
be qualitative and does not focus on a particular 
tumor type, it is not immediately apparent how to 
measure which growth law is superior in this context. 
It turns out, however, that the growth law terms we 
compared allow for similar growth behavior up to a 
certain point in tumor size. Since we assume an ini- 
tially small tumor mass, that is, a tumor size that is 
close to zero relative to carrying capacity, the choice 
of growth law does not significantly affect the qualita- 
tive behavior of the model. We compared the results 
of the evolution of our system using the various 
growth law terms and in each case found qualitative 
results to be similar. The solutions presented here, 
therefore, are those that have arisen using logistic 
growth. In Sections 5 and 6,  we present analytic and 
numerical results of this new model, as well as open 
questions and future directions for refining the model. 

Preliminary numerical results have already sug- 
gested that standard treatment protocols may not be 
optimal and that better outcomes may be achieved by 
administering medication in ways that have not been 
previously employed clinically but have been sug- 
gested by the mathematics. As this new model is 
developed and refined, these theories can be more 
thoroughly tested. Although there is still much to be 
done to test the new theories, every new result has the 
potential to be an advance towards improving the 
quality of treatment for cancer sufferers. 

2.2 The Model - Equations 

We let I ( t )  denote the number of immune cells at time 
t ,  T(t) the number of tumor cells at time t ,  and N(t)  the 
number of normal, or host cells at time t. The source 
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of the immune cells is considered to be outside of the 
system, so it is reasonable to assume a constant influx 
rate, s. Furthermore, in the absence of any tumor, the 
cells will die off at a per capita rate d l ,  resulting in a 
long-term population size of sldl cells. Thus, immune 
cell proliferation will never suffer from immune upon 
immune crowding. 

The presence of tumor cells stimulates the immune 
response, represented by the positive nonlinear 
growth term for the immune cells 

where p and a are positive constants. This type of 
response term is of the same form as the terms used in 
the respective models of Kuznetsov et al. (1994) and 
Kirschner and Panetta (1998). It is also similar to the 
one used by Owen and Sherratt (1998) once their sys- 
tem is reduced to the pseudo-steady state. In other 
words, as a function of T, it is positive, increasing, 
and concave. 

Furthermore, the reaction of immune cells and 
tumor cells can result in either the death of tumor 
cells or the inactivation of the immune cells, resulting 
in the two competition terms 

As discussed in Section 2.1, the tumor cells as well 
as the normal cells are modeled by a logistic growth 
law, with parameters ri and bi representing the per 
capita growth rates and reciprocal carrying capacities 
of the two types of cells: i = 1 identifies the parame- 
ters associated with the tumor, and i = 2 identifies 
those associated with the normal tissue. In addition, 
there are two terms representing the competition 
between tumor and host cells. 

Putting all the terms together gives the following 
system of ordinary differential equations: 

The behavior of this system without drug interac- 
tions will be analyzed in Section 3. 

We now add the effect of the drug on the system. 
We denote by u(t) the amount of drug at the tumor site 
at time t. We assume that the drug kills all types of 
cells, but that the kill rate differs for each type of cell, 
with the response curve in all cases given by an expo- 
nential 

where F(u) is the fraction cell kill for a given amount 
of drug, u, at the tumor site. Since the details of the 
pharmacokinetics are unknown, we let k = 1 in these 
preliminary studies. We denote by a l ,  a*, and ag the 
three different response coefficients. We add these 
terms to the system of differential equations above as 
well as an equation for u(t), the amount of drug at the 
tumor site. This is determined by the dose given, v(t), 
and a per capita decay rate of the drug once it is 
injected. The system with drug interaction is then 
given by 

Our control problem consists of determining the 
function v(t) that will minimize the number of tumor 
cells at some specified time, t f ,  with the constraint that 
we do not kill too many normal cells. If the units of 
cells are normalized, so that the carrying capacity of 
normal cells is 1 (i.e., b2 = I ) ,  we then require that the 
number of normal cells stay above three-fourths of 
the carrying capacity, or N(t) 2.75 for all t. Therefore, 
in the language of optimal control theory, our objec- 
tive function (the function we wish to minimize) and 
our constraint are given by 

Objective F~inct~ion: . J ( t f )  = T ( t f )  (3) 
Constraint: X ( t )  2 .73, O 5 t 5 t 

In Section 4 we look more closely at the optimal 
control problem and discuss some possible modifica- 
tions to the objective function. 
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FIGURE 3 Cell populations at equilibria as a function of p. Stability of equilibria is indicated. Movement is from Region 2 through Regions 
7 and 6 and finally into Region 3: as p increase from 0.1 to 2.0. Source rate s = 0.05 (See Color Plate 111 at the back of this issue) 
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3 DRUG-FREE EQUILIBRIA 

To better understand the dynamics of the system, we 
first analyze the system without any drug input 
(u(t) = 0 for all t). Recall from Section 2 that the units 
of cells are normalized so that b2 = 1. In order to con- 
sider the patient "cured," the system must be either in 
the basin of a stable tumor-free equilibrium or in the 
basin of a stable equilibrium at which only a harm- 
lessly small amount of tumor is present. 

The three sets of null-surfaces of the drug-free sys- 
tem given by (1) are described by the following: 

as long as pT# (c,T+ d l ) ( a  + 7'). 

N, is a curved cylindrical surface parallel to the 
N-axis. Letting f(T) be a function of the tumor popula- 
tion T, we let j(T) describe N1 by defining 

N2 is a plane. 

N3: 

N3 is also a plane, parallel to the I-axis. Letting g(7J 
be a function describing N3 in terms of the tumor pop- 
ulation, we define 

The null-surfaces for the particular set of parameter 
values used in our experiments are pictured in 
Figure 1. See Section 5.1 for a list of parameter val- 
ues. The types of equilibrium points that could occur 
at the intersections of these surfaces can be classified 
as follows: 

Tumor-free: In this category, the tumor cell popu- 
lation is zero but the normal cells survive. The 
equilibrium point has the form 

( s l d ,  ; 0; 1 )  

Dead: We classify an equilibrium point as "dead" 
if the normal cell population is zero. There are, 
therefore, two possible types of "dead" equilibria: 

- Type-1: (sld,, 0,O) in which both the normal and 

tumor cell populations have died off, and 
- Type-2: Ma), a,  0) where the normal cells alone 

have died off and the tumor cells have survived. 
Here, a is a nonnegative solution to 

n + ( c 2 / r 1 h l )  f ( a )  - l / b l  = 0 

Coexisting: Here, both normal and tumor cells 
coexist with nonzero populations. The equilibrium 
point would be given by 

( f  ( b ) ,  b ,  d b ) )  

where b is a nonnegative solution of 

b  + ( C % / T I  b l )  f ( b )  + ( ~ / r l b l ) g ( b )  - l / b l  = 0 

Depending on the values of these parameters, there 
could be zero, one, two, or three of these equilibria. 
The two equilibrium states that the system should ide- 
ally approach, in the context of developing treatment 
therapy, are the tumor-free equilibrium and any coex- 
isting equilibrium for which b is small and g(b) is 
close to 1, since in these states the normal cell popula- 
tion survives. 

3.1 Tumor-Free Equilibrium 

In principle, we would like the tumor-free equilibrium 
to be stable so that the possibility exists of moving the 
state of the system toward the tumor-free point. In this 
section we discuss for which parameter ranges the 
tumor-free equilibrium is locally stable. Linearization 
around this equilibrium gives the system 
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with eigenvalues 

Thus the tumor-free equilibrium is stable as long as 
h2 < 0 or 

This relates the per-capita growth rate of the tumor 
cells, r l ,  to the "resistance coefficient," c2sldl, which 
measures how efficiently the immune system com- 
petes with the tumor cells. If this tumor-free equilib- 
rium is unstable, then according to this model, no 
amount of chemotherapy will be able to completely 
eradica.te the tumor. This is in fact the case in the 
model of (Owen and Sherratt 1998) for all parameter 
values. 

3.2 Dead Equilibria 

The same type of analysis as above shows that the 
type-1 dead equilibrium at (sldl,O, 0) is always unsta- 
ble. The type-2 dead equilibrium at Ha),  a, 0) can be 
either stable or unstable, depending on the parameters 
of the system. For any particular set of parameter val- 
ues, one could apply the Routh test (see, for example, 
(Borrelli and Coleman 1998, p. 415)) to the character- 
istic polynomial of the Jacobian. For the parameter set 
used in our optimal control experiments, the type-2 
dead equilibrium is located at (2.85, 0.05, 0.0) and is 
unstable. 

3.3 Coexisting Equilibria 

Also of interest are the existence and stability of equi- 
libria where a small tumor mass might coexist with a 
large number of normal cells. These equilibria occur 
at the intersection of the components of the three 
null-surfaces that do not correspond to coordinate 
planes. Figure 1 shows these surfaces, with the curved 
immune surface, N 1 ,  depicted in the top graph, and 
the planar tumor and normal surfaces, N2 and N3, 
drawn on the same axes in the bottom graph. The 

three surfaces intersect at the coexisting equilibrium, 
which is marked with a dot on the graphs. 

Depending on the parameter values, there can be 
zero, one, two, or three of these equilibria. The 
null-surfaces divide the positive octant into at most 
twelve regions. The goal of chemotherapy is to get the 
system into a region of stability of one of the "harm- 
less" equilibria: either the tumor-free equilibrium at 
(sldl, 0, 1) or an equilibrium at which only a small 
amount of tumor is present. 

Figure 2 shows the existence and stability of these 
equilibria as a function of the immune response rate, 
p, and the immune source rate, s. All other parameter 
values are set to be equal to those used in our later 
experiments. For our parameter values with p = 2.0 
and s = 0.1, there is only one coexisting equilibrium, 
and it is stable. That is, our experimental parameter 
values place us in Region 3. 

In the three graphs of Figure 3, the equilibrium val- 
ues of the cell populations are plotted as a function of 
p, with s fixed at s = 0.05. In these plots, we see the 
transition from Region 2 (one unstable equilibrium) 
through Region 7 (two stable, one unstable equilib- 
rium) and Region 6 (one stable, two unstable) and 
finally to Region 3 (one stable equilibrium point). 

Note that the behavior of the system is very sensi- 
tive to the values of p , the tumor response rate, and to 
s, the steady source rate of immune cells. 

4 OFTIMAL THERAPY PROTOCOLS 

In this section we add the effect of chemotherapy 
treatments to our system, and we use optimal control 
theory to look for an optimal administration protocol. 

Let 

h ( I ,  T ,  N ,  ,u, u )  = ( I ,  T, N ,  ti) 

be the right-hand side of the system of differential 
equations describing the model. For brevity, we 
denote the state variables by (I, 7: N, u )  = (xl, XI, "3, 

x4). We want to minimize the final number of tumor 
cells while keeping the normal cells above a fixed 
amount for the entire course of treatment. We have 
chosen this amount to be 75 percent of the tumor-free 
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System evolution: Reduced Immune Response p=1.5 
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FIGURE 4 Optimal control solution with a lower value of p. Tumor cell population only is scaled up by a factor of 10 for visibility (See 
Color Plate IV at the back of this issue) 
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normalized carrying capacity for this experiment. 
Thus, in the parlance of optimal control theory, the 
objective function is 

and the inequality constraint is 

Using the standard approach (Kamien and 
Schwartz 1991), we derive the Hamiltonian for the 
optimal control problem: 

where the functions pi(t) satisfy the co-state equa- 

d H  
tions, @, = - -- : 

ax, 

and 

q ( t )  > 0 with v(t)lc(t) = 0  (9) 

Equation 9 along with the definition of k in 
Equation 7 is consistent with 

The boundary values for the co-state variables are 

given by & 1 ; or 
2 t= l i  

The control equation is then 

which is independent of the control variable, v.  We 
assume that the amount of drug entering the patient at 
time t is bounded above and satisfies 

0 I ' 4 t )  l 'U,,,,, 

We therefore have bang-bang solutions as candi- 
dates for optimal protocols; see (Kamien and 
Schwartz 1991): 

0 P4 > 0 
fjrnax ~4 < 0 (11)  
singular p4 = 0 

Thus, the co-state variable, p4, is the switching func- 
tion for the system, and the drug should be injected at 
the maximum rate, v,,, whenever pq isnegative and 
should be stopped wheneverp4 is positive. 

In the next section we describe some numerical 
solutions to this optimal control problem and compare 
them with a standard periodic protocol, where each 
treatment is of relatively short duration. 

5 NUMERICAL SOLUTIONS 

The problem as formulated in Section 4 is a two-point 
boundary value problem (TPBVP) for which the ini- 
tial states of the state variables are known, and the 
final states of the co-state variables are known. For 
these numerical experiments we used a direct colloca- 
tion method to solve the TPBVP, implemented in 
DIRCOL v1.2 (von Stryk 1999). The algorithm is 
sensitive to user input at various stages: in particular, 
it fails if the initial estimates of the state variables and 
the control variable are not close enough to optimal 
values. The grid of points at which the control is 
given is also crucial to the success of the algorithm. 

5.1 Parameters 

In this section we summarize the parameters of the 
model in lexicographic order. Since our model is 
qualitative, rather than quantitative, there is no claim 
that these values are fully realistic. While we attempt 
to use reasonable parameter values, there is still much 
work to be done toward accurate parameter-value 
estimation. In fact, since the model itself is still a pre- 
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System evolution: Increased Immune Response p=2.0 
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FIGURE 5 Optimal control solution with a higher value of p. Tumor cell population only is scaled up by a factor of 10 for visibility (See 
Color Plate V at the back of this issue) 
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liminary one, we do not suggest that it produces quan- 
titative results that reflect real-life quantities. Rather, 
we believe that the qualitative behavior of the model 
does indeed reflect the qualitative behavior of real 
tumors with respect to the response to treatment. 

Recall that the units of cells were rescaled, so that 
one unit represents the carrying capacity of the nor- 
mal cells in the region of the tumor. This depends on 
the type of tumor, of course, but it is reasonable to 
allow this to be on the order of 1011 cells (Rieker 
1999). If one assumes that there are between lo8 and 
lo9 cells per cubic centimeter of tissue, then the nor- 
mal cell population at carrying capacity encompasses 
a volume with a diameter somewhere between 5.8 and 
12.4 centimeters. The parameter ranges implemented 
are as follows: 

Fraction Cell Kill: 0 I ai < 0.5, with a3 I al  I a2. 
In our experiments, these numbers were consid- 
ered variable in the sense that different drugs pro- 
vide for different cell kill rates. On the other hand, 
we wanted to avoid unreasonably efficient drugs, 
hence the upper bound of 0.5 on all the values. 

Canying Capacities: b,' 5 b,' = 1. 

Competition Terms: cl, c2, c3, c4 taken to be posi- 
tive in these experiments. It is reasonable to 
assume that c2 is larger than the rest, since the 
competition between immune cells and tumor 
cells is most detrimental to the tumor cells. Some 
authors argue that cg might be negative, and there 
is clinical evidence for this (Panetta 1996), 
(Michelson and Leith 1996). A negative competi- 
tion coefficient in this case would imply that 
instead of the normal cells destructively compet- 
ing with the tumor cells for resources and space, 
the presence of the normal cells would in fact 
stimulate further growth of the tumor cell popula- 
tion. In these preliminary experiments, however, 
we assume destructive competition. and we stick 
to the case 0 < c3 < c2. When the coefficient c2 is 
greater that c3, this simply indicates that the pres- 
ence of the immune systen is more damaging to 
the tumor cell population than is the competition 
between the tumor cells and normal cells. 

Death Rates: d l  and d2. Here d l  is the per capita 
death rate of the immune cells, with dl  = .2, and 
d2 is the per capita death rate of the drug, with 
d2 = I .  
Per Unit Growth Rates: rl and r2, with time nor- 
malized so that r2 = 1. Depending on the type of 
cancer and the stage of growth, rl may be bigger 
or smaller that r2. See, for example, (Kusama et al. 
1972), (Arnerov et al. 1992), and (Steel 1977). 
Here we assume that the tumor cell population 
grows more rapidly than the normal cell popula- 
tion, and let r~ z r ~ .  
Immune Source Rate: s, a steady source rate for 
immune cells in the absence of a tumor. In our 
experiments, 0 < s 5.5; see (Kuznetsov et al. 
1994). 
Immune Threshold Rate: a, which is inversely 
related to the steepness of the immune response 
curve. When the number of tumor cells, T, is equal 
to a, the immune response rate is at half of its 
maximum value. We used a = .3. See, for exam- 
ple, the parameter estimation work in (Kuznetsov 
et al. 1994). 
Immune Response Rate: p, which we assume to 
have a baseline value of 1. With the other parame- 
ter choices, an interesting range of p is the interval 
(0,2.5). In numerical experiments, we varied p in 
this range to determine bifurcations in the behav- 
ior of the system of equations 2. See Figures 2 and 
3 for illustrations of the effects of varying p. 

Initial values are I(O) = s/dl, T(O) = lo-', N(O) = I. 
When chemotherapy is initiated, the initial tumor 
mass is small, and immune and normal cells are at 
their healthy equilibrium levels. We are assuming a 
situation in which as much of the tumor has been 
removed as is possible by surgery or radiation. An ini- 
tial tumor population of lop5 normalized units is 
equivalent to lo6 tumor cells. If these tumor cells 
formed a sphere, it would occupy a volume of radius 
between 0.12 and 0.27 centimeters. The clinical 
detection threshold for a tumor is generally lo7 cells 
(Shochat, Hart, and Agur 1999), so the initial tumor 
volume of lo-' normalized units is below clinical 
detection levels. Note that the presence of a preopera- 
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Comparison cancer progression with pulsed vs. O.C. treatment 
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FIGURE 6 Comparison of optimal protocol with a standard pulsed protocol. Depicted is the optimal control protocol, as well as the compar- 
ison of the progression of the tumor in response to the optimal control protocol, versus the tumor response to pulsed protocol. The standard 
pulsed protocol, which is administered every other day for 12 hours, is implicit to the solution of the tumor response to traditional protocol 
but is not explicitly depicted on the graph. The normalized tumor cell population sizes are scaled up by a factor of ten on the plot to enhance 
clarity (See Color Plate VI at the back of this issue) 
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tive clinically detectable tumor does not necessarily 
imply that the tumor has completely escaped immu- 
nosurveillance, simply that the immune system 
response was not sufficient to curtail the rapid growth 
of the tumor cell population. 

Results from preliminary numerical experiments 
follow. Figures 4 and 5 show typical optimal solu- 
tions. The upper graphs show the time evolution of 
the three types of cells, while the lower graphs show 
the control variable, v. Notice that the numerical sim- 
ulation did produce bang-bang type optimal solutions. 
Comparison of the two graphs shows the effect of 
changing the parameter p, showing greater tumor 
reduction in the case of higher immune response rate. 
Since the tumor population is an order of magnitude 
smaller than the other populations, the amount of 
tumor on each of the plots has been scaled up by a 
factor of ten in order to make the difference in tumor 
progression visible. Note also that the control in the 
reduced immune response case calls for about 19% 
more total medication to be administered over the 
course of treatment. 

5.2 Comparison with Standard Protocols 

The protocol suggested by the optimal control algo- 
rithm dictates that the drug be administered continu- 
ously over relatively long periods of time-on the order 
of days. Standard protocol is to administer the drug 
for a short time, on the order of several hours, with 
periodically repeated treatments every few weeks. 
Figure 6 compares the optimal control protocol with a 
standard protocol of the periodically pulsed type. 
Although traditional pulsed chemotherapy is gener- 
ally administered once every two or three weeks, in 
our experiments we increase the frequency of the 
pulses to every other day. This is to ensure that the 
total dose administered over the treatment period of 
150 days is equivalent to the total dose administered 
with the optimal control protocol. Because of their 
high time frequency, the pulsed doses would obscure 
the graph and are therefore not depicted. However, 
the progression of the tumor in response to the pulsed 
doses is depicted. Note that the optimal control proto- 
col allows the tumor to oscillate in size with larger 

amplitude, although it does result in a smaller tumor 
mass at the prescribed final time, tf. Clinically it is 
clearly not considered desirable to induce such oscil- 
lations. However, it is important to keep in mind that 
our specific goal in the context of the optimal control 
problem is to minimize the final tumor size while 
keeping the patient healthy by some measure. The 
measure of health that we specify is in terms of the 
population of normal cells, which we require to stay 
above a certain minimum. The optimal control algo- 
rithm did exactly what it was directed to do, and did 
in fact reduce the final tumor mass with respect to the 
mass resulting from pulsed therapy, without allowing 
the normal cell population to oscillate by more than 
about 5%. From Figures 4 and 5 it is clearly seen that 
there are only very small amplitude oscillations in the 
normal cell population. 

We also compare the output of our model with data 
from (Thomlinson 1982) from a patient with a breast 
carcinoma. Figure 9, page 490 of (Thomlinson 1982) 
shows the progression of the size of a breast carci- 
noma and its response to injections of a combination 
of cytotoxic drugs. Thornlinson notes that tumor 
growth cycles are asynchronously offset from treat- 
ment times, making it appear that the patient could be 
resistant to the therapy, However, Thomlinson argues 
that drug resistance does not completely explain the 
asynchronous behavior. The same asynchronous phe- 
nomenon appears in our model, both with optimal 
control therapy and with traditional pulsed therapy. In 
this model, this behavior is caused by the detrimental 
effect of chemotherapy on the immune cells, and the 
subsequent interaction of the immune cells with 
tumor cells. This type of oscillatory behavior is in fact 
typical of many predator-prey interaction models. The 
results of the numerical experiment are shown in Fig- 
ures 7 and 8. Note that the tumor populations have 
been scaled up on the plots for clarity. 

6 DIRECTIONS FOR FUTURE WORK 

A natural extension of this work would be to study 
other objective functions in the optimal control prob- 
lem, as described in Section 1.3. For example, we 
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FIGURE 7 Oscillations in tumor size are asynchronous with pulsed chemotherapy. Tumor cell population is scaled up by a factor of 20 (See 
Color Plate VII at the back of this issue) 
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might attempt to minimize a linear combination of the 
average tumor size and the final tumor size by letting 

where K1 and K2 are prioritizing weights. Note that 
this objective function reduces to that of Equation (3) 
if K1 = 0 and K2 = 1. This more generalized objective 
function might allow us to reduce the tumor size 
oscillations that appear with our current objective 
function. Alternatively, we may consider allowing the 
total time of treatment to vary. As we saw in Section 
3, for some parameter values there are coexisting 
equilibria, that is, equilibria at which all types of cells 
have positive values. In the case where such an equi- 
librium occurs at a small level of tumor cells but at a 
large level of normal cells, this point could represent a 
permanent "indolent" tumor. If the equilibrium were 
stable, a therapy that put the system in the basin of 
attraction of this indolent equilibrium would be con- 
sidered a "cure." Thus our objective function might 
minimize the distance to this equilibrium, rather than 
the distance to the immune-normal cell plane (as is 
the case when the number of tumor cells is mini- 
mized). 

An enhancement of the current model would take 
into account the cell cycle. We would begin by mode- 
ling the cell cycle of the tumor cells in two stages, 
where the drug affects the cell only in the mitotic 
stage. This would turn the differential equations into 
delay-differential equations and would complicate the 
optimal control problem but would not necessarily 
make it intractable. In fact, such problems have been 
extensively studied in applications to economics and 
management (Kamien and Schwartz 1991) where 
necessay conditions for optimality can sometimes be 
derived. 

Another element of the model we wish to examine 
more closely is the assumption that the competition 
between cells, specifically the competition between 
tumor cells and normal cells, is in proportion to the 
product of their numbers. This assumes that each cell 
is equally likely to compete with each cell of the other 
type. While this assumption may be reasonable if we 
are dealrng with liquid cancers, such as leukemia, in a 

solid tumor, such as breast cancer, the competition 
between the tumor and normal cells for resources is 
more likely to occur along the interface between the 
two. We therefore propose to look at a model that 
takes into account the geometry of the tumor and uses 
a stochastic, nearest-neighbor competition paradigm. 
The competition between the immune cells and the 
tumor cells could stay as it is, since it is based on cell 
interactions as described in Section 1. 

Another refinement of the model would include 
time-varying competition terms. It is known among 
clinicians and through in vitro experiments that small 
tumors are inhibited by the presence of normal cells 
but that large tumors are stimulated by normal cells. 
In particular, there is evidence that the production of 
fibroblasts can stimulate tumor cell growth. We plan 
to incorporate this interaction into our model and 
study the resulting parameter space, focusing on the 
competition parameter cg. 

In clinical experience, a patient will respond at first 
to chemotherapy, and then cease to do so. One expla- 
nation for these symptoms is the evolution of 
drug-resistant subpopulations of tumor cells. We also 
plan to add this new population as another state varia- 
ble to investigate the dynamical ramifications. Choos- 
ing a therapy would then involve also determining the 
time when the patient should be given a new batch of 
drugs. The statement of the optimal control problem 
would then change as well, with a new term being 
added to the objective function and to the control var- 
iable. The times at which drug combinations should 
be changed as well as the periods of drug administra- 
tion would be chosen to minimize the new objective 
function. 
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