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BURGESS SHALE-TYPE
DEPOSITS:THE GLOBAL
PICTURE
Cambrian lagerstätten (Conway Morris, 1989)
provide a fortuitous window into one of the
most dramatic episodes in evolutionary histo-
ry. Represented most famously by the Burgess
Shale (middle Cambrian of British Columbia),
these deposits are noteworthy for two major
reasons.  First, they provide an excellent record
of ancient biodiversity because they contain
fossils that are not preserved under normal cir-
cumstances. Whereas the “normal” fossil
record is almost exclusively a record of hard,
mineralized skeletal parts, these deposits pre-
serve some labile, nonmineralized tissues of
organisms, including those lacking hard skele-
tal parts. Secondly, these deposits, which are
rare in the geologic record as a whole, are
moderately abundant in lower and middle
Cambrian strata, an interval spanning the

time of the “Cambrian explosion.”  In the
rock record, this interval is marked by the rela-
tively sudden appearance of fossils represent-
ing most animal phyla, the acquisition of
skeletal hard parts by a number of animal
groups, and the advent of predation and com-
plex metazoan in ecosystems (e.g., Seilacher,
1997; Zhuravlev and Riding, 2001; Babcock,
2003). In this paper, we present a unified
framework for understanding the dynamic
interplay of sedimentological, paleoecological,
and paleoenvironmental factors that con-
trolled the preservation and distribution of
fossils in a single Burgess Shale-type deposit,
the Wheeler Formation (middle Cambrian) of
western Utah.

NEW APPROACHES
Many BST deposits, including the Wheeler
Formation and the Burgess Shale, represent
deposition just offshore of broad carbonate

platforms, at sharp shelf-slope breaks (Conway
Morris, 1998; Rees, 1986). Classic models for
the Burgess Shale have considered the deposi-
tional environment to be fully anoxic, due to
the exquisite preservation of fossils, and the
dark color of the mudrocks (e.g., Conway
Morris, 1986). This implies that the faunas
were transported, yet some assemblages of fos-
sils, such as the well-known Ogygopsis trilobite
beds in the Burgess Shale and horizons that
contain delicate sponges, clearly occur in situ.
Important questions, key to a first-order
understanding the biotas in an ecological
sense, have remained: Can discrete, paleoeco-
logically meaningful assemblages be resolved
from within the homogeneous sediments?
Were bottom water oxygen conditions suffi-
cient to permit episodic, frequent, or sustained
benthic colonization by in situ faunas?
Because of the extraordinary importance of
these biotas, a better knowledge of the rela-
tionships of the organisms to the paleoenvi-
ronments that they inhabited and/or facilitat-
ed their preservation is desirable. 

In order to begin to address these interrelat-
ed problems, we focused on the middle
Cambrian Wheeler Formation of western
Utah, which contains abundant Burgess Shale-
type preservation of nonmineralized fossils,
including common macroscopic algae and a
diverse fauna of more than 20 genera of more
rarely occurring arthropods, priapulids,
sponges, and cnidarians (Robison, 1991). It
also contains a well-described and diverse
skeletal fauna (Robison, 1964, 1991). The for-
mation is well exposed and readily accessible
over a broad area in the House Range (39°15’
N, 113°20’ W) and immediate vicinity. The
study area is arid and also has not been sub-
jected to extensive compressive stress. As a
result, mudrocks of the Wheeler Formation
are less strongly altered by the effects of tec-
tonics and weathering than are other impor-
tant BST deposits. 

Mudrocks present unique challenges to
study. Unlike other types of sedimentary rocks
that are more readily interpreted in the field,
mudrocks most often appear featureless and
massive. Thus, in a stratigraphic context,
mudrocks are commonly interpreted to repre-
sent static, monotonous conditions, or are
occasionally subdivided on the superficial basis
of color. Mudrocks comprise the bulk (60%)
of the sedimentary record, yet remain poorly
understood (Potter et al., 1980). However,
recent methodological advances in the study
of mudrocks have demonstrated that inten-
sive, fine-scale approaches can yield much
information about depositional processes and
paleoenvironments (e.g., Schieber 2003). The
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ABSTRACT
Cambrian Burgess Shale-type (BST) deposits are among the most significant deposits for
understanding the “Cambrian explosion” because they contain the fossilized tissues of
nonmineralized organisms and provide a substantially different window on the radiation
of the Metazoa than is afforded by the more “typical” fossil record of skeletal parts of
biomineralized organisms. Despite nearly a century of research, BST deposits remain
poorly investigated as sedimentologic entities largely because they comprise fine-grained
mudrocks. Here, we describe a new, integrative approach to understanding a single BST
deposit, the middle Cambrian Wheeler Formation of Utah, which reveals a dynamic
interplay of paleoenvironmental, paleoecologic, and sedimentologic/diagentic factors
within a superficially homogeneous lithofacies.This millimeter-scale microstratigraphic
and paleontologic approach is augmented by both outcrop and microscopic study.These
types of data are applicable to issues of quite different scales, including micron-scale dia-
genetic processes involved in fossil preservation, organism-environment interactions and
paleoecology of the early Metazoa, and regional and global controls on the distribution
of BST deposits.
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suite of depositional environments represented
by mudrocks is typically characterized by low-
energy deposition, relatively continuous sedi-
mentation, and, often, little current reworking
in comparison to coarser-grained deposits.
Furthermore, mudrocks often contain in situ
fossil assemblages, making them particularly
good candidates for paleoecological and pale-
oenvironmental study. 

An integrative, millimeter-scale, methodol-
ogy, incorporating aspects of sedimentology
and paleontology was applied. In the field,
short (1-5 m) intervals were targeted for inten-
sive study and sampled continuously in dupli-
cate.  In the laboratory, these short sections
were reconstructed and slabbed parallel to
bedding, then etched lightly with dilute HCl
to reveal primary and secondary sedimentary
features. Using direct analysis of the slabbed
samples in combination with thin section
study, the sections were logged on a millimeter
scale. The duplicate sets of samples were split
along bedding planes for paleontological
analysis, and the microstratigraphic positions
of fossils were incorporated into the logs.
These techniques were complemented by
compositional (XRD, EDX, coulometry), geo-
chemical (δ13C; δ18O), microscopic (SEM, flu-
orescent light, cathodoluminescent), and
imaging (X-ray) analyses.  

PALEOENVIRONMENTS
AND BOTTOM-WATER
OXYGEN
The Wheeler Formation accumulated in what
has been interpreted as a fault-bounded
trough, termed the House Range embayment,
at the edge of an expansive carbonate platform
(Rees, 1986). At most localities, the Wheeler
Formation is composed of homogenous, fine-
grained mudrocks, with smaller thicknesses of
thin-bedded, fine-grained carbonates. Burgess
Shale-type biotas occur only in the mudrock
facies. Wheeler mudrocks, which represent the
lowest energy deposits found in the region,
represent deposition in a basin adjacent to the
distal end of a carbonate ramp (Rees, 1986).
The thin-bedded carbonates and interbedded
mudrocks comprising the distal ramp facies of
the House Range embayment consist of sub-
millimeter-thick micro-graded beds, interpret-
ed to represent down-ramp gravity flows
deposited below the influence of storm waves
(Elrick and Hinnov, 1996). The basinal
mudrock facies typically grades upwards into
distal ramp deposits. Basinal mudrock sedi-
ments of the Wheeler Formation are charac-
terized by: 1, exclusively fine grain size (<50µ);
2, mixed carbonate-clay composition (17-47
wt. % carbonate); 3, color-graded gray-black

“couplets” ranging from 1 to 12 mm in thick-
ness, with no apparent size or compositional
grading; and 4, uninterrupted vertical persist-
ence for tens of meters of section, indicating
sustained low-energy deposition below the
influence of storm waves. The “couplets” of
the Wheeler Formation are interpreted as the
distal expression of gravity-dominated deposi-
tional events spilling off of the adjacent ramp-
however, they also may contain a hemipelagic
component. Some evidence for bottom-flow-
ing currents is present, including transported
(see below) and current aligned fossils (Rees,
1986), and rare tool marks.  

The availability or lack of dissolved oxygen
in bottom waters during deposition is a criti-
cal issue. In order to assess paleo-redox condi-
tions, an ichnological model was applied
(Savrda and Bottjer, 1986), which correlates
increasing depth and extent of bioturbation to
increasing availability of dissolved oxygen of
bottom waters. In modern environments,
anoxic conditions are characterized by a com-
plete absence of bioturbation (ichnofabric
index (i.i.)1), whereas well-oxygenated envi-
ronments are characterized by well-developed
ichnofabrics (i.i.4-5), and destruction of most

primary sedimentary structures (Savrda et al.
1984). Extrapolating ichnological models to
Cambrian sediments requires caution, because
the infaunal habitat was incompletely devel-
oped at this time (Droser and Bottjer, 1988).
Thus, this model was used as a relative tool, to
compare oxygen levels among beds within the
Wheeler Formation. This model was applied
on a bed-to-bed basis in order to develop rela-
tive oxygen curves at a millimeter scale for
each of the continuously sampled intervals.
The Wheeler Formation is inferred to have
had a complex redox history during deposi-
tion, characterized largely by oxygen-deficient
bottom water conditions that, at times, were
sufficient to permit benthic colonization by
epifaunal and infaunal organisms. Many sam-
pled intervals show sustained bottom water
anoxia, whereas others show dynamic shifts
from inferred anoxic to dysoxic conditions at a
centimeter to decimeter scale (Figure 1).  

PALEOECOLOGY
In the >3000 individual beds analyzed,
Burgess Shale-type preservation occurs exclu-
sively in the absence of bioturbation (i.i.1).
Thus, it is inferred that in the Wheeler

Figure 1. Microstratigraphic logs from the Wheeler Formation illustrating the context of nonmineralized
preservation. A. 10-cm interval with complete absence of bioturbation and Burgess Shale-type
preservation in most beds, typical of sustained anoxic benthic conditions in the Wheeler Formation. B.
20-cm interval showing cm-scale oscillations in bioturbation, bottom water oxygen, and, accordingly,
fossil content. Most nonmineralized metazoan fossils occur where favorable preservational environments
are closely interbedded with other types of beds.
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Formation, this style of preservation occurs
only under anoxic bottom waters, uninhabit-
able by benthic metazoans. Whereas this find-
ing offers little hope for the possibility of
resolving distinct ecological assemblages with-
in the nonmineralized faunas, microstrati-
graphic patterns provide some insight.
Nonmineralized fossils occur along a gradient
ranging from abundant fragmented and
diminutive forms to larger and more complete
forms, which occur in lower densities.
Microstratigraphic proximity of any given
horizon bearing nonmineralized preservation
to bioturbated (oxic) horizons is a reliable
indicator of what type of nonmineralized
assemblages will be present. Intervals repre-
senting accumulation under sustained bottom
water anoxia contain nonmineralized preserva-
tion of small and/or disarticulated forms,
dominated by algae with rare metazoans, in
each individual bed, often through hundreds
of sequential beds (Figure 1A). Intervals bear-
ing nonmineralized preservation that are
interbedded closely (<10 cm) with bioturbated

horizons reflect oscillating bottom water oxy-
gen content, and contain larger and more
complete nonmineralized fossils, including a
significant proportion of metazoans (Figure
1B). Thus, the observed gradient in size and
articulation of nonmineralized fossils is
inferred to be related to distance of transport.
Intervals characterized by sustained anoxia
represent accumulation sites distal to the
anoxic-oxic boundary, and thus, to habitable
benthic environments from which the non-
mineralized fossils were sourced. Intervals
occurring in close microstratigraphic proximi-
ty to habitable benthic environments are
inferred to represent accumulation sites proxi-
mal to oxic benthic environments, and thus
contain larger and more complete forms (see
Figure 2). This proximal-distal gradient in
Burgess Shale-type preservation ranges from
distal environments to the edge of oxic benth-
ic environments, where, most rarely, in situ
preservation of nonmineralized forms does
occur, when abrupt shifts to bottom water
anoxia coincide with burial of benthic forms.

Such occurrences provide the best hope of
understanding elements of the Burgess Shale
biota in an ecological context, and may be
sought for further study by targeting such
environments for search.

Although BST deposits are best known for
the nonmineralized fossils they preserve, most
also contain diverse faunas of skeletonized
forms. In the Wheeler Formation, skele-
tonized faunas are dominated by trilobites,
and also include acrotretid brachiopods and
echinoderms. The best-known fossil from the
Wheeler Formation is the trilobite Elrathia
kingii, which is found in collections around
the world. Despite a narrow geographic range,
E. kingii is sufficiently abundant to be distrib-
uted commercially because it occurs in dense
associations of up to 500 complete individuals
per m2, and it is typically coated with cone-in-
cone calcite on the ventral side, allowing easy
extraction from the rock. Microstratigraphic
analyses revealed that E. kingii occurs in
monospecific associations, although E. kingii
commonly occurs in hand samples with other
faunas that occur on other bedding planes
(Gaines and Droser, 2003). Microstratigraphic
data also reveal that most (93.6%) E. kingii
occurrences are in unbioturbated beds that are
in close vertical proximity (mm-cm) to beds
bearing nonmineralized preservation, and also
closely adjoin beds that contain weak to mod-
erate levels of bioturbation. Because it occurs
prominently at the transitions from beds
deposited under anoxic conditions to those
deposited under oxic conditions, it is inferred
that E. kingii occupied a niche habitat at the
edge of oxygenated bottom waters, below the
oxygen levels required to support an infauna
(Gaines and Droser, 2003). This manner of
occurrence is consistent with an “exaerobic
zone” lifestyle (Savrda and Bottjer, 1987),
indicating that E. kingii may have used sulfur
bacteria as a primary food source.
Chemoautotrophic sulfur bacteria occur in
abundance at this boundary today, where free
sulfides in anoxic bottom waters mix with
minimally oxygenated bottom waters (Figure
3). The ready availability of sulfur bacteria as a
food source provides the most plausible expla-
nation for adaptation to a marginal, oxygen-
stressed habitat. Sulfur bacteria have been pro-
posed as a primary food source for other trilo-
bites (Fortey, 2000), and the morphology of
E. kingii is consistent with these interpreta-
tions, as E. kingii possesses a number of attrib-
utes considered advantageous for life in oxy-
gen-depleted environments. This finding indi-
cates that non-phototrophic-based ecosystems
were in place early in the history of animal
life. E. kingii also serves as an excellent pale-

Figure 2. Paleoecological reconstruction of the Wheeler Formation showing bottom water oxygen control
over the distributions of fossils found in the basinal mudrock facies. Distal nonmineralized assemblages
are characterized by A, bedding planes covered in algae (fragmentary or small), some belonging to the
genera Marpolia and Morania. B. Peronopsis, and other agnostoid trilobites occur in all assemblages,
indicative of a pelagic mode of life, unrelated to benthic conditions. Proximal nonmineralized
assemblages are characterized by larger and more complete fossils: C. Articulated carapace of a
phyllocarid arthropod. D. Yuknessia simplex, a nonmineralized alga. E. Brachyaspidion microps, a
pelagic trilobite. F. Marpolia spissa, a nonmineralized alga. G. Undetermined metazoan showing gut
tract. Exaerobic assemblages contain Elrathia kingii (H), in addition to occasional pelagic fossils.
Dysaerobic assemblages contain a more diverse skeletonized fauna, including: I. Asaphiscus wheeleri. J.
Acrothele?, K. Alokistocare. L. Gogia spiralis (eocrinoid). M. Olenoides. Rarely, nonmineralized
preservation occurs in situ when sharp shifts in bottom water oxygen content occur: N. Association of
Choia. All scale bars are 5 mm.
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oenvironmental indicator in the Wheeler
Formation, marking the transition between
oxic and anoxic benthic conditions, otherwise
irresolvable in the field. The possibility that
the exaerobic niche may have been occupied
in other Cambrian environments holds great
paleoecological significance. 

Both nonmineralized fossil assemblages
and E. kingii associations are characteristic of
specific, yet different, bottom water oxygen
conditions, and both occur in unbioturbated
(i.i.1) beds.  A third assemblage type, micros-
tratigraphically distinct from horizons bearing
nonmineralized preservation as well as from
those bearing E. kingii, is characterized by the
presence of weak to moderate levels of biotur-
bation (i.i. 2-3), interpreted to signify dysoxic
conditions (Figure 2). This assemblage is dom-
inated by large (>3 cm) trilobites, most promi-
nently Asaphiscus wheeleri, and also includes
acrotretid brachiopods and the eocrinoid
Gogia. Orientation and evidence from molt
assemblages indicates that these faunas occur
in situ, however in lower densities than either
the E. kingii or nonmineralized fossil associa-
tions. Further bed-to-bed-scale work holds the
promise of resolving discrete paleoecological
associations within this assemblage. A signifi-
cant fauna of pelagic trilobites is also found in
the Wheeler Formation, including a diverse
assemblage of agnostoids (Robison, 1964).
The diminutive non-agnostoid trilobites
Jenkinsonia varga and Brachyaspidion microps
are also interpreted as pelagic on the basis of
biofacies-crossing distributions and their com-
mon presence in beds representing deposition
under uninhabitable (anoxic) benthic condi-
tions. 

We infer that benthic redox conditions
acted as a first-order control over fossil content
in the Wheeler Formation, regulating the pri-
mary distributions of organisms as well as
their preservation (Figure 2). Importantly,
while all three types of assemblages (nonmin-
eralized, E. kingii, dysaerobic) may occur
within a single, narrow microstratigraphic
interval (millimeters-centimeters) at the scale
of a hand-sample, they represent discrete asso-
ciations that occurred under demonstrably dif-
ferent benthic conditions. 

PRESERVATION
Specific mechanisms of nonmineralized fossil
preservation are a subject of some debate.
Whereas mineral-replacement of some non-
biomineralized tissues occurs in some deposits
(e.g., Emu Bay Shale of Australia; Briggs and
Nedin, 1997; and Chengjiang deposit of
China; Zhu et al., 2005), the most common
type of preservation of nonmineralized tissues

in BST deposits may be “Burgess Shale-type
preservation” (Butterfield, 1995, 2003) of fos-
sils as two-dimensional carbon films, although
associated mineral films also may be present
(Orr et al., 1998). Curiously, this type of
preservation is insignificant as a means of pre-
serving benthic faunas after the middle
Cambrian. While some types of mineral
replacement of non-biomineralized tissues
have been explained using actualistic models
(e.g., Briggs and Kear, 1994), the causes of
“Burgess Shale-type” preservation have typical-
ly been addressed using theoretical models. 

Butterfield (1995) proposed that highly
reactive clay minerals may have been com-
monplace on continental margins during some
intervals of time and facilitated Burgess Shale-
type preservation through adsorption of
decay-inducing enzymes. This hypothesis was
not supported by a metamorphic study of the
Burgess Shale (Powell, 2003), which conclud-
ed that the original mineralogic composition
of that unit was not unusual, and did not
include any highly-reactive mineral species.
Petrovich (2001) suggested that, under sub-
oxic conditions, iron ions (abundant in clay-
rich marine sediments) are strongly adsorbed
onto chitin and other organic biopolymers,
and may have prevented decay of these select
tissues by coating them and thereby physically
blocking the enzymatic action of microbial
decomposers. However, this model predicts
that such preservation should be common in
clay-rich, oxygen-deficient strata throughout
the Phanerozoic. Both models, which invoke
molecular-scale chemical interactions, do not
provide comprehensive explanations of this
phenomenon, and are problematic for the rea-
sons described above. 

Data obtained though intensive study of the
Wheeler Formation were also applied towards
the development of a new hypothesis for

Burgess Shale-type preservation (Gaines et al.,
2005). This model unites micron-scale diage-
netic processes involved in preservation with
primary physical features of the depositional
environment, allowing predictions to be readi-
ly applied to testing in other deposits. Burgess
Shale-type preservation in the Wheeler
Formation uniformly occurs in exclusively
fine-grained sediments, lacking silt, fecal pel-
lets, skeletal microfossils, and coarser particles.
The close proximity of the depositional envi-
ronment to a carbonate platform resulted in
mixed carbonate–clay sediments, and facilitat-
ed ubiquitous early diagenetic carbonate
cements characteristic of Wheeler mudrocks
(Gaines et al., 2005). These cements occur as
micron-sized pore filling cements and cone-in-
cone cements around pre-existing carbonates,
including trilobite carapaces or micritic hori-
zons. Isotopic (δ13C) and petrographic evi-
dence indicates that cements were emplaced
early in the diagnetic history and were derived
from a detrital carbonate precursor (Gaines et
al., 2005). This model proposes that preserva-
tion of nonmineralized tissues in the Wheeler
Formation resulted from a combination of
influences that reduced permeability and thus
lowered oxidant flux, which in turn may have
acted to restrict microbial decomposition of
some nonmineralized tissues. The absence of
coarse grains (>50 µm) and skeletonized
microfossils provided very low original porosi-
ty.  Near-bottom anoxia prevented sediment
irrigation by restriction of bioturbation.
Reducing conditions near the sediment-water
interface also may have acted to deflocculate
aggregations of clay minerals, resulting in low
permeability face-to-face contacts (Moon and
Hurst, 1984). Abundant early diagenetic pore-
occluding carbonate cements are suggested to
have contributed significantly to occlusion of
remaining porosity, halting oxidant flux into

Figure 3. A. Schematic diagram illustrating the “exaerobic” concept of Savrda and Bottjer (1987).
Movement of the anaerobic/dysaerobic boundary across the seafloor over time result in close interleaving
of exaerobic beds with beds accumulated under anaerobic conditions, as well as under more oxic
conditions, as shown in B, a 10-cm microstratigraphic log. (Triangles=cone-in-cone calcite;
arrows=nonmineralized preservation; blue ovals = E. kingii nodules; “Squiggles”=burrows).
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the sediments, restricting microbial decompo-
sition and facilitating carbonaceous preserva-
tion of macrofossils. Fe-organic interactions
(Petrovich, 2001) or clay-organic interactions
(Butterfield, 1995) may have also operated at a
molecular scale within the Wheeler sediments
and thereby provided a favorable early burial
environment at the micron scale and above. 

TOWARDS A GLOBAL
PICTURE: REMAINING
CHALLENGES
In the Wheeler Formation, several regional
and global factors were important in promot-
ing the conditions described above, and thus,
these factors may be relevant to the global dis-
tribution of Burgess Shale-type deposits. First,
the depositional environment occurred off-
shore of a broad (~300 km) carbonate plat-
form, which sequestered coarse siliciclastics
inboard, and resulted in exclusively fine-
grained, mixed carbonate-siliciclastic sedi-
ments with low original porosities and the
potential for early carbonate cementation.
Relatively high sea levels and broad passive
margins of the middle Cambrian (Brasier and
Lindsay, 2001) were clearly an important fac-
tor, resulting in the migration of this distal
depositional environment onto continental
crust, where sediments have long-term preser-
vation potential. Secondly, oxygen-limited
bottom waters that lay just outboard of the
platform margin were important in providing
a close juxtaposition of anoxic and oxic benth-
ic environments. The location of this bound-
ary on the slope is also important as it pro-
motes downslope transportation of organisms
from the living environment to the (uninhab-
itable) preservational environment, and, in
this case, it places the boundary over sedi-
ments favorable to preservation, described
above. The incursion of oxygen-deficient
water masses onto the slope at this time has
been linked to restricted seaways, tropical con-
ditions, and transgressive episodes (Landing,
2001). A third important aspect is the absence
of skeletal microfossils from the locus of depo-
sition. In the Holocene, skeletal micro-organ-
isms are particularly abundant in shelf edge
settings, and their abundance is positively cor-
related with both porosity and permeability of
sediments (Kraemer et al., 2000), however, the
oldest microfossil oozes do not occur until the
late Cambrian (Tolmacheva et al., 2001), indi-
cating a rise in abundance only at this time.
While these conclusions are drawn from a sin-
gle deposit, these aspects of the Wheeler
Formation’s primary depositional environment
are the result of regional and global phenome-

na, and may be common to the Burgess Shale,
as well as to other BST deposits.

Field-based and lab-intensive investigations
of other BST deposits, conducted at an appro-
priate scale, may provide insight not available
from studies of individual taxa alone. Further
studies at this scale are needed. Additionally,
the root causes of widespread oxygen deficien-
cy in early and middle Cambrian slope envi-
ronments warrant further investigation. Did
these conditions result from periodically
enhanced flux of organic matter to the
seafloor, restricted circulation under climatic
optima (Landing, 2001), low-lying continents
at tropical latitudes, or some combination of
these and other factors? Finally, the paleoecol-
ogy of these most diverse Cambrian faunas
deserves further study. These results suggest
that discrete associations of fossils within
apparently homogenous, fine-grained deposits
may be resolved at a fine scale and linked to
specific paleoenvironmental conditions. While
results from the Wheeler Formation indicate
that most nonmineralized faunas are trans-
ported assemblages of limited ecologic utility,
these results provide framework criteria for
their evaluation and suggest that associated
assemblages of skeletonized fossils may pro-
vide significant opportunity for in situ paleoe-
cologic study. As Burgess Shale-type deposits
should be characterized by occurrence at or
near the benthic redox (anoxic-dysoxic)
boundary, they also present an environmental
window in which to evaluate the possibility
that the non-phototrophic, exaerobic lifestyle
may have been widespread during the
“Cambrian explosion.”
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