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RADON TRANSFORMS AND THE
FINITE GENERAL LINEAR GROUPS

MICHAEL E. ORRISON

Abstract. Using a class sum and a collection of related Radon transforms,
we present a proof G. James’s Kernel Intersection Theorem for the complex

unipotent representations of the finite general linear groups. The approach

is analogous to that used by F. Scarabotti for a proof of James’s Kernel In-
tersection Theorem for the symmetric group. In the process, we also show

that a single class sum may be used to distinguish between distinct irreducible

unipotent representations.

1. Introduction

The work of G. James [6] reveals interesting similarities between the representa-
tions of the symmetric group and the unipotent representations of the finite general
linear groups. One such similarity is that both enjoy a Kernel Intersection Theo-
rem which characterizes their irreducible modules as the intersections of kernels of
certain operators. Using the class sum of transpositions and a collection of related
Radon transforms, F. Scarabotti [8] has given a short proof of this characterization
for the complex representations of the symmetric group. In the spirit of strength-
ening the relationship between the symmetric group and the finite general linear
groups, we present an analogous approach to the Kernel Intersection Theorem for
the complex unipotent representations of the finite general linear groups. In doing
so, we also show that a single class sum may be used to distinguish between distinct
irreducible unipotent representations.

2. Background

Our approach requires a few facts from the representation theory of finite groups,
a sense of how to create operators from incidence relations, and a familiarity with
compositions, partitions, and Gaussian polynomials.

Representation Theory. We begin by recalling a few facts from the representa-
tion theory of finite groups. A good reference is [9].

Let G be a finite group and let C[G] be the complex group algebra of G. Recall
that a (complex ) representation of G is a C[G]-module M , and that if C1, . . . , Ch are
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2 MICHAEL E. ORRISON

the distinct conjugacy classes of G, then there are h distinct (up to isomorphism)
irreducible C[G]-modules, say W1, . . . ,Wh. Let χj be the character of Wj and
χj(Ci) be the value of χj on Ci.

Every C[G]-module M is semisimple and may therefore be written as a direct sum
of irreducible submodules, say U1, . . . , Ul. Denote by Mi the direct sum of those
U1, . . . , Ul that are isomorphic to Wi. This creates the isotypic decomposition

M = M1 ⊕ · · · ⊕Mn

of M where Mi is then the Wi-isotypic subspace of M .
Let C be a conjugacy class of G and let T be the class sum of C in C[G], that is,

T =
∑
c∈C

c.

If U is an irreducible C[G]-module with character χ, then U is an eigenspace of T
with eigenvalue |C|χ(C)/dim U . Thus, if Ti is the class sum of the conjugacy class
Ci, then the Wj-isotypic subspace Mj of M is an eigenspace of Ti with eigenvalue
|Ci|χj(Ci)/dim Uj .

Radon Transforms. Let G act on two finite sets X and Y , and let M and N
be the associated C[G]-permutation modules, respectively. Furthermore, suppose
there is an incidence relation between X and Y that is invariant under the action
of G. We write x ∼ y if x ∈ X is incident to y ∈ Y , and we define the Radon
transform R : M → N by

R(x) =
∑

y:x∼y

y

(see [1]). Because the incidence relation is invariant under the action of G, the
Radon transform R is a C[G]-module homomorphism. The adjoint R∗ : N → M is
defined by

R∗(y) =
∑

x:x∼y

x.

The map R∗R is therefore a C[G]-module homomorphism from M to M .

Compositions and Partitions. If n is a positive integer, then a composition
of n is a sequence λ = (λ1, . . . , λm) of non-negative integers whose sum is n. If
λ1 ≥ · · · ≥ λm > 0, then λ is a partition of n. To each composition λ, there
is a corresponding partition λ obtained by arranging the positive parts of λ in
non-increasing order. For example, if λ = (1, 3, 0, 3, 2, 0), then λ = (3, 3, 2, 1).

The partitions of n form a partially ordered set under the dominance order
where, given two partitions µ and λ, µ dominates λ if

µ1 + · · ·+ µi ≥ λ1 + · · ·+ λi

for all i ≥ 1. If µ dominates λ, we write µ D λ. If µ dominates λ and µ 6= λ, then
we write µ B λ.

Gaussian Polynomials. Let Fq be the finite field with q elements. If k is a non-
negative integer, define [k] = 1 + q + q2 + · · ·+ qk−1. Define [k]! = [k][k − 1] · · · [1]
if k > 0, and [0]! = 1. Next, define[

n
k

]
=

{
[n]!

[k]![n−k]! if n ≥ k ≥ 0,

0 otherwise.
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This is a polynomial in q, a Gaussian polynomial, and is equal to the binomial
coefficient

(
n
k

)
when q = 1 (see, e.g., [10]).

We will make use of the following theorem and its corollaries. Proofs may be
found in [6].

Theorem 1. Let V1 and V2 be subspaces of an n-dimensional vector space V over
Fq. Let dim V1 = d1 and dim V2 = d2. If V1 ∩ V2 = 〈0〉, then the number of
k-dimensional subspaces W of V such that W ∩ V1 = 〈0〉 and W ⊇ V2 is

qd1(k−d2)

[
n− d1 − d2

k − d2

]
.

Corollary 2. If V1 ⊇ V2, then the number of k-dimensional subspaces W of V
such that W ∩ V1 = V2 is

q(d1−d2)(k−d2)

[
n− d1

k − d2

]
.

Corollary 3. The number of k-dimensional subspaces W of V such that W ⊇ V1

is [
n− d1

k − d1

]
.

3. The Finite General Linear Groups

Let Fq be the field of q elements, let n > 1, and let V be an n-dimensional vector
space over Fq with basis e1, . . . , en. The general linear group GLn(q) = Gn is, by
definition, the group of automorphisms of V . For convenience, we will identify Gn

with the group of non-singular n × n matrices over Fq where the automorphism
given by the matrix (gij) is the one for which ej 7→

∑n
i=1 gijei.

Note. We assume that q 6= 2 and treat the case q = 2 separately.

Let V0, . . . , Vm be a collection of subspaces of V such that V0 = V , Vm = 〈0〉,
and

V0 ⊇ V1 ⊇ · · · ⊇ Vm−1 ⊇ Vm.

Let di be the dimension of Vi. We say that V0, . . . , Vm form a flag of type λ =
(λ1, . . . , λm) where λi = di−1 − di. We denote by Xλ the set of all such flags of
type λ. Note that λ is a composition of n and that, for any composition µ of n, we
can always find a flag of type µ.

The action of Gn on V induces a transitive action of Gn on Xλ. The resulting
C[Gn]-permutation module Mλ is called a unipotent representation of Gn. Although
not obvious, Mλ is isomorphic to Mλ (Theorem 14.7 in [6]), so we will assume λ is
a partition of n.

The collection of irreducible submodules (up to isomorphism) of unipotent rep-
resentations of Gn are indexed by the partitions of n (Corollary 16.4 in [6]). If µ
is a partition of n, then we denote the corresponding irreducible C[Gn]-module by
Sµ. By Theorem 15.16 in [6],

Mλ
∼=

⊕
µDλ

κµλSµ

where the κµλ are the usual Kostka numbers (see, e.g., [7]) and denote the multi-
plicity of Sµ in Mλ. In particular, κλλ = 1, so we may unambiguously identify Sλ

with the irreducible submodule of Mλ to which it is isomorphic.
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The following lemma is Corollary 11.14 (iii) in [6]:

Lemma 4. Sλ ⊆
⋂

θ ker θ, the intersection being over all C[Gn]-homomorphisms θ
which map Mλ into some Mµ with µ B λ.

The Kernel Intersection Theorem for Gn (Theorem 15.19 in [6]) states that the
above inclusion is actually equality. In what follows, we use a class sum and a
collection of related Radon transforms to show this. Our approach is analogous
to that used by F. Scarabotti in [8] for a proof of G. James’s Kernel Intersection
Theorem for the symmetric group Sn.

4. Reflections and Radon Transforms

In this section, we show how the conjugacy class of reflections in Gn is related to
a collection of Radon transforms. We begin by proving several useful facts about
reflections.

Reflections. Recall that V is an n-dimensional vector space over Fq with basis
e1, . . . , en. Let C be the conjugacy class of Gn that contains the automorphism
of V that transposes e1 and e2 while fixing the other basis vectors. The matrix
corresponding to this automorphism is

0 1
1 0

1
. . .

1

 .

Each element of C has order 2 and fixes a hyperplane (a codimension-1 subspace of
V ) pointwise. We will refer to C as the conjugacy class of reflections in Gn.

Fix a flag x = V0 ⊃ · · · ⊃ Vm where di = dim Vi. The flag x determines a useful
partition {P1(x), . . . , Pm(x)} of the set of hyperplanes of V where we say that a
hyperplane H is in Pj(x) if H contains Vj but not Vj−1.

Lemma 5. Pj(x) contains qn−dj−1 [dj−1 − dj ] hyperplanes.

Proof. By Corollary 3, there are[
dj−1 − dj

(dj−1 − 1)− dj

]
= [dj−1 − dj ]

codimension-1 subspaces of Vj−1 that contain Vj . If H ∈ Pj(x), then H ∩ Vj−1 is
one such subspace. Thus, by Corollary 2, to each such subspace there correspond

q(dj−1−(dj−1−1))((n−1)−(dj−1−1))

[
n− dj−1

(n− 1)− (dj−1 − 1)

]
= qn−dj−1

hyperplanes. �

Let c ∈ C and suppose that c fixes the hyperplane H ∈ Pj(x) pointwise. Fix
v ∈ Vj−1 − (H ∩ Vj−1). The vectors v and cv are transposed by c since c2 is the
identity. It follows that v + cv ∈ H, thus cv = −v + h for some h ∈ H. Let i
be such that cv is contained in Vi−1 but not Vi. Note that i ≤ j and that each
vector in Vj−1 − (H ∩ Vj−1) gives rise to the same i. Next, define ϕ(x, c) = (i, j).
It is easy to show that x = cx if and only if i = j, and that if i < j, then



RADON TRANSFORMS AND THE FINITE GENERAL LINEAR GROUPS 5

x ∩ cx = (V0 ∩ cV0) ⊇ · · · ⊇ (Vm ∩ cVm) is a flag of type µ = (µ1, . . . , µm) where
µi = λi + 1, µj = λj − 1, and µk = λk for k 6= i, j.

Lemma 6. Let c be a reflection, let x be the flag V0 ⊃ · · · ⊃ Vm, and let di = dim Vi.
If 1 ≤ i < j ≤ m and ϕ(x, c) = (i, j), then there are qn−2+dj−1−di(q− 1) reflections
that map x to cx.

Proof. Fix a vector v ∈ Vj−1 − (Vj−1 ∩ cVj−1). To map Vj−1 to cVj−1 using a
reflection, we may first send v to any one of the qdj−1 − qdj−1−1 vectors v′ ∈
cVj−1 − (Vj−1 ∩ cVj−1). The hyperplane corresponding to our reflection must then
contain the subspace 〈Vi ∩ cVi, v + v′〉 of dimension di, but not the subspace 〈v〉.
By Theorem 1, there are

q(1)((n−1)−di)

[
n− 1− di

(n− 1)− di

]
= q(n−1)−di

such hyperplanes. It follows that there are

(qdj−1 − qdj−1−1)q(n−1)−di = qn−2+dj−1−di(q − 1)

reflections that map x to cx. �

Proposition 7. Let c be a reflection, let x be the flag V0 ⊃ · · · ⊃ Vm, and let
di = dimVi. If 1 ≤ i < j ≤ m, then there are q2(di−dj−1)+1[di−1 − di][dj−1 − dj ]
flags y such that y = cx for some reflection c where ϕ(x, c) = (i, j).

Proof. Let H ∈ Pj(x) and let v ∈ Vj−1 − (H ∩ Vj−1). Since |H ∩ (Vi−1 − Vi)| =
qdi−1−1 − qdi−1, there are qdi−1−1 − qdi−1 reflections c such that ϕ(x, c) = (i, j)
where c fixes H pointwise. It follows that there are

|Pj(x)|(qdi−1−1 − qdi−1) = qn+di−dj−1−1(qdi−1−di − 1)[dj−1 − dj ]

reflections c such that ϕ(x, c) = (i, j).
By Lemma 6, if ϕ(x, c) = (i, j) and y = cx, then there are qn−2+dj−1−di(q − 1)

reflections that map x to y. It follows that there are

qn+di−dj−1−1(qdi−1−di − 1)[dj−1 − dj ]
qn−2+dj−1−di(q − 1)

= q2(di−dj−1)+1[di−1 − di][dj−1 − dj ]

flags y such that y = cx for some reflection c where ϕ(x, c) = (i, j). �

Lemma 8. If x is the flag V0 ⊃ · · · ⊃ Vm and di = dimVi, then there are∑m
j=1 qn−1[dj−1 − dj ] reflections that fix x.

Proof. If c ∈ C fixes x, then ϕ(x, c) = (j, j) for some j where c fixes a hyperplane
H ∈ Pj(x) pointwise. Therefore, for each hyperplane H ∈ Pj(x), choose some
v ∈ Vj−1− (H ∩Vj−1). If c ∈ C is to fix x while fixing the hyperplane H pointwise,
then c must map v to some v′ such that v + v′ ∈ H ∩ Vj−1. As there are qdj−1−1

such v′, it follows that there are
m∑

j=1

|Pj(x)|qdj−1−1 =
m∑

j=1

qn−dj−1 [dj−1 − dj ]qdj−1−1 =
m∑

j=1

qn−1[dj−1 − dj ]

reflections that fix the chain x. �
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Radon Transforms. Using the results above, we now relate the conjugacy class
of reflections to a collection of Radon transforms. We begin by considering the class
sum of reflections in C[Gn].

Let x be the flag V0 ⊃ · · · ⊃ Vm of type λ = (λ1, . . . , λm) (recall that we are
assuming λ is a partition of n). Let 1 ≤ i < j ≤ m and let µ = (µ1, . . . , µm) where
µi = λi + 1, µj = λj − 1, and µk = λk for k 6= i, j. We say that x is ij-incident to
y ∈ Xµ if y is a flag of the form

V0 ⊃ · · · ⊃ Vi−1 ⊃ H ∩ Vi ⊃ · · · ⊃ H ∩ Vj−1 ⊇ Vj ⊃ · · · ⊃ Vm

for some hyperplane H ∈ Pj(x). This incidence relation is invariant under the
action of Gn, thus the associated Radon transform Rij : Mλ → Mµ is a C[Gn]-
module homomorphism. Moreover, note that µ B λ. We therefore have

Lemma 9.
⋂

θ ker θ ⊆
⋂

1≤i<j≤m ker Rij where θ ranges over all C[Gn]-module
homomorphisms that map Mλ into some Mµ with µ B λ.

Let T be the class sum of reflections, let 1 ≤ i < j ≤ m, and define Tij : Mλ →
Mλ by Tij(x) =

∑
x′, where the sum is over all x′ such that x′ = cx for some c ∈ C

and ϕ(x, c) = (i, j). Let I : Mλ → Mλ be the identity map. By Lemma 6 and
Lemma 8, we have

Lemma 10. T =
∑

1≤i<j≤m qn−2+dj−1−di(q − 1)Tij +
∑m

j=1 qn−1[dj−1 − dj ]I.

Define Tjj = Rjj = I for 1 ≤ j ≤ m. The Tij and Rij are related:

Lemma 11. If 1 ≤ i < j ≤ m, then R∗
ijRij =

∑
i≤k≤j αk

ijTkj where

αk
ij =


1 if k = i,
qdi−dk−1(q − 1) if i < k < j,
qdi−dj−1 [dj−1 − dj ] if k = j.

Proof. Let x, x′ ∈ Xλ where x is the flag V0 ⊃ · · · ⊃ Vm. If x and x′ are ij-incident
to the same y ∈ Xµ, then it is easy to show that there is a c ∈ C such that cx = x′

and ϕ(x, c) = (k, j), where i ≤ k ≤ j. We simply need to count the number of such
y for each such pair x and x′. If k = j, then x = x′. Thus αj

ij is the number of
flags to which x is ij-incident, which is the number of codimension-1 subspaces of
Vi that contain Vj but not Vj−1, or qdi−dj−1 [dj−1 − dj ].

If k 6= j, then x 6= x′, and the number of flags y which are ij-incident to both
x and x′ is the number of codimension-1 subspaces of Vi that contain Vk ∩ cVk

but not Vj−1 or cVj−1. To compute this number, we use the Principle of Inclusion
and Exclusion and the fact that dim (Vk ∩ cVk) = dk − 1, dim 〈Vk ∩ cVk, Vj−1〉 =
dim 〈Vk ∩ cVk, cVj−1〉 = dk, and dim 〈Vk ∩ cVk, Vj−1, cVj−1〉 = dk + 1. Thus, for
i ≤ k < j,

αk
ij =

[
di − (dk − 1)

(di − 1)− (dk − 1)

]
− 2

[
di − dk

(di − 1)− dk

]
+

[
di − (dk + 1)

(di − 1)− (dk + 1)

]
which is qdi−dk−1(q − 1) if i < k, and 1 if i = k. �

We may now express the Tij in terms of the R∗
ijRij :
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Lemma 12. If 1 ≤ i < j ≤ m, then Tij =
∑

i≤k≤j βk
ijR

∗
kjRkj where

βk
ij =


1 if k = i,
−qdi−dk−(k−i)(q − 1) if i < k < j,
−qdi−dj−1−(j−i−1)[dj−1 − dj ] if k = j.

Proof. We begin by noting that, when i < j, Tij = R∗
ijRij −

∑
i<l≤j αl

ijTlj . This
shows that βi

ij = 1. If we let αj
jj = βj

jj = 1, then we also have the recurrence
relation

βk
ij = −

∑
i<l≤k

αl
ijβ

k
lj

for i < k ≤ j. We proceed by induction on j − i. First, suppose k = j. Then

βi+1
i,i+1 = −αi+1

i,i+1 = −qdi−d(i+1)−1 [d(i+1)−1 − di+1]

= −qdi−d(i+1)−1−((i+1)−i−1)[d(i+1)−1 − di+1],

showing that our formula for βj
ij holds if (j − i) = 1. Assume that the formula

holds for βj
lj for i < l < j. Then, by our recurrence relation, we have

βj
ij = −αj

ij −
∑

i<l<j

αl
ijβ

j
lj

= −qdi−dj−1 [dj−1 − dj ]−
∑

i<l<j

qdi−dl−1(q − 1)(−qdl−dj−1−(j−l−1)[dj−1 − dj ])

= [dj−1 − dj ](−qdi−dj−1 + (q − 1)(qdi−dj−1−(j−(i+1)) + · · ·+ qdi−dj−1−1))

= −qdi−dj−1−(j−i−1)[dj−1 − dj ].

Next, suppose i < k < j. We then have

βi+1
i,i+2 = −αi+1

i,i+2β
i+1
i+1,i+2 = −qdi−di+1−1(q − 1)

= −qdi−di+1−((i+1)−i)(q − 1)

showing that our formula holds if j − i = 2. Assume that the formula for βk
lj holds

for i < l < k < j. Then

βk
ij = −αk

ij −
∑

i<l<k

αl
ijβ

k
lj

= −qdi−dk−1(q − 1)−
∑

i<l<k

qdi−dl−1(q − 1)(−qdl−dk−(k−l)(q − 1))

= (q − 1)(−qdi−dk−1 + (q − 1)(qdi−dk−(k−i) + · · · qdi−dk−2))

= −qdi−dk−(k−i)(q − 1).

�

Now that we are able to express each of the Tij in terms of the R∗
ijRij , we may

express the class sum T of reflections in terms of the R∗
ijRij :
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Theorem 13. Let T be the class sum of reflections in Gn and let λ = (λ1, . . . , λm)
be a partition of n. Viewed as an operator on Mλ, T may be written as

T =
∑

1≤i<j≤m

qn−1+dj−1−di−i(q − 1)R∗
ijRij +

m∑
j=1

qn−j [dj−1 − dj ]I

where the Rij are defined as above.

Proof. By Lemma 10,

T =
∑

1≤i<j≤m

qn−2+dj−1−di(q − 1)Tij +
m∑

j=1

qn−1[dj−1 − dj ]I.

Therefore, by Lemma 12,

T =
∑

1≤k<j≤m

qn−2+dj−1−dk(q − 1)(
∑

k≤i≤j

βi
kjR

∗
ijRij) +

m∑
j=1

qn−1[dj−1 − dj ]I.

If i < j, then R∗
ijRij will occur∑

1≤k≤i

qn−2+dj−1−dk(q − 1)βi
kj

= qn−2+dj−1−di(q − 1) +
∑

1≤k<i

−qn−2+dj−1−di−(i−k)(q − 1)2

= q(n−1)+dj−1−di−i(q − 1)

times in the sum, and the identity will occur∑
1≤i<j

qn−2+dj−1−di(q − 1)βj
ij +

m∑
j=1

qn−1[dj−1 − dj ]

=
m∑

j=1

qn−1[dj−1 − dj ] +
∑

1≤i<j

−qn−1−(j−i)(q − 1)[dj−1 − dj ]


=

m∑
j=1

qn−j [dj−1 − dj ]

times in the sum. �

By Theorem 13, since λj = dj−1 − dj for 1 ≤ j ≤ m, we immediately have

Corollary 14.
⋂

1≤i<j≤m ker Rij is an eigenspace of T with eigenvalue

rλ =
m∑

j=1

qn−j [λj ].

By Lemma 4, we also have

Corollary 15. The irreducible unipotent representation Sλ is an eigenspace of T
with eigenvalue rλ =

∑m
j=1 qn−j [λj ].

Theorem 16. If λ and µ are partitions of n, then rλ = rµ if and only if λ = µ.
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Proof. Let λ = (λ1, . . . , λm) and µ = (µ1, . . . , µk) be partitions of n. Thus rλ =
qn−1[λ1] + · · · + qn−m[λm] and rµ = qn−1[µ1] + · · · + qn−k[µk]. Without loss of
generality, assume k ≤ m. If k < m, then qn−m divides both rλ and rµ, although
rλ/qn−m(mod q) = 1 6= 0 = rµ/qn−m(mod q). Thus rλ 6= rµ. If k = m, subtract
1 from each part of λ and µ to create two partitions λ′ and µ′ of n − m so that
rλ = qn−m[m]+qm+1rλ′ and rµ = qn−m[m]+qm+1rµ′ . We may repeat the argument
above to show that λ′ must have the same number of parts as µ′, otherwise rλ′ 6= rµ′

and, therefore, rλ 6= rµ. We then continue to repeat the process noting that the
number of parts at each step is equal if and only if λ = µ. �

By Corollary 15 and Theorem 16, we may use the class sum of reflections to
distinguish between distinct irreducible unipotent representations of Gn:

Theorem 17. Let M be a unipotent representation of Gn. If T is the class sum
of reflections in Gn and λ = (λ1, . . . , λm) is a partition of n, then the Sλ-isotypic
subspace of M is the unique eigenspace of T with eigenvalue rλ =

∑m
j=1 qn−j [λj ].

We may now state and prove the Kernel Intersection Theorem for the complex
unipotent representations of the finite general linear groups.

Theorem 18. (James) Sλ =
⋂

θ ker θ, the intersection being over all C[Gn]-homo-
morphisms θ which map Mλ into some Mµ with µ B λ.

Proof. By Lemma 4, we know that Sλ ⊆
⋂

θ ker θ. By Lemma 9,
⋂

θ ker θ ⊆⋂
1≤i<j≤m ker Rij . Thus, by Corollary 14 and Theorem 17,

⋂
θ ker θ is contained in

the Sλ-isotypic subspace of Mλ. Thus Sλ =
⋂

θ ker θ. �

The Case q = 2. When q = 2, we need only make one change to Lemma 8:

Lemma 19. If q = 2, then there are
∑m

j=1 qn−1[dj−1− dj ]− [n] reflections that fix
the chain x.

Proof. The proof is essentially the proof for Lemma 8 with the slight change that
each v has qdj−1−1 − 1 choices for a v′ since −v = v when q = 2. �

This small change preserves each of the previous results up to the addition of some
scalar of the identity. Therefore, with a few modifications, everything goes through
as before.
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