
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

2-1-1982

Data Flow Program Graphs
Alan L. Davis
University of Utah

Robert M. Keller
Harvey Mudd College

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Davis, A.L., and R.M. Keller. "Data flow program graphs." Computer 15.2 (February 1982): 26-41. DOI: 10.1109/MC.1982.1653939

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

Token models and structure models are two basic
approaches to using graphs to represent dataflowprograhr,
The advantages of each are discussed here. fi

Data Flow Program Graphs

Data flow languages form a subclass of the languages
which are based primarily upon function application
(i.e., applicative languages). By data flow language we
mean any applicative language based entirely upon the
notion of data flowing from one function entity to
another or any language that directly supports such flow-
ing. This flow concept gives data flow languages the ad-
vantage ofallowing program definitions to be represented
exclusively by graphs. Graphical representations and
their applications are the subject of this article.

Applicative languages provide the benefits of extreme
modularity, in that the function of each of several sub-
programs that execute concurrently can be understood in
vacuo. Therefore, the programmer need not assimilate a
great deal of information about the environment of the
subprogram in order to understand it. In these languages,
there is no way to express constructs that produce global
side-effects. This decoupling of the meaning of individual
subprograms also makes possible a similar decoupling of
their execution. Thus, when represented graphically, sub-
programs that look independent can be executed in-
dependently and, therefore, concurrently.
By contrast, concurrent programs written in more con-

ventional assignment-based languages cannot always be
understood in vacuo, since it is often necessary to under-
stand complex sequences of interactions between a sub-
program and its environment in order to understand the
meaning of the subprogram itself. This is not to say that
data flow subprograms cannot interact with their en-
vironments in specialized ways, but that it is possible to
define a subprogram's meaning without appealing to
those interactions.

There are many reasons for describing data flow
languages in graphical representations, including the
following:

(1) Data flow languages sequence program actions by a
simple data availability firing rule: When a node's
arguments are available, it is said to be firable. The func-
tion associated with a firable node can be fired, i.e., ap-
plied to is arguments, which are thereby absorbed. After
firing, the node's results are sent to other functions,
which need these results as their arguments.
A mental image of this behavior is suggested by repre-

senting the program as a directed graph in which each
node represents a function and each (directed) arc a con-
ceptual medium over which data items flow. Phantom
nodes, drawn with dashed lines, indicate points at which
the program communicates with its environment by either
receiving data from it or sending data to it.

(2) Data flow programs are easily composable into
larger programs. A phantom node representing output of
one program can be spliced to a phantom node represent-
ing input to another. The phantom nodes can then be
deleted, as shown in Figure 1.
There are two distinct differences between this type of

composability and the splicing of two flowcharts. First,
spliced data flow graphs represent all information needed
at the interface. With flowcharts, the connectivity among
variables is not represented by splicing. Second, flow-
chart splicing represents a one-time passing of control
from 6ne component to the next. With data flow graphs,
splicing can indicate information that crosses from one
component to the next; this motion is distributed over the
entire lifetime of the computation.

0018-9162/82/0200-0026$00.75 (3 1982 IEEE26 COMPUTER

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 18:18 from IEEE Xplore. Restrictions apply.

(3) Data flow programs avoid prescribing the specific
execution order inherent to assignment-based programs.
Instead, they prescribe only essential data dependencies.
A dependency is defined as the dependence of the data at
an output arc of a node on the data at the input arcs of the
node. (For some functions, the dependency might be only
apparent.) The lack of a path from one arc to another in-
dicates that data flowing on those arcs can be produced
independently. Hence, the functions producing those
data can be executed concurrently. Thus, graphs can be
used to present an intuitive view of the potential concur-
rency in the execution of the program.

(4) Graphs can be used to attribute a formal meaning
to a program. This meaning can take the form ofan oper-
ationaldefinition or a functionalone. The former defines
a permissible sequence of operations that take place when
the program is executed. The latter describes a single
function represented by the program and is independent
of any particular execution model.

This article explores the utility of graphical representa-
tions for data flow programs, including the possibility
and advantages of dispensing entirely with the text and
viewing the graph itself as the program. This suggests a
programming style in which the user deals with graphs as
the primary representation in programming, editing, and
execution. In this context, human engineering rather than
concurrent execution becomes the motivation for in-
vestigating data flow program graphs.

Figure 1. Splicing of two data flow graphs.

The following section elaborates on the meaning of
graphs as functional programs. The discussion focuses on
the two prevailing models for data flow representation:
the token model and the structure model. The terms
classify data flow languages that developed along dif-
ferent lines, each with certain implementation subtleties.

Token models

The term token is a shortening of token-stream, which
more accurately describes the behavior of these models.
Data is always viewed as flowing on arcs from one node to
another in a stream of discrete tokens. Tokens are con-
sidered carriers or instantiations ofdata objects. Each ob-
ject is representable by a finite encoding.
When a node is labeled with a scalar function, such as

+ or *, it is understood that the function is repeated as
tokens arrive at its inputs. Each repetition produces a
token at its output. For example, suppose that we use a
token model to interpret the graph in Figure 2. This graph
defines a repeated computation of the polynomial func-
tion of X: X2-2*X+3 for a sequence of values of X.
The fanout of an arc from a node, such as the phantom
node X, denotes the conceptual replication of tokens
leaving that node. A node marked with a constant value is
assumed to regenerate that value as often as it is needed by
nodes to which it is input.

Figure 2. Data flow graph for X2 - 2*X + 3.

February 1982 27

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 18:18 from IEEE Xplore. Restrictions apply.

x

SO06RS&H SSB8ilS|RESULT i~SR&W 2 X - RESULTOPl$gOWoW&~~~~~~~~~~~~~~~~~x09SW&&Z0g O} MMWCUElBA l M
S S W oDOg g g: X X30 E g W'1"

XE g W:gg XEk~~~~~~~~~~~~~~~~~~~~~~~~~~~
R}mA. M.%X mim . gSm Sg X ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'

g g g m | m | | | | g g~~~~~~~~~~
A 9 g gEESULT k |

Figure 3.Pieie grap cmputation

28 gW

COMPUTER

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 18:18 from IEEE Xplore. Restrictions apply.

The results of node operations correspond to the inputs
in first-in-first-out order. The operation is usually, but
not necessarily, performed on those inputs in the same
order. Furthermore, each node corresponds to a func-
tion, and no fan-in of arcs is allowed-there is no oppor-
tunity for tokens to be interleaved arbitrarily at an arc. It
follows, therefore, that data flow graphs ensure deter-
minate execution. That is, the output of any program or
subprogram for a given input is guaranteed to be well
defined and independent of system timing. This has been
clearly demonstrated for several data flow models. 1-5

Determinacy also imples an absence of side-effects,
which are apt to be present in conventional read and write
operations. Such operations often require extra con-
currency-reducing synchronization to prevent time-
dependent errors. By contrast, the only errors possible in
data flow programs are those due to an improper func-
tional formulation of the solution to a problem; these are
always reproducible, due to the feature ofdeterminacy. A
more thorough discussion of data flow errors is given
elsewhere.6

In Figure 2, no arc connects the two * operators. This
implies that there is no data dependency between the two
nodes; that is, the.node functions can be computed con-
currently. The lack of data dependency between the mul-
tiply operators in Figure 2 is sometimes called horizontal,
or spatial, concurrency. This contrasts with temporal
concurrency, or pipelining, which exists among computa-
tions corresponding to several generations of input
tokens. A brief scenario of both types ofconcurrency is il-
lustrated by the sequence of snapshots in Figure 3.

Conditional constructions in data flow programs
achieve selective routing of data tokens among nodes.
Boolean or index-valued tokens can be produced by a
node that performs some decision function. Figure 4
shows the selector and the distributor, two nodes used in
conditional constructs. In the case of a selector, a token is
first absorbed from the horizontal input. The value of
that token, either true or false, determines from which of
the two vertical inputs the next token will be absorbed;
any token on the other input remains there until selected.
The firing of a selector is a two-phase process, since the
value at the horizontal input must be known before the
corresponding vertical input can be selected. In the case of
the distributor, a token is absorbed from the vertical input
and passed to one ofthe vertical ouputs. Again, the choice
of output depends on the value of the token at the hori-
zontal input.

Generalizations of the selector and distributor are easi-
ly devised:

* selection (or distribution) is based on a set of integer
or other scalar values instead of on booleans, or

* the vertical arcs are replaced by bundles of arcs so
that tokens pass through in parallel.

Iteration can be achieved through cyclic data flow
graphs. The body ofthe iteration is initially activated by a
token that arrives on the input of the graph. The body
subgraph produces a new token, which is cycled back on a
feedback path until a certain condition is satisfied. An ex-
ample of an iterative graph is shown in Figure 5, which il-
lustrates Newton's method to find the roots ofa function.

Nodefcould be replaced by the graph shown in Figure 2.
A similar graph could replace node f' to compute the
derivative 2 *X- 2. An execution scenario for Figure 5 is
as follows:

(1) The program is started by introducing a real-
number token at the output of phantom node X.

(2) The selector is now firable, as a true token exists on
its horizontal input in the initial state shown. When the
selector fires, the token from X passes to the two -
operators and to the boxes that calculatef (x) andf' (x).

(3) Neither of the - operations can fire yet, as their
right-operand tokens are not available. Nodes f(x) and
f' (x) can fire concurrently to produce their output values
and absorb their input values. At this point, the ., -,
abs, and < operations fire, in that order.

(4) The ouput of the < node is a boolean value that in-
dicates whether or not the new and old approximations
have converged sufficiently. If they have, a true token is
produced by <. This causes the feedback-in value to be
distributed and the approximation to be passed through
as theresult ofthe iteration. At this point, a truetoken has
been regenerated at the horizontal input to the selector,
putting the graph in its original state. Thus, the program is
reusable for a subsequent input token.

(5) If the < node producesfalse, the feedback-in token
is passed through the distributor and selector and
becomes the next feedback-out token, to be used in the
next iteration.

In theexample in Figure 5, very little pipelining can take
place because of the use of the selector function at the in-
put. This selector requires each set ofiterations to be com-

Figure 4. Selector and distributor functions.

February 1982 29

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 18:18 from IEEE Xplore. Restrictions apply.

xg g fl1 fl s .L r R | |
Xg X C g g k | | g i0, | g | g S e ' Z1 g i |

X g S # # F | | 0 g |g M g S | | X g E I g '- w« S i ARS e _
m gg S X S | 0| g | 1

g | lllEggiFl lE: g X X I | g
g g X | | _e | l E

g I : |
| g I | | -

E I | g
g | I I || | | EX | I W |#; | a = | f fg | | | EB § !l |

g | g g
g| gg | g

ME wosPHiD

Figure 5. A graph for Newton's method.

COMPUTER30

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 18:18 from IEEE Xplore. Restrictions apply.

plete (i.e., the horizontal input to be true) before the next
token can be absorbed into the graph. However, the hori-
zontal input is repeatedly false during any given set of iter-
ations. Thus, an alternative formulation is necessary for
concurrent processing of several input tokens.

Program structuring

It is cumbersome to deal with graphical programs con-
sisting of single very large graphs. Just as subroutines and
procedures are used to structure conventional programs,
macrofunctions can be used to structure graphical ones.
This idea appeals to intuition: A macrofunction is defined
by specifying a name and associating it with a graph,
called the consequent of that name. A node in a program
graph labeled with that name is, in effect, replaced by its
consequent; the arcs are spliced together in place of the
phantom nodes. In the diagrams in this article, the ori-
entation ofthe arcs in the consequent is assumed to match
that of the node the consequent replaces. This replace-
ment is called macroexpansion, in analogy to the similar
concept used in conventional languages. It is valid to view
data flow languages as performing macroexpansion dur-

ing execution rather than during compilation. A macro-
expansion is shown in Figure 6.

Macrofunctions often aid in understanding and devel-
oping graphical programs. For example, one might wish
to encapsulate the iterate subgraph in Figure 5 into a node
type called Iterate. Atomic functions are those that are
not macrofunctions. In some systems, a node such as
Iterate could be either atomic or a macro available from a
library.

Recursion is easy to visualize in data flow graphs. As
mentioned above, a node labeled with a macrofunction
can be thought of as replaced by its consequent. This rule
can be adopted for recursively specified functions, such as
those in which a series of macroexpansions from a node
labeled G can result in a subgraph containing a node la-
beled G.

For example, Figure 7 shows a recursive specification
of the example given in Figure 6. Unlike its predecessor,
this version can be understood without appealing to the
definition of the complicated Iterate subgraph. Although
a graph with recursive macrofunction can, in concept, be
expanded to an infinite graph, either distributors or the
underlying implementation must ensure that expansion
takes place incrementally as needed. Since copies of

Figure 6. Example of graphical macroexpansion: (a)
definition; (b) expansion. Figure 7. Recursive Newton graph.

February 1982 31

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 18:18 from IEEE Xplore. Restrictions apply.

find-root can be instantiated for different generations of
input tokens, this graph permits pipelined concurrency in
contrast to Figure 6.

Data structuring

Graph programs, like conventional programs, are
amenable to incorporation of various data structuring
features. Examples thus far have had numbers and
boolean values as tokens. But succinct expression of solu-
tions to complicated problems requires structuring opera-
tions that build tokens containing complex data objects
from more primitive tokens. Data structuring also pro-
vides a way of exploiting concurrency; operations that
deal with large structures, such as adding two vectors, can
often perform many subfunctions concurrently. Such
concurrency is frequently of a much higher degree than
that resulting from a lack of visible data dependencies
among nodes.

Tuples. The tuple is an important example ofa complex
token. A tuple is simply a grouping of objects into a single
object. A tuple can flow as a single token, and the original
objects can be recovered from it. The objects are ordered
within the tuple so that recovery of one of the original ob-
jects occurs by supplying both the tuple and an ordinal in-
dex to an indexing function. In other words, a tuple is
similar to a one-dimensional array in conventional pro-
gramming, except that there is no notion of assignment in
regard to the components of a tuple. Instead, a tuple is
created by specifying the application of a constructor
function to specified components.
Suppose the tuple-creating function is denoted by

brackets. Let

t = [ClX C2, * * *. Cn

Figure 8. Tuple formation and component selection.

be the tuple with components cl, c2, . . ., c,. Paren-
theses denote the indexing function, so t (i) will be ci. This
notation is often used for application of a function to its
argument. Indeed, one might consider a tuple to be a
function applicable to its range of indices.
We can now extend our basic data flow graphs to per-

mit the tuple constructors and indexing function to be
operators at a node, as shown in Figure 8. It is possible to
view computations involving tuple tokens and operators
as if the entire tuple flows from one node to another on an
arc. However, the entire object need not flow in a par-
ticular implementation; more economical approaches are
possible.

In addition to constructing tuples by using the 1. .]
operator, other operations, such as concatenation, can be
defined on tuples, that is

conc([cl, c2,..., cn, [dl, d2,. d,)
[c], C2 c,, di, d2, d,,,]

Conc can similarly be extended to more than two ar-
guments.
The tuple concept leads to the construction of strings

(tuples of characters), lists, etc. Tuples can have tuples as
components to any number of levels of nesting.

Files. The sequential processing of files fits naturally
into the data flow framework. One approach is to treat an
input file as a stream of tokens, which is introduced into a
graph at one of its inputs. Such a stream can then be pro-
cessed with the types of operators introduced above or by
using first/rest operators. First gives the first token in the
stream, while rest passes all of the stream but the first
token. Sequential files are often created by using fby
(followed by), a two-argument function that builds a
stream by using its first argument as the first component
of the stream and its second argument-a stream-as the
rest of the stream. Often, the rest has not been con-
structed at the time fby is applied. Instead, there is a
promise to construct it in the future, as represented by
some function that gives the rest as output.

Figure 9 illustrates a simple recursive definition for file
processing. It produces an output stream by deleting all
carriage-return characters in the input stream. Files can
also be treated as single tuples, in which case they can be
accessed nonsequentially. Such files can be created by
using conc.
The utility of viewing sequential input and output as if

it were a file coming directly from or going directly to a
device has been observed and exploited in such systems as
the pipe concept7 of Unix.* Data-structuring operations
that support streams provide one of the most compelling
arguments for data flow programming and, particularly,
viewing programs as graphs. Each module of such a pro-
gram can be viewed as a function that operates on streams
of data and is activated by the presence of data. The
behavior of a module over its lifetime can be captured in
one function definition, and low-level details of the pro-
tocol for information transmission can be suppressed.
The system of interconnected modules can be specified by

'Unix is a trademark of Bell Laboratories.

32 COMPUTER

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 18:18 from IEEE Xplore. Restrictions apply.

a graph, which might even be constructed dynamically
through use of macroexpansion. Contrast this with con-
ventional assignment-based programs, which require ex-
plicitly set-up processes. Furthermore, communication of
these processes is based on shared variables or explicit in-
terchange of messages. Although characterizing the
behavior of such a process for any single interaction re-
quires only sequential program analysis techniques, it is
generally difficult to succinctly characterize the long-term
behavior.

Functions as values. Data objects that can represent
functions and be applied to other objects by a primitive
operator apply can enhance the power of data flow pro-
gramming considerably. In one approach, a constant-
producing node N can contain a graph, which is con-
ceived as the value of a token flowing from N. The graph
generally flows through conditionals, etc. When and if it
enters the first input arc of an apply node, its phantom
nodes serve a role similar to that of a macrofunction
definition: Input/output phantom nodes are spliced to
the input arcs of the apply node, and the graph effectively
replaces the apply node. More generally, it is possible for
arcs to enter the node Nand be connected to the graph in-
side of it. These arcs are called imports to the graph. The
same tokens flow on them, regardless of where the graph
itself might flow. Since a graph-valued node can be pres-
ent within the consequent of any macrofunction, many
versions ofthe encapsulated graph can be generated, each
customized by different import values. The concept
forms a graphical equivalent to the notion of closures8 or
funargs. 9 A simple example is given in Figure 10. Further
examples are in the literature.5,10

Data typing. The notion of data type is playing an in-
creasingly important role in modern programming
language design. Data flow graphs lend themselves to the
support and exhibition of typing. It is quite natural to in-
dicate, on each arc of a data flow graph, the type of data
object that flows there. Hence, most developments con-
cerned with typing are applicable in the domain of graph-
ical programs.

Structure models

As we have seen, a token model views each node as pro-
cessing a single stream of tokens over its entire lifetime.
Each node produces tokens on output arcs in response to
tokens absorbed on input arcs. Each operator is expressed
in terms of what it does token-by-token. In structure
models, a single data structure is constructed on each arc.
The construction can, possibly, spread out over the lifetime
of the graph. The structure might be interpretable as a
stream oftokens, but it might be a tuple, a tree (formed, for
example, by nested tuples), or just a scalar value. Within a
structure model, each argument of an operator is one
struoture on which the operator operates to produce a
new structure. A nontrivial structure model allows tuples
or some equivalent structure to be conceptually infinite.
That is, while a tuple always has a definite first compo-
nent, it might not have a last component. If it does, it

Figure 9. Graphical program for a file-processing problem.

Figure 10. The apply function and use of imports.

February 1982 33

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 18:18 from IEEE Xplore. Restrictions apply.

might be infeasible to even attempt to know the extent of
the tuple, since this would be tantamount to reading the
entire input into a buffer before processing, a step quite
contrary to desirable interactive 1/0 modes. Thus, an
open-ended stream of characters is representable by the
tuple [cl, c2, C3, . . . 1, where three dots indicate possible
continuation ad infinitum.
Values on arcs in a structure model are single structures.

Therefore, structures (e.g., an entire stream) can be
selected by a conditional, used as an argument, etc. It is not
necessary to deal with a structure's tokens individually.

It is also possible to randomly access a stream by ex-
ploiting the fact that an entire structure is built on an arc.
For example, the tuple indexing function described above
could be used for ths purpose. In a structure model, if we
are to think of a node in a data flow graph as firing, we
must be willing to accept this firing as generally incremen-
tal. It is physically infeasible for a node to instantaneously
produce an infinite object.
One can distinguish a structure model from a token

model by examining the atomic operators. Token models
always operate on streams of tokens and not on other
single objects; if this is not the case, we have a structure

Figure 11. A generalized indexing function.

model. A structure model achieves the effects of stream
processing by means of macrofunctions. In the case of
Figure 2, this could be done in two ways: by defining a
stream-procesing version of each of the arithmetic
operators, or by creating a function (the graph shown)
and applying it to each component of an input stream.
Likewise, some of the functions (such as switching
streams) of structure models can be emulated in some
token models by macrofunctions.
We have alluded to the fact that the behavior of a data

flow program over its lifetime can be captured as a single
function. Perhaps the most important distinction be-
tween structure and token models is that in the former this
behavior is expressible as a recursive function within the
model, while the latter requires a more encompassing
language to capture the behavior. For a token model, the
long-term behavior is captured as a function on histories
of token streams.11 In a structure model, the notion of
history degenerates since each arc carries exactly one
object.
To maintain certain aspects of the history of a stream in

a token model program, special provisions must be coded
to save relevant components as they pass through a func-
tion. In structure models, for reasons cited above, it is
easy to maintain the equivalent of the history of all or part
of a token stream, as the entire stream is accessible as a
single object.
Token model interpreters usually process tokens in se-

quence. This causes asynchrony and concurrency to be
less than the maximum possible.12 In structure models,
there is no implied order for processing structure com-
ponents. Thus, these componenets can be processed out
of sequence without use of a more specialized interpreter.
Some functions are easily expressed in structure models

but more difficult to express in token models. An example
is the generalized indexing function, or genindex, which
operates on two finite or infinite tuples, stream = [s], S2,
53. . . .] and indices = [il, i2, i3. . . .], to produce
[Si1,,s2, sS3, . . 1. This function can be expressed by the
graph in Figure 11 or by the textual expression below.

genindex(stream, indices)
if indices = []

then [I
else fby(stream(first(indices)),

genindex(stream, rest(indices)))

This is obviously a recursive definition. The condition
eventually becomes true when indices is finite. When the
indices or tuples are not empty, the result is the tuple ob-
tained by indexing the component of the stream that cor-
responds to the first index (using the parenthesis notation
for indexing given above). This is followed by the result of
the genindex function on the remainder of the tuple.

This example illustrates a correspondence between a
graphical and a textual notation. It is possible to design a
language so that each program graph has an exact textual
equivalent, and vice-versa.13 This permits use of graph-
ical programming concepts even when there is no
graphical input device, as well as the use of hybrid repre-
sentations, which help suppress uninteresting graphical
detail. 14

COMPUTER34

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 18:18 from IEEE Xplore. Restrictions apply.

Structure models can perform the functions of token
models. Is the opposite also true? A relaxation of our
definition, to allow tokens to be infinite objects, would
make it possible. This, however, seems contrary to the no-
tion of a token as an object that can flow in a single step.
Another means is to introduce pointer, or reference,
tokens. The infinite objects then become homomorphic
images of a network of tokens involving pointers. Al-
though necessary to perform correctness proofs of a
structure model, 15 the introduction of such objects into a
programming language should be avoided where possible
because they make the language less machine-indepen-
dent. Introducing infinite objects into token models'6 is
counter to the interests of conceptual economy. One
could use, instead, a structure model, which does not
necessarily require token streams yet allows representa-
tion of stream-like behavior by using the appropriate
structures. Furthermore, a great many applications can-
not exploit the repetitive stream-processing capability ofa
token model. For these applications, a token-model lan-
guage amounts to overkill.
Why would one ever choose a token model (with only

finite tokens, as defined herein) instead of a structure
model, given the flexibility of the latter? The answer lies in
the trade-off of execution efficiency vs. ease in program-
ming. The token-by-token processing of token models
often results in efficient storage-management. Since
structure models use structures to emulate all stream-pro-
cessing functions of token models (which are often
macrofunctions involving recursion) token-by-token
processing is difficult to detect. Therefore, structure
models typically use fully general storage management,
which recycles storage in a more costly manner than do
the more specialized token models. Compiler optimiza-
tion and special execution techniques that improve the ef-
ficiency of structure model execution without sacrificing
generality are topics of active research.

Machine representation and execution of
graphical programs

Program storage. It is possible to compile graphical
programs into conventional machine languages. How-
ever, if the main goal is the execution of such programs,
there are advantages in directly encoding the graphs
themselves as the machine program for a specially con-
structed processor. Alternatively, such an encoding can
be interpreted on a conventional processor as virtual
machine code. The advantages of the special-processor
and virtual-machine approaches include direct exploita-
tion of the concurrency implicit in the graphical formula-
tion and a clearer connection between a higher-level
graphical language and its machine representation.
A survey of the numerous possible encodings of graph

programs is beyond the present scope. The discussion
below is a qualitative look at one version for a token
model. The first task is to establish an encoding for a pro-
gram graph, which consists of nodes labeled with func-
tion names and arcs connecting the nodes. The orienta-
tion of the arcs entering the nodes is, of course, relevant.
We represent the entire graph as a set of contiguous

memory locations, each corresponding to one node ofthe
graph. Thus, relative addressing can be used to identify
any particular node. Our use ofrelative addressing should
not be interpreted as the use of a single memory module.
Use of one address space to address a multitude of
physical memories is a common way to avoid memory
contention. In practice, addressing might take place on
two levels: short addresses within the consequent of each
macrofunction, and long addresses for the global inter-
connection of such functions.'7

For simplicity, assume that each node has a single out-
put arc. As long as nodes represent functions, nodes with
more than one output arc can always be decomposed into
one function for each arc, and thus represented as several
nodes with fanout from the same input arcs (Figure 12).
This allows association of a node with its only output arc,
and vice-versa.
Having identified a location for each node, we can dis-

cuss the encoding of the relevant information for each
node. Obviously, there must be a field in each location to
indicate an encoding of that node's label, since the label
determines the function to be executed. There is an or-
dered listing of each node's input arcs, but since each of
these arcs is identified as the output ofsome node, we can
use that node's location to represent the arc. Similarly, we
include an ordered listing of the destinations of each
node's output arc. Figure 13 illustrates the encoding of a
graphical program as a contiguous set of locations, called
a code block.

Data-driven execution. Let us now consider data-
driven execution in the context of our representational
model. For simplicity, assume that one token, at most, is
present on any arc at a given time. This is an invariant
property maintained by the execution model. To simplify
further, we treat only node functions that are strict, i.e.,
require tokens on all arcs in order to fire. A slight
modification is necessary for other cases, such as selector
nodes.

In addition to the code block that specifies a data flow
graph (discussed above) we provide a second data block

Figure 12. Replacing multiple-output-arc with single-
output-arc nodes by means of fanout.

February 1982 35

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 18:18 from IEEE Xplore. Restrictions apply.

of contiguous locations. It contains the data tokens that
are to flow on the arcs of the graph. These locations exact-
ly parallel those representing the graph itself. That is, if
location i in the graph encoding represents a particular
node (and, by convention, its output arc), then location i
in the data block represents the token value on that arc.

Initially, an arc is empty. To indicate this, its cor-
responding location is marked with a special bit pattern.
It is convenient, but not absolutely essential, to include
with this bit pattern a shortage count that indicates how
many remaining input arcs must get tokens before the cor-

Figure 13. Internal encoding of a data flow graph.

responding node can fire. As an arc gets a token, the
shortage counts of nodes to which that arc is input are
each decreased by one. This act is called notification, as if
one node notifies another that data is ready. When the
shortage count is zero, the node is firable. Shortage
counts are initialized from values stored in the code block.

Suppose that a node has become firable, as indicated by
its zero shortage count. The processor can then compute
the function specified for that node. It does so by fetching
the values in the node's input arcs (as indicated by the en-
coding in the code block location) and then storing the
result value of the function in the corresponding data
location. The nodes needing the stored value are then
notified. The shortage count of one or more of these
nodes might be decreased to zero, indicating that the node
is firable. The process then repeats.
Any number of firable nodes can be processed concur-

rently. For any system state, the set of nodes that need at-
tention (e.g., are firable) can be recorded on a task list of
their addresses. This list need not be centralized; it can be
distributed over many physical processing units.
To start things off, we need only put data in locations

corresponding to the phantom input nodes of the graph.
Then we add to the task list the nodes to which the input
nodes are connected. The firing of nodes continues in a
chain reaction until no firable nodes are left. By this time,
all results have been produced. That is, the output values
are either resident on selected output locations or have
been moved to some output device.
We have not discussed the recycling of data locations.

Most token model implementations suggest that some
form of reset signal be used to return a location to its in-
itialized state. An alternative approach, in which data
blocks are "thrown away," is presented by Keller, Lind-
strom, and Patil.17

Representation of complex tokens. The use of complex
data objects, such as tuples and functions, as tokens that
can conceptually flow on arcs has been described above.
It is possible, in the case of finite objects, to send packets
consisting of the complete objects.'8 This, however,
presents difficulties in storage management, as the size of
an object might be unknown before it arrives. Another
difficulty is that this approach can involve much un-
necessary copying, as an object can be sent to a number of
nodes, each of which selects only a small portion for its
use. It might be more efficient to introduce, at the im-
plementation level, pointers to take the place of objects
that exceed a certain size.

For example, a tuple might be constructed of objects,
one or more of which is itself a tuple. In this case, we want
to build the outer tuple by using pointers to the inner
tuples, rather than by copying the inner tuples them-
selves. Of course, this type of representation is essential in
dealing with conceptually infinite objects; in such a case,
the outermost tuple could never be completely con-
structed. The same is true for recursively defined function
objects. Thus, while the conceptualization of program
graphs supports the flow of arbitrarily complex objects
on arcs, pointers might be required to efficiently imple-
ment this conceptual flow. Techniques from Lisp and its
variants are especially relevant.9'19'20

COMPUTER36

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 18:18 from IEEE Xplore. Restrictions apply.

Demand-driven execution. The mode of execution de-
scribed in the previous section can be termed data-driven
because it involves the following (possibly overlapping)
phases of the execution of a function node within its en-
vironment (the rest of the graph to which the node is con-
nected):

(I) A node receives data from its environment via its
input arcs.

(2) A node sends data to its environment via its output
arc.

An alternative is the demand-driven evaluation mode.
It has a more extensive set of phases, which can also be
overlapping:

(1) A node's environment requests data from it at its
output arc.

(2) A node requests data from its environment at its in-
put arcs, if necessary.

(3) The environment sends data to a node via its input
arcs, if requested.

(4) A node sends data to its environment via its output
arc.

This suggests that a data-driven execution is like a
demand-driven execution in which all data has already
been requested.

Suppose that sufficient input data has been made
available at the input arc in a demand-driven execution
situation. Nothing would happen until a demand is made
at the output arc. Although we need not implement it as
such, we can think of this demand as being represented by
a demand token that flows against the direction of the
arcs. When a demand token enters a node at an output
arc, it might cause the generation of demand tokens at
selected input arcs of that node. As this flow of demands
continues, data tokens are produced that satisfy the de-
mand. At that point, computation takes place much as it
does in the data-driven case. Demands and data can flow
concurrently in different parts of the graph.

In demand-driven execution of a graph, a node be-
comes firable when its shortage count becomes zero and it
has been demanded. An extra bit in the data location can
be used to indicate whether or not the corresponding
datum has been demanded. If destination addresses are
set dynamically, the presence of at least one of them can
indicate demand. Initially, certain nodes (usually those
connected to output arcs of the graph) are marked as de-
manded. The processor attempts those nodes that are so
marked and have shortage counts of zero.
The advantages of the demand-driven approach in-

clude the elimination of distributor nodes that, on the
basis of test outcomes, prevent certain nodes from firing.
This advantage accrues because only needed data values
are ever demanded. Thus, demand-driven execution does
not require the distributor shown in Figure 7 and can be
simplified as shown in Figure 14.
Although token models can have either data- or de-

mand-driven execution models, structure models seem to
require a demand-driven one. Otherwise, the data-driven
elaboration of infinite structures tends to usurp system
resources unnecessarily. The prime disadvantage of
demand-driven execution is the extra delay required to

propagate demand. In part, this is balanced by the lack of
distributor functions present in the data-driven ap-
proach. It is as if the selector and distributor operations
are folded into a single selector in the demand-driven ap-
proach. It is also possible to optimize the demand-driven
execution model to statically propagate demand at com-
pile time and recover some of the efficiency of data-driven
execution.
A certain minimum overhead is required in both

demand- and data-driven execution but appears in dif-
ferent forms. When a computing system is integrated into
an asynchronous external environment, an appropriate
regulatory protocol must exist at any interface. It is im-
possible to have the environment dump arbitrarily large
quantities of data into the system without having this pro-
cess punctuated by handshaking signals from the system
to the environment. Similarly, we don't normally wish to
have the system dump large quantities of data into the en-
vironment without regulation. For example, when ob-
serving output on a CRT terminal, scrolling should stop
when the screen is full and proceed at the viewer's com-
mand. Thus, every implementation, data-driven or de-
mand-driven, must have a means of controlling the flow
of data by sending signals in a direction that opposes the
flow. This requirement exists within the system as well, in
the form of controlling the flow of data from one subsys-
tem to another. Propagation of demand before the flow

Figure 14. Demand-driven conditional graph.

February 1982 37

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 18:18 from IEEE Xplore. Restrictions apply.

of data is often balanced by reset signals, which occur
after the flow of data and indicate that the location can be
reused. These signals present overhead comparable to the
flow of demands.

Input-output interfacing. We can interface the fby
function to an output device so that individual com-
ponents of an infinite stream can be constructed within a
graph program and directed to that device. Interfacing
these types of functions to external devices is much
simpler than it might appear. All we need are primitives to
input/output single atomic components; recursion at the
graph program level does the rest. For example, Figure 15
shows the expression of a pseudofunction that sequential-
ly prints the components ofa stream ad infinitum, given a
primitive pseudofunction print that prints one stream
component. Assuming demand-driven mode, print
causes its argument to be printed whenever its result is
demanded. The function seq simply demands its argu-
ments in sequence, the second being demanded only after
the first has yielded its result. Of course, tests for
end-of-stream atoms can be added to functions such as
print-stream. Such I/O functions have been successfully
implemented'3

Figure 15. Pseudofunction for printing a stream in demand-driven
mode.

Historical background

Many of the concepts presented in graphical repre-
sentations have appeared in earlier work. Dynamo was
an early language with a graphical representation.21
Although used only to perform synchronous simulation,
it is a true data flow language, since the ordering of its
statement executions is governed by data dependencies
rather than syntax. The integration of Dynamo-like func-
tions into a general-purpose data flow language is dis-
cussed by Keller and Lindstrom.22
The literature of engineering sciences, particularly elec-

trical engineering and control theory, describes many uses

of graphical models for function-based systems. Zadeh,
for example, discusses determinacy for general systems.23
In the related area of digital signal processing, digital
filters are often represented graphically.24 However, most
literature in that area presents algorithmic results by
translating them to Fortran programs rather than em-

ploying a data flow language that can directly represent
signal-processing structures. This is one area where
graphical data flow programming has much to contribute.
The use of modules that communicate via streams as a

structuring device appeared in Conway's definition of a

coroutine: ". . . an autonomous program which com-

municates with adjacent modules as if they were input or

output subroutines."25 Conway's paper also included the
observation that such coroutines could execute simulta-
neously on parallel processors. Since then, the coroutine
notion seems to have become rather more implemen-
tation-oriented. Kahn and MacQueen argue for a return
to the elegance of the original definition,26 which is con-
sistent with the type of programming advocated here.

Brown prophesies the use of applicative languages for
the exploitation of parallel processing capability.27 Patil
discusses parallel evaluation in a graphical lambda calulus
model.3 Many others have published important related
references on applicative languages.8'9,28-34 Other aspects
of structure models have also been reported.4'5"19'35-38
Many modern methods for presenting semantics of most
any language rely on the presentation of functional expres-

sions for the primitives of the language.39,40
Fitzwater and Schweppe offered an early suggestion

for data-driven computation.41 After Karp and Miller'sl
discussion of determinancy in the data flow model, many
graphical token models for data-flow have appeared.2,6,4247

Although the firing-rule notion for data flow graphs is
thought by some to derive from Petri nets,48'49 this ap-

pears to be a matter of transferred terminology rather
than historical dependence. In the Petri-net model,
tokens are valueless. Therefore it does not directly repre-

sent data, as do data flow models. The basic Petri-net
model includes ways to introduce indeterminate behav-
ior; these are not present in basic data flow models.

Finally, an important topic is the incorporation of in-
determinate operators into graphical and functional
models. This must be considered if such models are to be
able to represent operating systems and related programs
in which tokens can be merged according to order of ar-

rival from an external environment. Some preliminary
discussions of semantic problems, syntax, etc., have ap-

peared.50-54

38 COMPUTER

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 18:18 from IEEE Xplore. Restrictions apply.

Future developments

Researchers attempting to make data flow program
graphs the basis for a practical programming language
face several major problems. Some of these problems in-
volve human engineering and the need to create a reason-
ably priced terminal system to support graphical pro-
gramming.

Physical implementation decisions. To date, most data
flow program graph models have been used as either just
models or intermediate languages for data flow pro-
grams. Two exceptions are FGL14 (based on a structure
model) and GPL55 (based on a token model), in which the
models are used as high-level languages. These allow the
programmer to draw the program and execute its graphi-
cal form.

Impediments to direct use of graphs as data flow pro-
gramming languages include the expense of graphical ter-
minals, the added cost of graphical software, and the in-
creased workload imposed on execution resources due to
interactive display and editing. The evolution of personal
computers packaged with powerful microprocessors, bit-
mapped displays, disk storage, etc., is beginning to
change this equipment-based deficiency. Ongoing ex-
periments indicate that graphical resolution of 4K x 4K
pixels or greater might be desirable. Ironically, this is due

mainly to the display of the text (comments, node names,
etc.) that accompanies a program module of reasonable
size. When adequate hardware is available, it will only be
a matter of time before researchers develop the additional
tools to make graphical programming practicable.

Graphical representations are widely used in non-
programming disciplines because they provide a more in-
tuitive view of system structure. It seems reasonable to in-
vestigate the possibility that such representations could
do the same for programming. We suggest that tools for
debugging, statistical monitoring, and resource manage-
ment be coupled with data flow program graphs to allow a
programmer to produce programs more productively
than is currently possible.
The use of graphical tools for software development

seems to be gaining momentum.56-59 When similar tools
are used in the context of a data flow language, an addi-
tional advantage accrues: the graphs have a well defined
functional meaning, rather than just the ability to repre-
sent procedure nesting, loop nesting, calling sequences,
etc. This meaning is a specification of the system under
development.

The programmer education problem. For graphical
data flow methods to succeed in a practical sense, they
must have an acceptable link to the 30 prior years of soft-
ware and hardware development,which present a legacy

SOFTWARE
DESIGN
STRATEGIES -

An updated revision of the first edition, with a new for-
mat, about one fourth new material and substantial in-
troductions to sections on software project manage-
ment, software design strategies, and programming en-
vironments. Included are a bibliography of tutorial
papers, a programn design library listing and an author
and permuted title index. 479 pp.

Order #389
Tutorial-SOFTWARE DESIGN STRATEGIES
Edited by Glenn D. Bergland and Ronald D.

Gordon.
2nd Edition, 1981
Members-$1 8.75

Nonmembers-$25.00

Use order form on p. 136C

Z-80 and 8086 FORTH
FORTH APPLICATION DEVELOPMENT systems for Z-80 and 8086
microcomputers - including interpreter/compilerwith virtual memory
management, line editor, screen editor, assembler, decompiler,
utilities, demonstration programs and 100 page user manual. CP/M
(tm) compatible random access disk files used for screen storage,
extensions provided for access to all CP/M functions.
Z-80 FORTH .. $50.00
Z-80 FORTH with software floating point arithmetic $150.00
Z-80 FORTH with AMD 9511 support routines $150.00
8086 FORTH .. $100.00
8086 FORTH with software floating point arithmetic $200.00
8086 FORTH with AMD 9511 support routines............ $200.00

FORTH METACOMPILER system allows you to expand/modify the
FORTH runtime system, recompile on a host computer for a different
target computer, generate headerless code, generate ROMable code
with initialized variables. Supports forward referencing to any word or
label. Produces load map, list of unresolved symbols, and executable
image in RAM or disk file.
Z-80 host: Z-80 and 8080 targets $200.00
Z-80 host: Z-80 8080, and 8086 targets $300.00
8086 host: Z-80, 8080, and 8086 targets $300.00

System requirements: Z-80 microcomputer with 48 kbytes RAM and
Digital Research CP/M 2.2 or M P/M 1.1 operating system; 8086/8088
microcomputer with 64 kbytes RAM and Digital Research CP/M-86
operating system.
All software distributed on eight inch single density soft sectored
diskettes. Prices include shipping by first class mail or UPS within USA
and Canada. California residents add appropriate sales tax. Purchase
orders accepted at our discretion.

Laboratory Microsystems
4147 Beethoven Street
Los Angeles, CA 90066

(213) 390-9292
Reader Service Number 9

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 18:18 from IEEE Xplore. Restrictions apply.

of considerable inertia. The design of a clean interface
between functional programs and existing assignment-
based programs (e.g., data-base systems and operating
systems) is one aspect of the problem. Several solutions
are being pursued.

Professional programmers with years of experience in
writing Fortran code have become very good at writing
Fortran-like solutions to problems. The change to Algol,
Cobol, Pascal, etc., is not a large conceptual step, in that
the structural styles of these languages are not radically
different from Fortran's. However, data flow languages
require and support very different styles. Programmers
trained only in conventional languages might be unwilling
to try problem-solving techniques based on graphical or
even functional program structures. Therefore, the
potential gains of such techniques must be made apparent
to programming management. U

Acknowledgments

We wish to thank Arvind, Tilak Agerwala, Paul Dron-
gowski, Chu-Shik Jhon, Gary Lindstrom, and Elliott Or-
ganick for numerous comments that helped improve the
article. We also thank Kathy Burgi for drafting the
figures.

This material is based upon work supported by a grant
from the Burroughs Corporation and by National Science
Foundation grant MCS 81-06177.

References

1. R. M. Karp and R. E. Miller, "Properties of a Model for
Parallel Computations: Determinacy, Termination,
Queueing," SIAM J. Applied Mathematics, Vol. 14, No.
6, Nov. 1966, pp. 1390-1141.

2. D. A. Adams, A Computational Model with Data Flow Se-
quencing, Technical Report CSl 17, Computer Science
Dept., Stanford University, Palo Alto, Calif., 1968.

3. S. Patil, Parallel Evaluation of Lambda-Expressions, MS
thesis, MIT Dept. of EE, Jan. 1967.

4. G. Kahn, "The Semantics of a Simple Language for
Parallel Programming," Information Processing 74,
IFIP, North-Holland, Amsterdarm, 1974, pp. 471-475.

5. R. M. Keller, Semantics and Applications of Function
Graphs, Technical Report UUCS-80-112, Computer
Science Dept., University of Utah, Salt Lake City, Utah,
1980.

6. A. L. Davis, Data-Driven Nets: A Maximally Concurrent,
Procedural, Parallel Process Representation for Distrib-
uted Control Systems, Technical Report UUCS-78-108,
Computer Science Dept., University of Utah, Salt Lake Ci-
ty, Utah, 1978.

7. D. M. Ritchie and K. Thompson, "The Unix Time-Sharing
System," Comm. ACM, Vol. 17, No. 7, July 1974, pp.
365-381.

8. P. J. Landin, "The Mechanical Evaluation of Expressions,"
Computer J., Vol. 6, No. 4, Jan. 1964, pp. 308-320.

9. J. McCarthy et al., Lisp 1.5 Programmers Manual, MIT
Press, Cambridge, Mass., 1965.

10. J. Rumbaugh, "A Data Flow Multiprocessor," IEEE
Trans. Computers, Vol. C- 26, No. 2, Feb. 1977, pp.
138-146.

11. S. Patil, "Closure Properties of Interconnections of Deter-
minate Systems," Proc. Project MAC Conf. Concurrent
Systems and Parallel Computation, June 1970, pp.
107-116.

12. Arvind and K. P. Gostelow, "Some Relationships Between
Asynchronous Interpreters of a Dataflow Language," in
Formal Description of Programming Concepts, E. J.
Neuhold, ed., North-Holland, Amsterdam, 1978, pp.
95-119.

13. R. M. Keller, B. Jayaraman, D. Rose, and G. Lindstrom,
FGL (Function Graph Language) Programmers' Guide,
AMPS Technical Memorandum No. 1, Computer Science
Dept., University of Utah, Salt Lake City, Utah, 1980.

14. R. M. Keller and W-C. J. Yen, "A Graphical Approach to
Software Development Using Function Graphs, " Digest of
Papers Compcon Spring 81, Feb. 1981, pp. 156-161.

15. R. M. Keller and G. Lindstrom, "Hierarchical Analysis of
a Distributed Evaluator," Proc. Int'l Conf. Parallel Pro-
cessing, Aug. 1980, pp. 299-3 10.

16. K-S. Weng, An Abstract Implementationfor a Generalized
Data Flow Language, PhD thesis, MIT, Cambridge,
Mass., May 1979.

17. R. M. Keller, G. Lindstrom, and S. Patil, "A Loosely-
Coupled Applicative Multi-Processing System," AFIPS
Conf. Proc., Vol. 40, 1979 NCC, June 1979, pp. 613-622.

18. A. L. Davis, "The Architecture and Systeiii Method ot
DDM-1: A Recursively-StruCtured Data Driven Machiine,"
Proc. Fifth Ann. Svviup. Comlputer A rchitecture, 1978.

19. D. P. Friedmani anrd D. S. Wise, "('ONS Should Not
Esaluate Its Arguments," in A utouiclttu, I cnguugens,(1ti(1
Programming, S. Michaclson and R. Mijlner, eds., I dinI
burgh Unisersity Press, Ediniburgh, Scotlanid. 1976, pp.
257-284.

20. R. NI. Keller, ''D)iside atid CONCE r: Data StruLut incl tOr
A\pplicatise Multiprocessin1g,"' P'ro(. Iis,t Co0111., A\Lu
1981), pp. 196-20)2.

21. .I. \W. I orrester, Io(/dutritl DYnaiuucs, MI - Prcss, C anlt-
bridge, Mass., 1961.

22. R. Ni. Kellet anid C,. I indstr oiu, 'Applicatitots ot1 Icd-
back in FunlCtionial Programmilne," Proc. C,V! (Conf.
I'iunction/l Iaunguages itrd Coiupuniter A1rch/ttleclurc, Oct.
198I, pp. 123- 13).

23. L. A. Zadch arid C. A. I)esoer, incur/e 1Srswoet Thtolo,
MNcGra -Hill, NewN York, 1963.

24. 1 R. Rabirner anid C. 1\I. Rader, Digittal .Siignal 1ProccMssttin,
IEEE Press, Ness York, 1972.

25. NM. F. Coriwas, "Desien ot' a Sepair-able Triaisit iol-
Diagram (omiipiler," Cot)tIII. ICCA, Vol. 6, No. 7, Itlv
1963, pp. 396-408.

26. G. Kahlln anid I). MaQlaQeeii, "'C o0otiies anid Netsorks ot
Parallel P'rocesses," Proc. II-IP Co/nifres.s 77, AnLI. 1977.
pp. 993-998.

27. (i. 13r05nwr, "A Nes C'onccpt iMi Prograiunrimit, iII
.Alunagentetot (11(1 1/he Compuer 0l/ die I i/ture, M.
G.reenibereer, ed., .Joln Wiles & Sons, 1962'.

28. A. CIIhurch, T/Wc CU/ci oll0 t1/)(/u4 I(1o;ttesio1t, P'iineelotl
Utriversity Press, IPricet ott, N..I., 1941.

29. A. Evais, JIr., -PI_A1-A La..lneauc l)esigtted loi'Ieacltin
Progi-amritinie irgu1islits, P-oc. C'V1 Nt,/'l Cot/f.,
1968, pp. 395 -4)3.

31). (1'. \\adsss\orlIt, .Seolnuthus tt(11(Pralnatitcs. 0/' 11/c
I uot/x/u(u /cu/us, P'hl) tlesi.s, Unis ersity o \'l('ord, O\-
t'ordl, Eelanid, 1971.

31. [-. A. Aslhterotto ilad \\:'. \X. Wzsdec, ''ICCid, \ Nojrilpoi
cedural-1 I1ll."anirc ss tIt lteratlioit, 'C(ootot. .1 (1,1, No) 21(),
No. 7, Jtils 1977, pp. 519-526.

40 COM PUTER

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 18:18 from IEEE Xplore. Restrictions apply.

32. M. O'Donnell, "Subtree Replacement Systems: A Unify-
ing Theory for Recursive Equations, Lisp, Lucid, and
Combinatory Logic," Proc. Ninth Ann. Symp. Theory of
Computing, May 1977, pp. 295-305.

33. D. P. Friedman and D. S. Wise, "The impact of Ap-
plicative Programming on Multiprocessing," IEEE Trans.
Computers, Vol. C-27, No. 4, Apr. 1978, pp. 289-296.

34. D. A. Turner, "A New Implementation Technique for Ap-
plicative Languages," Software-Practice & Experience,
Vol. 9, No. 1, 1979, pp. 31-49.

35. W. H. Burge, Recursive Programming Techniques, Addi-
son-Wesley, Reading, Mass., 1975.

36. P. Henderson and J. H. Morris, Jr., "A Lazy Evaluator,"
Proc. Third ACM Conf. Principles Programming Lan-
guages, 1976, pp. 95-103.

37. R. M. Keller, Semantics of Parallel Program Graphs,
Technical Report UUCS-77-110, Computer. Science,
Dept., University of Utah, Salt Lake City, Utah, July,
1977.

38. P. Henderson, Functional Programming, Prentice-Hall,
Englewood Cliffs, N.J., 1980.

39. R. Milne and C. Strachey, A Theory of Programming
Language Semantics, Champman and Hall, London,
1976.

40. J. Stoy, The Scoti-StracheyApproach to theMathematical
Semantics of Prograinming Languages, MIT Press, Cam-
bridge, Mass., 1977.

41. D. R. Fitzwater and E. J. Schweppe, "Consequent Pro-
cedures in Conventional Computers," AFIPS Conf.
Proc., Vol. 26, Part 11, 1964 FJCC, pp. 465-476.

42. J. B. Dennis, "Programming Generality, Parallelism, and
Computer Architecture," Proc. IFIP Congress, 1969, pp.
484-492.

43. J. D. Rodriguez, A Graph Model for Parallel Computa-
tion, Technical Report TR-64, Project MAC, MIT, Cam-
bridge, Mass., 1969.

44. D. Seror, DCPL: A Distributed Control Programming
Language, Technical Report UTEC-CSc-70-108, Com-
puter Science Dept., University of Utah, Salt Lake City,
Utah, Dec. 1970.

45. J. B. Dennis, J. B. Fosseen, and J. P. Linderman, "Data-
flow Schemas," in Theoretical Programming, Springer-
Verlag, Berlin, 1972, pp. 187-216.

46. K-S. Weng, Stream-Oriented Computation in Recursive
Data Flow Schemas, Master's thesis, MIT, Cambridge,
Mass., Oct. 1975.

47. Arvind, K. P. Gostelow, and W. Plouffe, An Asyn-
chronous Programming Language and Computing
Machine, Technical Report TR 114a, University of
California, Irvine, Calif., Dec. 1980.

48. C. A. Petri, "Fundamentals of a Theory of Asnychronous
Information Flow," Information Processing 62, IFIP,
North-Holland, 1962, pp. 386-391.

49. J. L. Peterson, Petri Net Theory and the Modeling of
Systems, Prentice-Hall, Englewood Cliffs, N.J., 1981.

50. Arvind, K. P. Gostelow, and W. Plouffe, "Indeterminacy,
Monitors, and Dataflow," Operating Systems Rev., Vol.
11, No. 5, Nov. 1977, pp. 159-169.

51. R. M. Keller, "Denotational Models for Parallel Programs
with Indeterminate Opeators," in Formal Discription of
Programming Concepts, E. J. Neuhold, ed., North-
Holland, Amsterdam, 1978, pp. 337-366.

52. P. R. Kosinski, "A Straightforward Denotational Seman-
tics for Non-Determinate Data Flow Programs," Proc.
Fifth Ann. ACM Symp. Principles Programming
Languages, Jan. 1978, pp. 214-221.

February 1982

53. D. P. Friedman and D. S. Wise, "An Approach to Fair Ap-
plicative Multiprogramming," in SemanticsofConcurrent
Computation, G. Kahn, ed., Springer-Verlag, Berlin,
1979, pp. 203-225.

54. B. Jayaraman and R. M. Keller, "Resource Control in a
Demand-Driven Data-Flow Model," Proc. Int'l Conf.
Parallel Processing, 1980, pp. 118-127.

55. A. L. Davis and S. A. Lowder, "A Sample Management
Application Program in a Graphical Data-Driven Pro-
gramming Language," Digest ofPapers Compcon Spring
81, Feb. 1981, pp. 162-167.

56. D. T. Ross, "Structured Analysis (SA): A Language for
Communicating Ideas," IEEE Trans. SoftwareEng., Vol.
SE-6, No. 1, Jan. 1977, pp. 16-33.

57. V. Weinberg, Structured Analysis, Prentice-Hall,
Englewood Cliffs, N.J., 1978.

58. E. Yourdon and L. L. Constantine, Structured Design,
Prentice-Hall, Englewood cliffs, N.J., 1979.

59. P. G. Hebalkar and S. N. Zilles, Graphical Representa-
tions and Analysis of Information Systems Design, IBM
Research Report RJ 2465, Poughkeepsie, N.Y., Jan. 1979.

A .) __Alan L. Davis is an associate professor of
computer science at the University of
Utah. His current research interests in-
clude distributed architecture, graphically
concurrent programming languages, par-
allel program schemata, device integra-
tion, asynchronous circuits, and self-timed
systems. He has been a National Academy
of Science exchange visitor and a visiting
scholar in the Soviet Union, as well as a

guest research fellow at the Gesellschaft fuer Matematik und
Datenverarbeitung in West Germany.

Davis received a BS degree in electrical engineering from MIT
in 1969 and a PhD in computer science from the University of
Utah in 1972.

Robert M. Keller is a professor of com-
puter science at the University of Utah.
From 1970-1976 he was an assistant pro-
fessor of electrical engineering at Prince-
ton University. His primary interests are in
asynchronous distributed systems, includ-
ing their theory, implementation, verifica-
tion, programming, and applications. Cur-
rently, these interests are manifest in the
FGL/AMPS project, which entails research

in construction of a usable general-purpose applicative language
and in its support on a distributed multiprocessing system.

Keller received the MSEE from Washington University-in St.
Louis and the PhD from the University of California, Berkeley.

41

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 18:18 from IEEE Xplore. Restrictions apply.

	Claremont Colleges
	Scholarship @ Claremont
	2-1-1982

	Data Flow Program Graphs
	Alan L. Davis
	Robert M. Keller
	Recommended Citation

	tmp.1318372926.pdf.dY8iN

