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" FUNDAMENTA
MATHEMATICAE
L. (i961)

On the structure of a class of archimedean
lattice-ordered algebras *
L
M. Henriksen and D. G. Johnson (Lafayette)

By a @-algebra A, we mean an archimedean lattice-ordered algebra
over the real field E which has an identity element 1 that is a weak order
unit. The @-algebrag congtitute the class of the title. Tt is shown that
every @-algebra Is isomorphic to an algebra of continuous functions
on a compact space XX into the fwo-point compactification of the real
line R, each of which is real-valued on an (open) everywhere dense subset
of . Under more restrictive assurnptions on A, representations of this
sort have long been known. An (incomplete) history of them iz given
briefly in Section 2. '

The compact space in gquestion is the space Hi(4) of maximal
l-ideals of A with the Stone (= hull-kernel} topology. The gubset A*
of bounded elements of A is also a @-algebra, and ¥ (4*) is homeomorphic
to SH(4).

The class of @-algebras includes, of course, all lattice-ordered algebras
of real-valued functions that eontain the constant functions. In addition,
it containg the algebra B, of Baire functions module null functions, and
the algebra £, of Lebesgue measurable functions modulo null funections,
on the real line E. Tt iz -well known that neither of these is isomorphic
{even as a vector-latiice) to any algebra of real-valued functions.

If M eH(A), then 4/M is a totally ordered integral domain con-
taining R. If 4/ M = B, then M is called a real maximal ideal; otherwise
it is called hyper-real. K {4) denotes the space of real maximal [-ideals
of 4. If A is an algebra of real-valned functions, then “®(4) is dense
in P(A), but R (B,), and PR (L) are empty. If ae 4, then R{a) denotes
the set of maximal [-ideals of A such that M (Ja|) is not infinitely large.
For each a e A, “¥(a) is dense in Ni{4}.

We have summarized the main results of Section 2. Im Section 3,
we investigate @-algebras that are wniformly closed, ie. every Cauchy
sequence of elements of A converges in A. If is an easy consequence of

* This research was supported (in part) by the U. 8. Office of Naval Research
under contract no. Nonr-1100 (12).
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the Stone-Weierstrass theorem that if A is uniformly closed, then A*
and the algebra C{N((4)) of all continuous real-valued functions on
NM(A) are isomorphic. Moreover, if A is uniformly closed, and ae A,
then every bounded fe ¢{®(a)} has a continuous extension over W (4).
Not every @-algebra is a sub-@-algebra of a uniformly closed @-algebra
with the same space of maximal !-ideals.

For any compact space X, let D{X) denote the set of all continuous
functions into the two point compactification of K each of which ig real
on a dense subspace. While D(X) need not always form an algebra, we
show that 4 = D(C??Z(A)) if and only if A is uniformly closed and every
element of A4 is eifher a divisor of zero or has an inverse.

Consider the @-algebra A as a subset of D(W(4)). If e(0)C
W(Ad)y~K(b) for some b e A implies that a is contained in no proper
[-ideal of A, then 4 is said to be closed under l-inversion. A ®-algebra 4 of
real-valued functions is said o be closed under inversion if every element
of A that is contained in no real maximal I-ideal of A is contained in
no proper [-ideal of A. The consequences of these postulates, and the
relations between them arc investigated in Section 4.

In Bection 5, we obtain internal characterizations of the algebra
Q) for several classes of fopological spaces. A necessary, but not
sufficient condition that a @-algebra A be isomorphic to some C(%f)
is that A be a uniformly closed algebra of real-valued functions that
ig closed under inversion. By adding to these conditions we obtain char-
acterizations of C(2) in case “If is either Lind&lof, locally compact and
o-compact, extremally disconnected, or discrete.

@-algebras are also f-rings in the sense of Birkhoff and Pierce, and
we rely on known results on the structure of f-rings given by these authors
in [4], and given by D. Johngon in [23]. We also rely heavily on known
theorems on the algebraic structure of the ring C(2f). In Section 1, we
summarize enough necessary hackground material to keep this paper
‘reasonably self coutained. Tor more background on (%), the reader
is referred to [16].

We are indebted to C. Goffman for a number of suggestions and
refercnees. We are cspecially indebted to M. Jerison for many valuable
conversations concerning this paper while it was in progress.

1. Definitions and preliminary remarks. By a lattice-ordercd
ring A{+, -, v, A), we mean a lattice-ordered group that is a ring in
which the product of positive elements is positive. If, in addition, 4 is
a {real) vector lattice, then A is called a lattice-ordered wlgebra.

Birkhoff and Pierce have called a lattice-ordered ring 4 an f-ring
if, for a,b,eed, ardb=0 and ¢ =0 imply acrb=canrnb=10 ([4]).
If 4 is also a vector lattice, then it is called an f- algebra. A lattice-ordered
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ring A is called archimedean if, for each a4 ¢ A which is different from 0,
‘the set {na: n = 41, 42, ..} has no npper bound in A. Birkhoff and
Pierce have shown that every archimedean f-ring is commutative.
(Indeed, they have shown that associativity iz a consequence of the
remaining postulates for an archimedean f-ring ([4], Theorem 13, ff.).)

1.1. Let A be a ring of real-valued functions on a set <§, under the
usual pointwise addition and multiplication. Suppose that for every
f, g ¢ A the funetion fvg defined by (fvg)(®m) = j(x)vg(z) for all z e d,
and the function jag defined by (fag)(z) =f(x)rg(z) for all » e,
are in A. Then A4 iy an archimedean f-ring. In particular, the algebra
O(<Y) of all continuous real-valued functions on a topological space 9/,
and the subalgebra C*(%) of bounded elements of (%), are archimedean
f-algebras with the same identity element (the constant function 1).

1.2, Let B denote the sef of all Baire functions on the real line R,
and . let 8 denote the set of all measurable functions on K. Under the
usual pointwise operations, these are archimedean f-algebrag with identity.
Let B, and 2, denote, respectively, the f-algebras obtained from B,
regpectively £, by identifying functions that coincide almost everywhere.
Then B, and ¥, are archimedean f-algebras with identity, but neither
is isomorphic (even a8 a vector lattice) to an algebra of real-valued
functions. (See [17], and [19].) ‘

1.3. Tf A is a Iattice-ordered ring, then, ag usual, we let A+ = {a ¢ A:
a0} For aed, let at =av0, a-=(—a)v0, and |[a!=av(—a). Then
atra- =0, and

(i) @ = a*—a~, and

) |a] =a*+a-
If, in addition, 4 is an f-ring, then

(iii) @* 2= 0 for each ae A, and

(iv) |ab| = |a||b| for all a,be 4.

For proof, see [4]. (But, note that these authors define &~ = —(—a)v0.)

1.4. The kernel of a homomorphism of & lattice-ordered ring 4 into
a lattice-ordered ring B is called an [-idéal. {We assume, of course, that
both the ring and the latlice operations are preserved by a howmomorphism.)
An [-ideal of 4 is a ring ideal I which satisfies: a e I, b e 4, and [b| < |a|
imply bel. If A hag an identity element, then every proper [-ideal
of A is contained in a maximal [-ideal of 4. ‘

If 4 is an f-ring, and M is a maximal [-ideal of A4, then A/M is
totally ordered. Indeed, A is an f-ring if and only if 4 is a subdirect
union of totally ordered rings ([4], p. 56).

Every maximal ideal, and every prime ideal of a (%) is an I-ideal
([16], Chapter b).
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1.5. DeFINITION. 4 ©-alyebra is an archimedean f-algebra with identity
element 1.

Ags remarked above, every @-algebra is commutative. The purpose
of this paper iz to describe the structure of @-algebras.

In [23), D. Johnson gave a stineture theory for f-rings analogous
to the Jacobson theory for abstract rings. We now guote, in the special
context of @-algebras, some of these resulis.

An f-ring 4 is said to be [-simple if A* = {0}, and if it contains
no non-zere proper [-ideals. (Note that every [-simple f-ring is totally
ordered.)

1.6, If A is a D-algebra, then

(i) the intersection of all maximal [-ideals of A is {0},

{(ii) every maximal {-ideal M of A is a prime ideal; indeed, A/M
is a (totally ordered) [-<imple f-algebra without non-zero divisors of zero,

(iii) every prime I-ideal of 4 Is contained in a unigue maximal
{-ideal of A, and

{iv) if f is an [-ideal of 4 disjoint from a multiplicative system T
of 4, then [ is contained in & prime [-ideal of A disjoint from 7. See [3],
Chapter 1 and IT.

1.7. A maximal [-ideal of a @-algebra .4 need not be maximal as
a ring ideal of A.

Tor, let Bt denote the space of nonnegative real numbers, and let A
denote the d-algebra of all continuous functions on Bt that are even-
tually polynomials. That is, fe 4 if and only if f e C(R*), and there is
a ¥y € £+, and a polynomial p such that f(z) = p(z) for all x = 9. It is
easily verified that M = {f e A: § is eventually 0} iz a maximal [-ideal
of A. Clearly M is not a maximal ring ideal of 4.

1.8. A lattice-ordered algebra A4 is called complete (respectively,
a-complete) if every (respectively, every counfable) bounded subset of 4
has a least upper bound. Every ¢-complete lattice-crdered algebra with
identity is archimedean ([4], p. 63).

1.9. We now review some known facts about the @-algebra (%)
of all continuous real-valued functions on a topological space V.

(i) Every C() is isomorphic to C(*Y’) for some completely regular
(Hausdorff) space °if’, so, in studying the structure of (), there is
no loss of geperality in assuming that “if iz completely regular.

A subspace I of a space 1/ is said to be C*-dmbedded in ) if every
fe C*(J) has an extension fe C*{ /).

(ii) Every completely regular space If iz (homeomorphic to) a dense
subspace of a compact (Hausdorff) space g1/ such that I is ¢*-imbedded
in g%, If X is a compact space containing !f as a dense subspace, and
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Qf is C*-imbedded in %, then there is a homeomorphism of %Y onto X
keeping < elementwise fixed. 8% is called the Stone-Cech compactifi-
cation of <.

(iii) Let ¢f be a dense subspace of a compact space 9. Then, in
order that there exist a homeomorphism of fY onto % keeping <
pointwise fixed, it is necessary and sufficient that whenever f,, f, ¢ C*(Y)
with 71(0) ~ f2(0) = @, then f7(0) and f;'(0) have disjoint closures
in 9. _

(iv) If 7 is a continuous mapping of a completely regular space Y
into a compact space %X, then there is a continuous extension f of f over
By into 9. —

For proofs, see [16], Chapter 6.

1.10. If A is a @-algebra, then A*={aed: [a|<i-1 for some
Ae R} is also a P-algebra. A* iz called the subset of bounded ele-
rents of 4.

1.11. In a vector-lattice A, an element a ¢ A+ is called a weak order
unit of A if be A and arb =0 imply b =0, and it is called a sirong
order wnit if b ¢ A+ implies b < na for some integer n. Clearly the identity
element 1 of a @-algebra 4 is a weak order unit, and it is & strong order
unit if and only if A = A*

Indeed, an arehimedean lattice-ordered algebra A with identity
element 1 is a @$-algebra if and only if 1 is & weak order unit of A ([4],
p. 61).

1.12. A ring A is called regular, if for every a4 ¢ 4, there is an x e A
such that awa = a. Tt is eagily seen that the examples B, £, B,, and £,
of 1.2 are regular.

2. The representation theorem. If & is a compact space,
let D(X) denote the set of all eontinuous mappings of X into the two-
point compactification yBE = R {400} of the real field B that arc
real-valued on an (open) everywhere dense set. The elements of D(X)
are called extended (real-valued) functions.

For each fe D(X), let “R(f) denote the set of points at which f is
real-valued, and let () = X ~R(f).

Let f,9e¢D(X) and 1¢R. Then the functions if, fvg, and fAg
defined in the usual manner (i.e., pointwise) are in D(X). If there are
functions &, & ¢ D(X) whieh satisty

Wa) =f(@)+g@), k(z) =f(z) g{»)

for each z € “R(f) ~R(g), then % and % are called the sum and product
of f and ¢, and are denoted f-g and f-g. Since R(f) ~R{g) is dense
in %, these operations are uniquely defined. However, as the following
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examaple shows, D{%) is not, in general, closed under addition and
multiplication.

2.1. Exampre. Let X = N u {w} denote the one point compacti-
fication of the discrete space N of positive integers. Let f () = #sinz,
folw) = (L/z)sing, g(z) = —a if xeN, and let fi{w)=oco, f{w)=10, while
g{w) = —oo. Then }, f,, and ¢ € D{X(), but neither f, g nor f,g is defined.

A subset A of D(X) closed nnder all of these operations will be
called an algebra of extended functions on . Note that any such 4 will
be archimedean. '

2.2, ProrosiTioN. D{X) is an algebra of extended funclions if and
only if each open, everywhere dense If,-set in X is C*-imbedded in X.!

Proof. Suppose that each open, everywhere dense F,-subset of &
is C*-imbedded. Then, for f,geD(X), R(f) ~ R(g) is C*-imbedded
in . 8o, by 1.9 (ii), & = B[R(f) ~ R(g)), whence by 1.9 (iv), f+ ¢ and
fg e D(X). Tt follows that D(%() is an algebra of extended functicns.

Conversely, suppose that o is an open, everywhere dense F,-set
in X on which is defined a bounded continuons real-valued function f
without a continuous extension over X. Now X~ is a closed -set
in the compact space X, so there is a ge €(X) sueh that g = 0 and
§H0) = X~ Since g-1(0) is nowhere dense, 1/g € D(2X). The funetion %
defined by

1 L
E{x) = g () —'—f(w); if wed$,
©o it we S
ig in D{X). But h—1/g ¢ D{X), since h(g)ﬁé%= fa) i wes

The condition of 2.2 indicates two large clasges of examples of
compact spaces % such that D{X} is an algebra. First, if every closed
(s in % hag a non-empty interior (e.g., if & is the one point compacti-
fication of an uncountable diserete space), then D(X) = C{X).

A completely regular space )f iz called an #-space if for every
fe C(4f), there is a It e O(°Y) such that f= k|f|. If ¥/ is any locally compact,
o-coinpact space, then f4f~-!f is an F-space. Y/ is an ¥F-gpace if and
only if U ~7F Y0) is ¢*-imbedded in 3/ for every f e C(if). (For proofs,
gsee [14], Section 2, or [l6], Chapter 14.) Thus the compact I'-spaces
provide a second class of spaces for whiech the condition of 2.2 holds.

A completely regular space !/ is called extremally disconnecied (re-
gpectively, bhasically disconnected) if the closure of every open set
{respectively, every open set of the form -If~f '(0) for some fe O(Y)) -
is open. Every basically disconnected space is an F-space. That D(X)
is an algebra in case %X is basically disconnected has long been known
{ef., e.g., [26]). T i iz completely regular, then C(7) is o-comnplete
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(respeétively, complete) if and only if <Y iz bagically (respectively, ex-
tremally) disconnected. This statement remains true if “C/(%/)" is replaced
by “O*9)?. It follows that </ is Dbasically or extremally disconnected
if and only if g% is ([14], Section 8, [16], Chapler 6).

Let A denote a @-algebra, and let W (A) denote the set of maximal
[-ideals of A. The Stone topology on W (4) is defined in the following
way. For any S CYH(A), the kernel k(J) of & is M{M: M e S} (where
it is understood that k() = A). If I is an l-ideal of A, the hull A{I)
of T is {MeW(A): MDI} A subget I of W {A) is said to be closed if
S = h{k(I).

It is readily verified that with this definition of closed set, < (A4)
becomes a T,-space such that every open covering hag a finite sub-
covering. These asgsertions can be verified by examining [22], [12], or
the more abstract formulation given in [2]. Unless otherwise stated,
W (A) will denote the topological space defined above. Note that the sets

Gi{a) ={M e N (4): aeM}

for @ € A, form a base for the closed sets in 9(A4).

The main result of this section is the following representation theorem.

2.3. THEOREM. Every @-algebra A is isomorphic to an algebra A
of extended funetions on O (A). Moreover,

(i) “Wi(A) s a compact space (in partieular, it is a Hausdorff space),
and

(i) 4 &S, and o, are disjoint closed subsets of M (A), then there is an
@ e A such that a[d) =0, 8[d,] =1, end 0 <@ < 1.

Proof If aed, and M W (A), let M (a) denofe the image of & under
the natural isomorphism of A onto A/M. With each @ ¢ A, we associate
a funetion & on 9 (A) into »R as follows. It a e A+, let

(M) =inf{le B: M(a) <1}
{where inf@ is understood to be +oo). If a ¢ A is arbitrary, let
a(My=a*{M)—a~(M).

Since agtpa- = 0, either M(a*) =0 or M(a") =0, so @ is well defined.

Let A denote the collection of all functions @, for 4 ¢ A. The next
two observations are eagily verified.

(1) I 1 denotes the identity element of 4, then 1 is the constant
funetion 1, and 1.1 =4 for all. ie R.

(2) For each ae A, and AeR, (a+A) = a&+4 and Aa = ia.

For each ae A, the set { MW (A): M(a)> 0} = { MW (A): M{at) >0}
= {M e« W(A): até¢ M} is a bagic open set in 9Y{4). We use this fact
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to demonstrate continuity of @ at each point M, of W (4). We may
assume that a(M,) = 0.

Suppose first that @(M,) = +oo. Then, for each ¢ R, the set
{M e Wi(4): a(M)> A} contains the open neighborhood

(M eW(A): Mla)>At1) = {MeW(A): M(a—Ai—1)>0}

of M,. Hence @ is continuous at M,. :
If a(M;} = AeR, then for each real &> 0, the get {M e“Hi(4):
A—e < @a(M)< A+¢} contains the open neighborhood

{M (A A—g/2 < M(a) < A4 ¢/2}
={MeM(Ad): Ma—A+e2)>0tn{MeN(Ad): M{—a+ite?2)>0}
of M,. Thus, we have proved.
(3) For each ae d, @ i¥ a continuous mapping of W (A} into yR.‘
Now let M, and M, be distinct maximal [-ideals of 4, and choose
a positive element a4 in M, but not in M,. Then, by 1.6 (ii), since A/M,
is an {-simple f-algebra, there is a b e A+ such that M.(ab)=1. Let
¢=abal. Then (M.} =0, and e(M,) = 1. So, by (3},

(M eM(A): 8(M) <3} and {MeWM(A): & M)> 2}

are digjoint open neighborhoods of M,, respectively M,. Hence “F((A4)
is a Hausdorff space. Indeed, az remarked above, 9% {(A4) is compact.
Thus (1) has been established.

Now (ii) holds when o, and <§, each consist of a single peint.
A standard compactness argument may be used to extend this first to
the case in which §; congists of a single point and o, is arbitrary, and
then to the general case.

For each a e A, let R(7) = {M ¢ W {A): @(M)| # oo} We will show
that R(z) is dense in W (A4). For, suppose that b e A*, and M(h)=0
for all M e “R(a@). Then, for n=1,2, .., M(r(bal)} =0 if M <R{a),
and Mn(bal)) < M(la]) if M ¢ R(@), so n{bal) <|[al. Thus, since A4
is archimedean, dA1l == 0. But, by 1.11, 1 is a weak order unit of 4,
80 b = 0. Thus, each @ e 4 is a coutinuous functien on W(4) into ¥R
-that is real-valued on a dense subset. Hence

(4) AC DA}

We now define operations on 4 by inducing those of DV {4}) on it,
and proceed to show that the mapping a—+a& is an isomorphism of A
onto A.

Suppose that a, b e 4, and let M e R(4) AR (D). It is easily verified
that (@4 5)(M) = (a+b)(M) and that @b(M) = ab{M). Since a+b, and
ab e 4 CD(W(A)), e+b and @b exist and are in A.

If @ ¢ A is such that @ = 0, then for each M ¢“W{a), M(a}) =0 or
| M (a)| is infinitely small. Hence M (nlal) < M (1) for each pogitive integer
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n, and for all M N (A). Since 4 is archimedean, |a| = 0, whence a = 0.
Thus:

(b) @ =0 implies a = 0.

The lattice operations induced on A by D(W((4)] yield the usual
pointwise order on 4. Hence our proof of Theorem 2.3 will be completed
as soon as we show that

(6) ae A+ if and only if @ e A+

If 220, then a-(M)=0 for each M ¢Y(4), so ¢ =0 by (5).
Conversely, if @ =0, then clearly @ = 0.

This complefes the proof of Theorem 2.3.

There are a large number of representation theorems similar to
Theorem 2.3. The earliest seems to be due to M. H. Stone, and requires
that A be (condifionally) o-complete as a lattice ([34], [35]). Similar
theorems were obtained by Dieudonne ([7], [8]), Nakano ([31]) and
Yosida {[37]). Representations of 4 as a vector lattice abound; Birkhoff’s
book [3], Chapter 15, and the latter’s paper with Pierce, [4], confain
several such references. Particular care has been given by Kadison ([24]),
and Kakutani ([25]) in case A has a strong order unit. The work of Fell
and Kelley ([10]), Kantorovi¢, Pinsker, and Vulih ([26]), Shirota ([33]),
and Vulih ([36]) also deserve menfion. Representations of a different
sort have been obtained by Goffman ([18]) and Olmstead ([32]).

The theories closest to the present work seem to be those of Idomra-
ceva ([9]) and Zawadowski ([37]). These authors do not rely on com-
pleteness assumptions. On the other hand, they do not work with objects
readily identified as @-algebras, and it does not seem possible to apply
their work direetly to Theorem 2.3 or {0 the sequel. Hence a fresh ex-
position seems in order.

Henceforth, we will ideniify, whenever it 18 convenient to do 8o, the
@ -algebra A with the isomorphic algebra AC DN (A)) of extended functions
obtained from Theorem 2.3.

Recall that A* denotes the sef of bounded elements of A. An [-ideal
I of A or A* is called fiwed if there is an M ¢ W (A) such that a el
implies (M} =0.

2.4, Levma. If I 48 a proper [-ideal of A or A%, then I is fized.

Proof. Since every proper [-ideal of A is a subset of a maximal
I-ideal of A, the lemma is immediate for A.

If I is an [-ideal of A* that is not fixed, then for every M e W {4},
there is an ay < such that az(M) > 0. Since <} {4) is compact, a finite
number of the open sefs Wy = {M ¢ W(A): an(M') > 0} cover W (4),
8ay WUpgyy ooy Wz, Then a = |an,| -+ ... +|aa € I, and there is a real
number 1> 0 such that @a>A.1. Then 1< (1/2)a e I, whence I is not proper.
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Now guppose that the @-algebra A is given to us explicitly as an
algebra of extended functions on a compact space %X such that X = 9 (A).
The following proposition describes the maximal [-ideals of 4 in terms
of thizs representation. It generalizes a result obtained by Gelfand and
Kolmogoroff in cage 4 = C(%) for some completely regular space <.

2.5. TEEOREM. A subset M of A is a maximal [-idéal of A if and
only if there is a unique x e W {A) such that

M=M,={aed: (ab)(z) =0 for all be A}.

Proof. Clearly M,, thus defined, is an -ideal of A. If ¢¢ M,, then
there is a d € 4 such that |ed|(x) > 1. Let 9 denote a closed neighborhood
of 2 disjoint from (ed)”'(0). By Theorem 2.3 (ii), there ig an a e A+ guch
that a[%]= 0, and a[{ed)™'(0)] = 1. Since R(b) is dense in W (4) for
every bed, we know that ¢e M,. But there iy a AeR puch that
Aa+|ed|) = 1. Hence M, and ¢ together generate A. Thus, 3, is
a maximal [-ideal.

That every maximal [-ideal of A4 takes this form follows from
Lemma 2.4. The uniqueness of 2 is an immediate consequence of Theo-
rem 2.3 (ii).

If weW{4) and a(z) =0, then (ab)(x) =0 for all b e A* Thus,
we have

2.6. CorROLLARY. A subset M* of A* is a mazimal [-ideal of A* if
and only if there is a unique x e W (A) such that

M*= M= {aed* a(z)=0}.

If 3 is a maximal [-ideal of A, then the totally ordered algebra
A/ M containg R as a subfield. M is called #eal or hyper-real according
as A/ M =R or A/M containg I properly.

T @ eN(A), then the mapping a—a(x) is clearly a homomorphism
of A* onto R. Hence, we have

2.7. COROLLARY. Fvery mawimal 1-ideal of A* 4s real.

The weak iopology for N (A) induced by the elements of 4* iz the
smallest topology for W(4) in which all of the functions in A* are con-
tinuous. An immediate consequence of part (ii) of Theorem 2.3 is that
the Stone topology for “¥{(4) coincides with the weak topology induced
by the bounded elements of A. Similarly, the Stone topology for Wi{4*)
is the weak topology induced by all of the elements of A*.

By 2.5 and 2.8, there is a one-to-one correspondence M« M* between
W (A) and N (A*). We show that this iz & homeomorphism by showing
that, for @ € 4% the value of the function a e D{W(4)) at M ig the same
ag the value of the function @ at M*, where a—a denotes the representa-
tion of A* ag an algebra of extended functions on W {4*). Now, by 2.7,
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M* is a real maximal [-ideal of 4% so @{M*) = M*(a) =7+ ¢ R. Thus,
a—v e M*. Since M* is the uniqne maximal [-ideal of A* confaining
the prime [-ideal M ~ 4* (see 1.6 (iii)), a-—# ¢ M* if and only it a—r
is infinitely small modulo M ~ A* hence if and only if a—r is infinitely
small modulo M (in A). Thus, z{M*) = r if and only if a(M) = r. Hence,
we have egtablished.

2.8, COROLLARY. W{A) and W (A*) are homeomorphic.

That G(A) and W ({A*) are homeomorphic in casec 4 is the ring
of all continuous functions on a completely regular space 1 was shown
by Gelfand and Kolmogoroff in [11]. (See also [15].) Indeed, in this case
they are homeomorphic to £1f. In case 4 iy c-complete and regular,
Corollary 2.8 was obtained by Brainerd in [5].

I aef{4), let

N.,={ae¢A: a4 vanishes on s neighborhood of x}.

If a,be N, then it is clear that a—b&eN,, and if ce A, and |¢|<|al,
then ¢ ¢ N,. Thus, to show that ¥, iz an [-ideal of A, we must show that
ad ¢ N, for all d e A. There is an open neighborhood U of # on which «
vanishes, Clearly (ad)(y) =0 for all ¥ e B(d) ~W. Bat R{d} is dense
in W(A), so (ad)(z) = 0 for each 2z %Y. Hence, ad ¢ ¥,. Thus, we have

2.9, If A is a @-algebra, then for each xeNW(A), N, is an I-ideal,
and every [-ideal of A containing N, ¢ in the unique maximal [-ideal M.

We conclude this section with a theorem concerning prime [-ideals.

2,10, ToworREM. Let A be a @-algebra and let P be a prime [-ideal
of A. Then there is a unique @ € W{A) such that N, C P C M,. Moreover,
N, is the intersection of all the prime !-ideals containing .

Prootf. By 1.6 (iil), P is contained in a unique maximal [-ideal
M, of A. If @ € N, then there is an open neighborhood < of # on which
it vanishes. By Theorem 2.3 (ii), there is a b e A such that b{zx) =1
and b[W(A)~U] = 0. Then ab = 0 ¢ P. Since b¢ M,, b¢ P. So, since P
is prime, @ ¢ P. Hence ¥, C P.

To prove the last statement, suppose a ¢ M,, and a ¢ N,. Then no
power of a is in N,. Hence {a, a?, ..., 4%, ...} is a multiplicative system
digjoint from ¥,. By 1.6 {iv), there is a prime [-ideal P of 4 containing
N, and not containing a.

We remark, finally, that the first part of Theorem 2.10 can be
inferred from results ¢f Gillman given in [12].

3. Uniformly closed P-algebras. A sequence {a,: n =1,2,..}
of elements of a @-algebra 4 is a Cauchy sequence if for each real ¢ > 0,
there is a positive integer n, such that |G, — a,| < ¢ whenever n, m = n,.
Taking ¢ =1, we obtain
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3.1. If {an: n =1, 2, ..} is & Cauchy sequence in a @-algebra A then
there is a positive indeger my such that “R{a.) = ‘K(as,) for n =n,.

A sequence {ap: n=1,2,..} of elements of A iz said to converge
to a ¢ A if for each real s > 0, there is a positive integer =, such that
“lan—a| <& for n=n,. If {@x: n=1,2,..} converges to both a and b
in A, then a = b. For, given any real ¢ > 0, there is an integer =, such
that |ap—a| < &2 and |a,—b| <2 for nz=ny, 80 |6—b| < |a—an|+
+|@n—b| < e. Hence, since A is archimedean, a = b.

A @-algebra A is said to be uniformly closed if every Cauchy sequence
in A converges in A. If A is an algebra of real-valued funections, then
this notion coincides with the usual notion of being closed under uniform
convergence. .

If A is a uniformly closed @-algebra, then A*, congidered as a subset
of D{I(A)), is by Theorem 2.3, a uniformly closed algebra of continuous
real-valued functions on a compact space. Moreover, it contains the
constant functions and separates points. Hence, by the Stone-Weierstrass
theorem, we have:

3.2. If A is a uniformly closed P-algebra, then A* and C{M(A))
are teomorphic.

A @-algebra A iz said to be elosed wnder bounded inversion if, for
aed, a 21 implies 1/a ¢ A. Thus, by 3.2, we have:

3.3. Bvery uniformly closed @ - algebra is closed under boundéd snversion.

For any & € 4, we denote the smallest [-ideal containing « by {a).

Suppose that A is closed under bounded inversion, and ¢ € A ig such
that {a) = A. Then there is a b ¢ A such that |ab| > 1. Thus, 1/|ab| ¢ 4,
so 1/la/e A. Thus 1/[a* = 1/a® ¢ A, whence l/a ¢ A. So we have proved

3.4. If A iz a ©-algebra closed under bounded inversion, then for
aed, {a>=A if and only if 1/ac A.

3.5. LEMma. If A is a P-algebra such that A* iz uniformly closed,
then ‘K (a) 18 C*-imbedded in W (A) for each @ ¢ A. Thus W(A) = 5% (a).

Proof. By 3.2, we may idenfify A* with C'(9(4)). Let a ¢ A. Since
R(a) = R(a*v1l), we may assume that a=1. Let ge C*(R(a)). Let
flz) = g(z)/a(z) if ©eR(a), and f(w) =0 if @ (a). Then, since g ig
bounded, feC [C??E(A)] = A* Thus fe is the desired continuwous extension
of g over G (A).

With the aid of Lemma 3.5, we are now able to produce an example
of a @-algebra that cannot be imbedded in a uniformly closed @-algebra
with the same space of maximal {-ideals,

3.6. ExampLE. Let Bt denote the space of non-negative real numbers
with its usual topology, and, as in 1.7, let A denote the @-algebra of
all continuous real-valued functions on E+ that are eventually polynomials,



Archtmedean lattice-ordered algebras ' 8b

ie. if fe A, then fe C(R*), and there is an @ ¢ Rt and a polynomial p
such that f (¥} = »(y) for all ¥ = =. It is easily verified that every maximal
I-ideal of A either takes the form M, = {f e 4: f(x) =0}, for = ¢ R+,
or the form M, = {feAd: there is an xe Rt such that % > 2 implies
f(y) = 0}. Thus W (A) is homeomorphic with the one-point compacti-
fication eR*= Bt v {o} of R

If it were possible to imbed A4 as a subalgebra of a uniformly closed
@-algebra B such that W((B) = 9 (A), then, by Lemma 3.5, for each
aed, Rie) would be C*-imbedded in 9 (A4). But this is not the case
if @ is a non-constant polynomial in A.

A subset 8 of a partially ordered set T is called order-convex if
a,be8, and zed with ¢ <<z < b, imply xe 8.

3.7. Lienmma. For a @-algebra A, the following are equivalend.

(i) A is uniformly closed.

(i) A* is uniformly closed.

(iii) A 48 (ésomorphic with) an order-convex subset of D(C}?Z(A)).

(iv) A* 18 (isomorphic with) an order-convew subset of D(C}?’C(A)].

Proof. Tt is obvious that (i) implies (ii) and (iii) implies (iv). By 3.2,
it is clear that (ii) and (iv) are equivalent. Next, we show that (ii)
implies (iti).

First consider @€ A, and geD(W(A)) such that 1 <g<a. On
¥ (@), gia is a bounded continuous function. By Lemma 3.5, it has a con-
tinuous extension fe G(Q?Z(A)) = A* Since g(r) = f(z)a{x) for « in the
denge subeet “R(a) of 4,9=7facA. :

Now suppose that a,bed, geD(W(4), and & <g<b. Then
gt < |g| < |al+]b], s0 I <gt4+1<|a|+|b|+1ed. Thus, the argument
above shows that g+ +1 e 4. Henece, g7 ¢ 4, and similarly g ¢ 4. Hence
g=gt—g 4

Finglly, we show that (ii) implies (i). If {an: # =1, 2, ...} is & Cauchy
gequence in A, then there is a positive integer %, such that [a,— an,|
<< 1 if m = #n,. Then, the sequence {@p,t— s, ¥ =1,2,...} i8 a Cauchy
sequence in A* which converges, by hypothesis, to some b e A*. Thus,
{an: n=1,2,..} converges to b4 ay e A,

The next result of this section shows that the lattice structure of
a uniformly closed @-algebra is uniquely determined by its algebraic
structure. That is, all of the axioms for uniformly closed @-algebras
could be rephrased in terms of the algebraic operations alone.

3.8. THEOREM. [f A is a wuniformly closed D-algebra, then ae A+
if and only if a =12 for some be A.

Proof. Let ae A+. Then @ is a non-negative extended function
on W (A), so a2 e D(W(A)). Now 0 < a2 < (a+1)¥2 <a+1ed. Thus,
by Lemma 3.7, al?e A.
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For the converse, recall that squares are positive in any @-algebra
(1.3 ().

We close this section with the following characterization theorem.
Note first that an element a of & D-algebra A of extended funciions is
a divisor of zero if and only if ¢=(0) has a non-empty interior. For, if the
latter holds there is an @ ¢ a7(0), and an open neighborhood 9 of & on
which @ vanishes. By Theorem 2.3, there is a & ¢ A such that b{z) = 1,
and [ X~U] = 0. Clearly ab = 0. The converse iz obvious.

3.9. THROREM. A @-algebra A is isomorphic to D(X) for some compact
space X if and only if

(i) A is uniformly closed, and

ii) if @e A, then either a is a divisor of zero or <{a)> = A,

Proof. Suppose first that (i) and (ii) hold. If fe DM (4)), and
f=1, then by 3.2, g =1/f e A*. Now, g(0) = H(f) i3 nowhere dense,
go by (i), <¢> = A. Then, by 3.4, 1jg=7Fe A.

If b is any element of D(W(4)), the above shows that 2™ +1 and
B~+1 are in 4. Hence h= (A" +1)— (A" +1)e A, Thus A = D(C??Z(A)].

Conversely, if A = D(%X) for some compact space 9, then clearly
X = Wi(4), and A is uniformly closed. If @ A, and ab = 0 implies
b = 0, then ¢=2(0) is nowhere dense, so 1/a e D(W(4)} = A. Thus (ii) holds.

If A is a regular ring (1.12), then for every a e A, there is a ¢e 4
such that a(ec—1) — 0. Thus (ii) holds. Hence we have:

3.10. CoroLLARY. If A is a wniformly closed, reqular @-algebra, then
A =D(A)).

Corollary 3.10 shows that if 4 is the ring & of Lebesgue measurable
functions on R, the ring B of Baire functions on I, or the rings &, or
B, obtained by reducing these rings modulo the ideal of null functions
(see 1.2), then A = D(W(4)).

4. Algebras of real-valued functions. If a i3 an element of
a @-algebra 4, let
Fla) = {MeW(A): a(M) =0},
Thus M ¢ Z(a) if and only if M (|a|) iz infinitely small or zero. Hence,

if M i3 real, a{3) = 0 implies a e M.
Let R(A) denote the subspace of real maximal ideals of A. That is,

R(A) =N {R(a): aed}.

In this section, we will consider @-algebras 4 which satisfy one or
more of the following restrictions.

41. A D-algebra A ¢s said to bé closed under [-inversion @f, for
a,bed, F(a)CH(b) implies {a) =
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4.2, A D-algebra A iz called an algebra of réal-valued funciions if
M E{M: MeR(A) = {03,

4.3. A D-algebra A of real-valued functions is said fo be closed under
tnversson if, for ae A, Z(a) ~R(A) = O implies {a) = A.

Condition 4,1 makes sense, of course, even if 4 is not an algebra
of real-valued functions. It holds, in particular, if D(Q?Z(A)) is an algebra
and A4 = D((A4)}, and hence it holds in the @-algebras £, and B, of
1.2 by Corollary 3.10.

Note that the condition of 4.2 states that “®2(4) iy dense in W {A),
g0 that A is, in fact, an algebra of (continuous) real-valued functions
on 92(4). As mentioned earlier, not every @-algebra is an algebra of
real-valued functions; it may be that ‘®R(4) =@. This i3, indeed, the
cage if 4 =2, or 4 = B,.

By 3.3 and 3.4, in a uniformly closed @-algebra 4, {(¢> = 4 if and
only if 1/ae 4. ‘

4.4. A wniformly closed @-algebra A is closed wunder inversion (re-
spectively, [-inversion) if and owly if, for aed, Z(a) ~R(4)=0
(respectively, Z(a) T Y (b) for some be A} implies 1/a e A.

It is clear that every @-algebra of real-valued functions closed under
inversion is closed under /-inversion. That the converse is not true will
be shown by an example at the end of this section. Next, we give an
example of a uniformly closed @-algebra of real-valued funections that
is not closed under either type of inversion.

4.5, BEXAMPLE. Let 4 = {fe O(R): limf(x)e = =0 for all real «> 0}.

00
It is easily verified that A4 is a uniformly closed @-algebra. Since A*
and O*ER+) are igomorphic, 9 {4)= gR+. The function g such that
glz) = e for all ze¢R* i3 in. A. Moreover F(g) = 9{f) = fR+~R",
where f(z) = x for all z < B+, However 1/g¢ A.

In cage 4 = O(7}f) for some completely regular space -/, the following
result is due to Gelfand and Kolmogoroff {[11]). (See, also [15].) For
this special cage, it is equivalent to Theorem 2.5.

4.6. TororEM. If A is a D-algebra of real-valued functions which
48 closeéd under inversion, then for each x ¢ N (A),

M,={aecd: &e(Z(a)~RA)} }.

Proof. For a ¢ A+, let & = Z(a) ~‘R(A4), and suppose that = ¢ F .
Then we may choose a closed neighborhood “ of 2 digjoint from F .
By Theorem 2.3, there is a b e A+ guch that b[U] = 0, and b[ZE "] = 1.
Now, since Z(a+b) ~R(4d) =0 and A4 is closed under inversion, there
i3 a e¢c¢A such that {e+b)e = 1. Since d[UI =0, (ac)(y) =1 for all
Y e U R(A). Since R (4) is dense in W (A), this means that (ae)(z) = 1.
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Thus, by Theorem 2.5, a ¢ M,. Since & is in a [-ideal of A if and only
if Ja] i, we have shown that M,Claed: xe{Z{a) ~ R(4)) }.

Conversely, if e (Z{a) ~ R(A))", then every neighborhood of =
containg points of ‘R {A) at which ¢ vanighes, Thus, in every neighborhood
of », there are points at which @b vanishes for any & ¢ A. Hence, by
Theorem 2.5, a € M,. This completes the proof of the Theorem 4.6.

It is eagily seen that closure under inversion is also necessary for
this description of the maximal [-ideals of A. For, if @ ¢ 4 is such that
F(a) ~R(A) =0, and {a> # A, then a is contained in some maximal
[-ideal M, of A, and no such description of M, is available.

We close this section with an example of a uniformly closed @-algebra,
of real-valued functions that is closed under [-inversion, but is not ¢losed
under inversion.

4.7. Exanrre. Let N denote the discrete space of positive integers,
and let “)f denote any locally compact, o-compact space that is not
compact. Let T = N x%, and, for each ne XN, let 2, = {n} x7f. Let
A = {f e D{T): f|T is rveal-valued, and there iz an n;e N such that
m 2= ny implies f|.2, is bounded}.

Thus, if f € A, then f iz real-valued on all but finitely many of the
spaces 2, . It is eagily seen that A is a @-algebra such that 4* and O*(T)
are isomorphic, so W (A4) = T. Thus, by Lemma 3.7,

(1) A is a uniformly closed @-algebra with W (4) = 8T.

Binee <f is loeally compaect and o-compact, there is an ke C(5Y)
that wever vanighes on <Y such that R[S ~ Y] = 0. Observe, algo, that
for each »n e N, (2, and p% are homeomorphic.

We wish to show that if p e 5C~, then M,¢ R (A). Suppose first
that there is an m e N such that p €2, . Define the function f on T by
letting fln,v) =1h(y) if n=am, fn,y) =0 I n£m for all ye%
By 1.9 (iv), f has a continuous extension f over AT into vR. Clearly fe 4,
and ]‘A(p) = oo,

If, for every neN, pé.L,, then every neighborhood of p meets
infinitely many of the spaces .2,. Thus, if g(n, ¥} == for all neX,
9 € <Y, then the continuous extension § of ¢ over §C info yR is such that
G (p) = co. Since g €A, we have:

(2)y RA)="T.

As obgerved above, we also have:

(3) If ae A, then {neN: Y{a) ~ L, # O} is finite.

Now, if @, b e A are such that Z(a) CH(b), then there is an n, e N
guch that m = n, implies Z(a) ~ L, = D. Hence m = n, implies that
4|, is bounded away from 0, so 1/ e A. Thus,

(4) A is closed under [-inversgion.
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Finally, we observe that A is not closed under inversion. The function
k defined by letting k(n, y) = h(y) for all » ¢ N, y €}/ has a continuous
extengion k over 7. Clearly % ¢ 4* Now, ZF(k) ~ R(4) = 0, but 1jk ¢ A.

5. Some internal characterizations of (/). In this section,
the algebra C(%/) is characterized among the class of @-algebras for
several classes of topological spaces 3/ by means of internal properties
of @-algebras. In each case, one of the requirements is nniform closure,
g0, in view of Theorem 3.8, the characterizations are, in reality, purely
algebraic. .

In case Y is compact, the celebrated Stone-Weierstrass theorem
provides an internal characterization of /(7). In this case, a charac-
terization of C(%f) as a ring was provided by McKnight in 1953 ([30]),
and it was improved by Kohls in 1957 ([287). Characterizations of €(°)
in the general (completely regular) case were provided by Anderson
and Blair in 1959 ([1]), both as a ring, and ag a lattice-ordered ring.
These characterizations, however, are external in naiure. In each case,
one must examine a large class of extensions of the algebra in question
in order to determine if this is a C(°}). The demand that the charac-
terization be internal seemg to make the problem more difficult.

The assumptions that are common to most of our results are that
the @-algebra 4 be a uniformly closed algebra of real-valued functions
that is closed under inversion. Obviously, each of these conditions is
necessary. Isbell has supplied an example of a @-algebra A satisfying
all of these conditions that is not isomorphic to C(°Y) for any completely
regular °f ([21], p. 108). Below, we give a few other such examples, which,
we believe are simpler in character. Note that if a @-algebra A is iso-
morphic to some (%), then it is isomorphic to C(R(4)).

5.1. ExampLi, Consider the @-algebra B of Baire functiong on the
real line. (See 1.2.) It is an algebra of real-valued functions and, since
B i closed under point-wise convergence, it is uniformly cloged. Tet M
be a real maximal [-ideal of B. Now, C(R) is a subalgebra of B, so

C(R) CR)+M .8

H~CR) = M =l

Il

B
M

Since the left-hand member contains &, we must have M ~ C(R) a real
maximal ideal of C(R). Hence ([16], Chapter 5) there ig an z¢ B such
that M ~ O(R) = {f e O(R): f{z) = 0}. There iz a & e C{R) such that
ETH0) = {@). Thug, il ge®B, and g(z) # 0, then |k|4|g| is a positive
element of B that vanishes nowhere, and hence has an inverse. So,
M= M, = {feB: f(z) =0}

We have shown that “®(3B) consists precisely of the [-ideals M,,
x e 2. Since B contains all characteristic functions of one-point subsets
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of R, the Stone topology on “R{B) is discrete. Hence “R{B) is homeo-
morphic to the space of real numbers with the discrete topology. Tt is
now clear that B is closed under inversion.

Not only is B not isomorphic to C(R(B}}, but card C{R(B)} = 2°,
while card B =¢ ([19]).

The argument just given applies verbatim to the @P-algebra of all
funections in any Baire class, except that the latter need mnot be closed
under point-wise convergence. B, however, has the advantage that is
both o-complete and regular (1.12).

A pimilar argument shows that the @-algebra L of all measurable
functions on R is not isomorphic 1:0 a full algebra of continuous functions.
Tn this case, however £ and C(R(2)) have the same cardinal number,
Note that £ is also regular and o-complete (1.12).

For a @-algebra A of real-valued functions that is closed under
inversion, a necessary and sufficient condifion that A be isomorphic
to C(F(A)} is that N (A)= B(R(4)}. In faect, we may weaken this
condition slightly.

5.2, Iimyma. A @-algebra A is isomorphic to C () for some completely
regular space <)f if and only if
(1) A is an algebra of réal-vained functions,

(it) A 4¢ uniformly elosed,

(1i1) A 43 closed under inversion, and

(iv) #f e C(R(A)), then there is an ae A such that {~(0) = Z(a) ~
~AR(A)

Proof. These conditions are obviously necessary. To prove sufficiency
we show firgt that 9(A) = ﬁ% {(A). Now, by 1.9 (iii) this is troe if and
only if whenever f,, f, ¢ 0( ), and f7'(0) and f;'(0) are disjoint, then
17'(0) and f;'(0) have disjoint closures in 97 (A). By (iv), there are elements
a; e A such that f;(0) = ZF(a:) ~R(4), for ¢ =1,2. Now Z(ailal)n

~AR(A )= , 80 by (iil}, there is a b ¢ A sach that b{a;+el) = 1. Now
aib[f7 (0] = 0, and alb[f_l (0)] = 1. Hence, since a;b is continaous on
W(A), ff '(0) and f;'(0) bave disjoint closures in W (A4).

By 3.2, to show that A is isomorphic to C(R(4)), it suffices to show

that if 1 < ge C(R(A4)), then there is an a <4 sneh that g — a[R(4

Now 1/ge O*(C}Q(A)), s0, by the above, it has an extension b e A*. But
Z(b) ~nR(A} =, so by (iil),"a = 1/b ¢ A. Clearly a|R{4)=g.

The authors are indebted to M. Jerison for the following lemma.
Recall that a Hausdortf space < is called a Lindeldf space if every open
cover of “lf has a countable subecover. -

5.3. Levma, If Y 48 a Lindeldf space contained in a (compact)
space X, then, for cvery [e C(7Y), therc is an ae O{X) such that

F7H0) = a™(0) ~ Y.
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Proof. For each yeY~f"Y(0), there is an @, C(X) such that
a,(y) =1, |a,l <1, and a,[f7(0)] = 0. Let Uy, = {y' € UY: a,{y’) > 1}. Then
Wy y € Y~FY(0)} is an open covering of Uf ~f (0).

Now UY~f () is an F,-subset of the Lindelof space 9, and hence
iz a Lindeldf space. So, there exist countably many elements ¥y, ¥a; ..oy Yny oo

of 9 such that Y ~f70) CJ {Uy: n=1,2,..}. Thus, if a = f‘ %[ayn[,

then F~(0) = a~}(0) ~ /. "

The hypothesis that </ be a Lindeléf space in Lemma 5.3 cannot
be deleted. In particular, if < is an uncountable discrete space, and
X is its one-point compactification, then the conclusion of Lemma 5.3
need not hold.

We are now ready to give our first characterization.

5.4. THEOREM. 4 @-algebra A is isomorphic to C(°Y) for some Lindeldf
space Y if and only if

(i} A 48 an algebra of real-valued functions,

(ii) A 48 uniformly closed,

(i) A is closed under inversion, and .

(iv}) if {@a: ael'} s a collection of elements of A such that for each
M e R(A), there is an a eI with a, ¢ M, then there is a countable subset
Gyy gy eeey Guy o Of ' such that {a,: 1 =1,2,...} has this property.

Proof. Condition (iv) states that every open cover of ‘2(4) by
basic open sets of the form (C??Z(A)NSE(G)) ~ K(d), a € A, has a countable
subcover. Thus, (iv) is equivalent to the gtatement that <R (4) is a Linde-
16f space. Hence the theorem follows from Lemmas 5.3 and 5.2.

In cage % is locally compact and o-compact, we have a somewhat
simpler characterization of C (), but we cannot claim that it is original.
It differs only superficially from a result of Isbell, [21], Lemma 1.18.
While we could prove our theorem by reducing it to his, it seems easier
to give a direet proof.

5.5. THROREM. A @-algebra A is dsomorphic to C(U) for < locally
compact and o-compact if and only if

{i) A is an algebra of real-valued functions,

(i) A is uniformly closed,

(iii) A is closed under [-inversion and

(iv) there 4s an ke A such that R(A) = R(h).

Proof. These conditions are obviously necessary. If ae A is such
that Z(a)~R(4) =0, then, by (iv), Z(a)CH(k), whence by (iii),
1/a e A. Thus, in the presence of (iv), closure under [-inversion implies
closure under inversion. By Lemma 3.5, R(4)= R (k) iz O*-imbedded
in W(4), so N (L) = pRrR(A). Thus, by Lemma 5.2, 4 is isomorphie
to (%(A)).
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We require an additional fact about extremally disconnected spaces.
(See the discussion following Proposition 2.2.) Every dense subspace of
an extremally disconnected space is C*-imbedded ([29]). Hence, by
Lemma 5.2, we have

5.6. THEOREM. A D-algebra A is isomorphic to C(1) for some ex-
tremally disconnected space U if and only if

(1) 4 is an algebra of veal-valued functions,

(i) A s uniformly closed,

(iil) A is closed under inversion, and

(iv) A 45 complete.

The algebra B of Baire functions of Example 5.1 shows that we
cannot replace (iv) above by the requirement that A be o-complete.

By using Theorem 3.9, we may replace condition (iii) above by
requirement that every element of A be either a divigor of zero or have
an inverse. For, in this case, we may conclude that A4 = D(W(4)),

and that § (%(A)) = S {A4). This change does not, however, either weaken
or strengthen the hypothesis of this theorem.

By (1.8), we could also delete the requirement that 4 be archi-
medean. . :

An infinite cardinal number m iz said to be nonmeasurable if there
i3 no countably addifive measure on a set of power m giving points
measure 0, the whole set measure 1, and assuming only the values 0 and 1.
In 1930, Ulam showed that m is nonmeasurable unless m iz strongly
inaeccessible from x,. Moreover, it is congistent with the axioms of set
theory to vejeet the existence of such cardinal numbers. For a thorough
diseussion of nonmeasurable eardinals, see [16], Chapter 12, where
it is shown that if wm is nonmeasurable, sc is 2. From this, we may
derive

5.7. TamoREM. Let A be a @-algebra of nonmeasurable power. Then
A d5 dsomorphic to C(Y) for some discrete space “If if and only if

(i) 4 is an algebra of real-valued functions,

{ii) A is uniformly closed,

{itl} A 4s complete, and

(iv) A is regular.

Proof. By Corollary 3.10, (ii) and (iv) imply that 4 = D(W(4)}.
By (iil), (A} i1s extremally disconnected. Hence, as remarked above,
(i) implies that 9 (A4) = W{A4). Thus A4 and C’(%(A)) are igsomorphic.
Since A is regular, “¥(4) is a P-gpace (i.e. every G is open; see [13]).
But Tsbell has shown that every extremally disconnected P-space of
nonmeasurable power is discrete (see [20]; [16], Chapter 12). Also,
card R(4) < 2", where m = card A. This completes the proof of the
theorem.
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Example 5.1 shows that (ili) above cannot be replaced by the re-
quirement that A be o¢-complete. A characterization of C(%) among
the class of regular o-complete @-algebras was obtained by Brainerd [6].

Our last theorem is a simple application of Theorem 5.5.

5.8, ToxoreM. Let A be a D-algebra thai is uniformly closed and
elosed under [-inversion. If he A, let By = {fe d: R(FHCTRMR). Then
By, and C(R(h)) are isomorphic.

Proof. It is clear that B, is a @-algebra that is uniformly closed
and closed under [-inversion, indeed, B} = A* Hence i(B;) = N (4),
and R(B) = R(k). Since h ¢ By, the theorem follows from Theorem 5.5.

We have been unable to obfain aun intermal characterization of
O() in the general case. By now, it iz evident that the heart of the
difficulty lies in our lack of ability to find an internal equivalent of
condition (iv) of Lemma 5.2.
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Added in proof. J. E. Xiet has pointed out that, in the presence of comple-

teness, the hypothesis that 4 be nniformly cloged in Theorerns 5.6 and 5.7 is redun-
dant. (See, e.g. [31], p. 30.)
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